- 《加法交换律和结合律》教学设计 推荐度:
- 相关推荐
加法交换律和结合律教学设计
作为一名辛苦耕耘的教育工作者,时常要开展教学设计的准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。怎样写教学设计才更能起到其作用呢?下面是小编整理的加法交换律和结合律教学设计,希望对大家有所帮助。
加法交换律和结合律教学设计1
教学目标:
1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。
2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。
3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学过程:
一、情境引入:
(1)同学们你们喜欢体育活动吧?谁来说说你最喜欢哪项体育活动?
(2)下面请同学们看屏幕(出示图),仔细观察这幅图,你从图上知道哪些信息?
(3)根据这些信息,你能提出哪些用加法计算的问题?
B、参加活动的女生有多少人?
C、男生跳绳和女生踢毽子的有多少人?
D、参加活动的一共有多少人?
同学们提出的问题都非常好,下面我们先来解决第一个问题。
二、探索加法交换律:
1、(1)要求参加跳绳的有多少人,应该怎样列式计算?
指名回答,教师板书:28+17=45(人)
(2)还可怎么列式?板书:17+28=45(人)
(3)这两道算式都是求什么的人数?结果都是多少?再观察算式它们有什么相同点?不同在哪里?
(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。
师:这两道算式的`得数相同,都是求的跳绳的总人数。我们可以用怎样的方法连接这两道算式?(等号)板书:28+17=17+28
这是一个等式,读一读。
(4)你能照样子说出一个这样的等式吗?试试看。(指名学生回答说,教师把学生说的等式有序地板书在黑板上)。
(5)请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?
(6)从这些例子中,你可以发现什么规律?(让学生用自己的语言说一说)
(7)你能用自己喜欢的方法把它们的规律表示出来吗?可以用符号、字母、文字等等表示,试试看。谁愿意上黑板写?(学生写,教师了解学生写的情况)。
(8)观察板演的等式,问:等式中的符号代表什么,如:○+□=□+○,教师就提问:“□”和“○”都代表什么,○+□=□+○表示什么呢?(代表任意的数)……
小结:同学们想出来的方法可真多!两个数相加,交换加数的位置和不变这一规律叫做加法的交换律(板书:加法交换律),通常用字母表示:a+b=b+a
2、练习。
(1)想想做做第2题第1排的两题填好。
96+35=35+□ 204+□=57+204
指名回答,为什么?
(2)下面的等式符合加法交换律吗?为什么?
46+59=46+59 90+10=5+95
[没有交换加数的位置;等号两边的加数不同。]
(3)同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?
下面一道题357+218,请同学们计算并用加法交换律进行验算。指名板演,集体订正。
同学们,刚才我们通过计算加法找出了一条规律(加法交换律),接下来我们继续研究加法的另一条规律
三、探索加法结合律
1、 同学们根据例题这幅图再算一算“参加活动的一共有多少人”会列式吗?
(1)指名回答,板书:28+17+23
第一步先求什么?为了看得更清楚,我们可给28+17添上括号,表示参加跳绳的总人数:(28+17)+23,再求什么?结果是多少?
(2)还是这个式子28+17+23(板书)如果要先算参加活动的女生人数应该怎么办?教师添上括号:28+(17+23),添上括号后表示先求什么,再求什么?结果是多少?
(3)请同学们比较这两道算式:它们有什么相同点和不同点?
(4)这两道算式结果相同我们可把它写成怎样的等式?
板书:(28+17)+23=28+(17+23)
(5)算一算,下面的○里能填上等号吗?(教师当场板书)
(45+25)+13○45+(25+13)
(36+18)+22○36+(18+22)
3、归纳加法结合律:
(1)观察这三个等式, 每组的两个算式有什么相同的地方?有什么不同的地方? 你从这些等式中能发现怎样的规律?和你的同桌交流一下。
(2)你能用字母a、b、c代表这三个加数把上面的规律表示出来吗?(独立写一写) 板书:(a+b)+c=a+(b+c)
a、b、c代表什么?(a+b)+c表示什么?a+(b+c)表示什么?
(3)小结:三个数连加,改变运算顺序,和不变。这就是加法结合律。(板书:加法 结合律)
4、练习:在□里填上合适的数,想想做做2后两排。
(45+36)+64=45+(□+□)
560+(140+70)=(560+□)+□
全课总结:这节课我们一起学习了加法的交换律和结合律,知道两个数相加,交换加数的位置和不变,还知道了三个数连加,改变运算顺序和不变。
四、巩固练习
1、“想想做做”1
下面的等式各运用了加法的什么运算律?
82+0=0+82
47+(30+8)=(47+30)+8
(84+68)+32=84+(68+32)
75+(48+25)=(75+28)+48
(以游戏的方式进行:女生代表加法交换律,男生代表加法结合律)
2、想想做做4
38+76+24 (88+45)+12
38+(76+24) 45+(88+12)
请每个同学选一组题独立完成。
反馈提问:为什么每组两道题的得数相同?哪种方法简便,为什么?
小结:可见,合理地运用加法的交换律和结合律可以使计算简便。
3、想想做做5
出示题目后学生说。
五、拓展练习
1、 在□里填上合适的数
□+147=□+a
45+□+55=74+(□+□)
18+(c+□)=(18+□)+a
2、想一想:怎样应用加法运算律使计算简便。
30+28+70+45+72
=(30+70)+45+(28+72)
=100+45+100
=245
加法交换律和结合律教学设计2
◇教学内容:
义务教育课程标准实验教科书四年级数学.下册P28-29页内容。
◇教学目标:
1、理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、通过观察、猜想、验证、比较、分析、归纳、合作交流等学习过程,经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。
3、在数学活动中使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
◇教学重点:
理解并掌握加法交换律和加法结合律,能用字母来表示。
◇教学难点:
经历探索加法交换律和结合律的过程,发现并概括出运算规律。
◇教学准备:
多媒体课件
◇教学过程
一、谈话导入,鼓励猜想
1、出示图片牛顿与“万有引力”
2、引入“牛顿因为一只苹果掉下来打到他的头上,大胆猜想,是不是所有物体都往下掉呢?通过进一步的观察、思考,经过坚持不懈的努力,最后发现了万有引力定律。我们在平时也要学会观察和思考生活中的一些习以为常的问题,并努力从中探索规律。
二、合作交流,探索猜想
(一)故事激趣,初次猜想
1、朝三暮四
猴妈妈给小猴们分配桃子,“早上给你们每人3个,晚上每人4个桃。”小猴们很不乐意,“太少了,太少了!”吵着要妈妈多分一些。猴妈妈说:“好的,早上给你们每人4个,晚上每人3个。”小猴们拍手欢呼。听了这个故事,请同学们动脑筋想一想,我们能用数学的眼光说点什么吗?
2、初步感知,大胆猜想
出示:3+4=4+3
师:仔细观察这两个加法算式,你发现了什么?
得出:两个加数交换位置,和不变。(适时板书)
(二)广泛举例,验证猜想。
师:这里是3和4的`位置交换了,和没变。仅凭一个例子就得出“两个加数交换位置,和不变”的结论,似乎草率了一点。我们不妨把这个结论当作一个猜想(教师随即将生1的结论加上“?”)
师:既然是猜想,想不想知道猜的对不对?
生:想。
师:我们还得举例验证。
1、举例要求:
(1)任意两个数,求出他们的和;
(2)交换两个加数的位置,再求出两个数的和:
(3)比较两次的结果,判断式子是否相等。
2、学生汇报,师板书。
3、小结:根据自己的等式,再次观察比较,发现:交换两个加数的位置,和不变?这一猜想是对的。(同时将“?”改成“。”)
4、揭题:大家发现的这个规律叫什么呢?
学生交流后,师板书。
5、用字母表示加法交换律。
(1)观察自己仿写的式子,独立思考或小组讨论,然后用自己喜欢的形式表示。
(学生可能使用文字,图形,符号等方式)
(2)用字母表示加法交换律:a+b=b+a
6、追问:加法交换律中,什么变了,什么没有变?
7、原来,猴妈妈就是巧妙地运用了加法交换律中的“变”与“不变”,轻松的解决了分桃的问题,其实同学们在以往的学习中也不知不觉的运用过?(加法计算“验算”的时候)
(3)出示教材56页的例题情境图。
解决:跳绳的有多少人?
28+17=45(人)17+28=45(人)
(三)规律延伸,猜想拓展。
1、根据反思,拓展规律。
师:同学们真棒,从个别例子中形成猜想,并举例验证,获得了加法交换律。但有时,从已有的结论中通过适当的变换、联想,同样可以形成新的猜想,进而形成新的结论。那么“在加法中,交换两个加数的位置和不变。”那么,其它三种运算中呢?
生可能会说出以下几个想法?
“猜想二:减法中,交换两个数的位置差不变?”“猜想三:乘法中,交换两个数的位置积不变?“"猜想四:除法中,交换两个数的位置商不变?”
“猜想五:几个加数时,变换加数的位置和也不变?“
2、举例探究,验证猜想。
师:现在同学们又有了不少新的猜想。这些是与众不同的、全新的猜想!如果猜想成立,它将加大我们对“加法交换律”的认识。那这猜想对吗?又该如何去验证呢?选择你最感兴趣的一个,用合适的方法试着进行验证。
3、汇报交流,验证猜想。
师:哪些同学选择了“猜想二”又是怎样验证的?请生汇报,观察、总结
小结:a、验证的结果是减法中,交换两个数的位置差会变,猜想不成立:b、只要能举一个反倒,就能验证猜想肯定不成立。
(2)验证猜想三。
师:哪些同学选择了“猜想三”,又是怎样验证的?学牛汇报,观察、小结:乘法中,交换两个数的位置积不变?验证结果是积不变,猜想成立。这就是我们将来要学习的乘法交换律。用字母表示这样的规律。简洁交换律:axb=bXa。
(3)验证猜想四
师:哪些同掌选择了“猜想四”,又是怎样做的?
学生汇报,观察、小结:验证结果是“除法中,交换两个数的位置商会变。”猜想不成立。
加法交换律和结合律教学设计3
教学目标:
1、教学技能目标:使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、过程方法目标:使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。
3、情感、态度、价值观目标:使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经历探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:
挂图、小黑板
教学过程:
一、教学新课教学加法交换律。
1、一年一度的学校运动会又即将举行了,学校的同学们都在做充分的准备。从这张图片中,你获得了哪些数学信息?
你能根据这些信息,提出几个用加法计算的问题吗?请学生回答。
①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人?
④参加活动的一共有多少人?
2、今天这节课,我们就一起来研究其中的这两个问题:
在黑板上张贴:参加跳绳的有多少人?
参加活动的一共有多少人?
我们先来解决第一个问题:参加跳绳的一共有多少人?
3、你们能马上口头列式并口算出结果吗?
指名回答,教师板书:2817=45(人)追问:还有其他的方法来解决吗?在学生回答后,教师完成板书:1728=45(人)
为什么这两个算式的结果一样?
4、你们能用一个符号把它们连接起来吗?教师继续板书:2817=1728
这是一个等式,仔细地观察一下这个等式,你们有什么发现?在等号的两边,什么地方相同?什么地方不同?(同桌交流并汇报)
5、你们能够自己模仿写出几个这样的算式吗?根据学生回答,教师相机板书算式,并追问:这样的算式能写几个?
6、我们再仔细的观察这几个算式,从中你们发现什么规律?(用自己的话来说一说)你能用自己喜欢的方法、符号或文字来表示你们的发现吗?
教师巡视,并作相应的辅导,板书学生回答的一些符号表示的算式。并追问:你这样表示,每个符号分别表示什么?
7、同学们都自己用自己喜欢的方式表示了你们的发现,那你们想不想把这些算式都统一呢?国际上一般用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这些算式能够怎样来表示呢?板书:ab=ba。
8、教师小结知识点:在很平常的一些四则运算中包含了一些规律性的东西,我们把这些规律叫做运算律。板书:运算律。教师指着板书指出:我们刚才研究的就是加法交换律(板书加法交换律),学生齐读一遍。
9、其实加法交换律我们早就会用了,想想看,什么时候我们用过?(在验算加法时用的就是加法交换律)
二、学习加法结合律。
1、刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究第二个问题“参加活动的一共有多少人?”看看我们有没有新的发现?
2、你们会自己列式解决这个问题吗?学生练习,教师巡视指导。
3、学生回答,教师有意识的板书:
(2817)23=68(人)
28(1723)
(2823)17
28(2317)
(2317)28
23(1728)
交流不同的算法。
下面,我们就来针对这两个算式开展研究:(2817)23 28(1723)
(为了看得清楚,我们给2817添上括号)
4、观察或计算一下,这两个算式有什么关系呢?(参与运算的数相同,运算结果一样;运算顺序不同)你们能用什么符号连接?教师板书:
(2817)23=28(1723)
5、出示:下面的'Ο里能填上等号吗?口算或计算一下。
(4525)13Ο45(2513)
(3618)22Ο36(1822)
学生回答,教师板书:(4525)13=45(2513)
(3618)22=36(1822)
6、看着黑板上的板书,你们从中有了什么新的发现?把你的发现在小组内先交流一下。学生小组交流后大堂再交流。
7、这样的描述太长又难记,你们从第一个运算律中能得到启发,用简便的方法来表示你们的发现吗?自己尝试写一下。
板书:(ab)c=a(bc)
a、b、c各代表什么?(ab)c表示什么?a(bc)表示什么?
教师揭示:这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。
四、巩固练习。
1、完成“想想做做”第1题。
以游戏的形式进行,女生代表交换律,男生代表结合律。
2、完成“想想做做”第2题(出示小黑板)说说是怎么想的。
3、完成“想想做做”第3题第1行。
4、插入“朝三暮四”的故事,来听个“朝三暮四”的成语故事。
战国时代,宋国有一个养猴子的老人,他在家中的院子里养了许多猴子。日子一久,这个老人和猴子竟然能沟通讲话了。这个老人每天早晚都分别给每只猴子四只桃子。几年后,老人的经济越来越不充裕了,而猴子的数目却越来越多,于是他就和猴子们商量说:“从今天开始,我每天早上给你们三只桃子,晚上还是照常给你们四只桃子,不知道你们同意不同意?”猴子们听了,都认为早上怎么少了一个?于是一个个就开始吱吱大叫,而且还到处跳来跳去,好象非常不愿意似的。
老人一看到这情形,连忙改口说:“那么我早上给你们四只,晚上再给你们三只,这样该可以了吧?”猴子们听了,以为早上桃子已经由三个变成四个,跟以前一样,就高兴的在地上翻滚起来。听了这个故事,你们有哪些想法?
让学生通过故事得出:猴子很愚蠢,因为总量不变,只是老人采用了加法交换律。
5、完成“想想做做”第4题。
男生做第一行,女生做第二行。表扬女生快,知道为什么吗?
使学生初步感受应用加法运算律可以使计算简便。
6、完成“想想做做”第5题。
师:你能很快地找出哪两片树叶上的数的和是100吗?
学生在书上连线,同桌相互校对。
师:看来,在计算过程中,要有一双敏锐的眼睛,看到数字就能很快地判断出能不能凑成整百数。
五、课堂总结。
通过本节课的学习,你有什么新的收获?
教学反思:这节课主要教学加法的交换律和结合律,从创设的贴近学生的生活情境出发,让学生自由地提问,可以培养学生
的发散性思维,并培养学生
的问题意思。同时也符合新课程“创造性使用教材”理念。在教学中主要通过让学生观察几组算式,从中总结出加法的交换律和结合律。学生能较快的体会出这两种加法的运算律,但在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当的进行指导和帮助。同时要鼓励学生用自己最喜欢的方法记忆加法的运算律,提高学生掌握能力。学生的记忆方法过于单调,教师应在开发学生思维上多下功夫。几个层次的练习,内容丰富,提供了具有价值的学习内容,使全体同学都参与到有趣的数学学习中,从验算中明白了其理论依据,从故事中分析出了其中蕴涵的运算律,既体会到了数学的乐趣,又复习巩固了全课的内容。在练习“想想做做”第1题第4小题时,注意让学生说清应用的运算律,这样才能为以后教学应用运算律进行简便计算作好铺垫。很可惜,我引导得不是最合适,学生自己发现的不多。整节课,由于新授部分花时较多,显得稍有拖沓,导致了有些练习来不及处理。
加法交换律和结合律教学设计4
教学内容:
苏教版小学数学四年级下册第56—57页例2,及“试一试”、“练一练”。
教学目标:
1、让学生经历运用加法运算律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。
2、在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。
3、让学生在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。
教学重点:
理解并掌握如何运用加法运算律进行简便计算。教学难点:能灵活运用加法运算律进行简便计算和解决问题。教学准备:电子白板
教学过程
一、复习准备
1、师:上节课我们学习了加法的两个运算律,谁能告诉大家用字母怎样来表示?各是什么意思?
生1:a+b=b+a(两个数相加,交换加数的位置,和不变,这是加法交换律。)
生2:(a+b)+c=a+(b+c)(三个数相加,可以先把前面两个数相加,;也可以先把后面两个数相加,它们的和不变。)
2、进行一个抢答小比赛:
师:看得出大家对这两个运算律已经掌握的不错了。接下来咱们来一个抢答比赛。比比谁最快说出气球上三个数的和。算好了直接站起来报得数。
(64、19、36)
(38、18、32)
(75、27、63)
出示第一组气球:64、19、36
学生口答后提问:你怎么算的这么快的?你怎么想到先将64和
36相加呢?
明确:把能凑成整百的数先加起来,再与另一个数相加,这样比较简便(板书“简便”)。
出示第二组气球:75、27、73
师:怎么算的?这样算真简便。下一组。
出示第三组气球:38、18、32
师:这题没有两个数相加得100的,咱们怎么办的?
3、小结
谈话:看来,要想算的'快,是有窍门的。只要找到了方法,把能凑成整十或整百的数先加起来,再与另一个数相加,这样计算就更简便。我们今天就要一起研究,如何简便计算。(补全课题:简便计算)
二、用加法运算律进行简便计算
1、教学例题。
出示书P57的例题图。
师:会跳绳吗?从图中你了解到哪些数学信息?
能提出用加法计算的问题吗?会列式计算吗?
先让学生独立列式计算。教师巡视,指名板演。
交流反馈:这两位同学的答案对吗?他们分别是怎么算的
框出29+46+54=29+(46+54)
提问:这两个式子为什么相等?这两种方法,哪种方法更简便?他是怎样让计算变得简便的?
谈话:运用加法结合律,将相加能凑成整百的数先加起来,再与另一个数相加,计算更简便。
2、教学“试一试”
谈话:下面两题,你能试着用简便方法计算吗?
出示“试一试”两题:56+69+2178+(47+22),学生独立完成。同桌之间说一说,你是怎么算的,依据是什么?
班级交流:选取一组同桌上台展示计算过程,并讲解算法及依据,其他同学补充。
3、小结:观察黑板上的这3题,我们是如何进行简便计算的?明确:运用加法交换律和加法结合律,我们可以把能凑成整十、整百的数先加起来,再与另一个数相加,让计算变得简便。这就是我们今天学习的,应用加法运算律进行简便计算。(补全课题)
三、及时训练,巩固提高
1、解决实际问题(练习九第7题)
谈话:掌握了简便计算的方法,我们还要用它们来解决实际问题。(课件出示)学生独立完成练习九第7题。
校对答案。
提问:怎样算比较快?
谈话:简便计算可以帮助我们更快地解决问题。因此,解决问题时,如果能简便,尽量简便。
2、两个数相加
谈话:刚才我们做的都是三个数相加的算式,同学们做得不错。接下来还有一些挑战题敢不敢试试?
出示:175+201
师:这一题你能简便运算吗?两个数,如何凑呢?
换个思路,可不可以先“拆”?
师:拆哪个数?(生:拆那个最接近整百的数。)
师根据学生回答板书。
师:先拆再凑的办法真好,谁想出来的,“小数学家”。这两题能用先拆再凑的方法做吗?
出示:354+102205+417
师:同桌先互相说一说,你打算拆哪个数。
学生完成在练习本上。指名板演。交流反馈。
出示246+198。
提问:这道题目,你能想办法简便计算吗?小组之中说一说,再独立计算。
指名板演,共同订正。
明确:198很接近200,我们可以将它先看成200去计算。但是这样多加了2,因此还要减去2。
出示刚才做的几道题目
提问:刚才我们算的这几题,都是怎样让计算变得简便的?分别
改变了哪个数?(学生口答,教师课件将改变的数圈出)
提问:改变的都是什么样的数?
明确:都将一个加数看成和它接近的整百数,然后多加了就减去,少加了就补上。
师:这几道算式,分别应该改变哪个数?
口答:204+328436+97299+153
3、拓展题
提问:现在,你会简便计算了吗?要想运算更简便,关键是什么?那么,我们来几个难点的挑战,不要被打倒哦!
①99+199+2,小组中说一说,再在班级交流。
②36+28+44+72,怎么算更简便?同桌之间说一说,再列式计算。③1+2+3+4+……+98+99+100
好样的,还想继续挑战吗?一百个数呢?(同学们自己独立完成)交流:指名说方法。
师:当之无愧的小数学家呀,想知道世界上最早用运用简便方法计算这题的人吗?
播放视频:数学王子高斯的故事。
师:看了高斯的故事,有什么想说的吗?
师:是的,只要是深刻而持久的思考就会有发现。
四、总结
师:最后回想一下,这节课你有哪些收获?
加法交换律和结合律教学设计5
教学内容:
青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。
教学目标:
1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。
2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。
3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。
4.初步形成独立思考、合作交流的意识和习惯。
教学重点:
理解掌握加法的交换律和结合律,并会用字母表示他们。
教学难点:
引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。
教学准备:
课件、投影仪、卡片
教学过程:
一、拟定导学提纲,自主预习
(一)创设情境
1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的.知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些?
课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原黄土高原内蒙古高原中游:黄土高原下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。
以上展示在大家面前的就是黄河流域图。教师板书:黄河流域
请同学们仔细观察,你能获得了哪些数学信息?
学生观察汇报,
生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;)
教师适时板书相应的信息条件。
2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。
问题(1)黄河流域的面积是多少万平方千米?
问题(2)黄河全长多少千米?
(二)出示学习目标
同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标:
1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。
2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。
(三)出示自学指导
为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。
(自学指导:请同学们认真看教科书第13—14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?
(5分钟后,比一比谁汇报得最清楚。)
(四)学生自学
师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)
二、汇报交流,评价质疑
(一)调查
师:看完的同学请举手?
(二)全班汇报
1.问题一:黄河流域的面积是多少万平方千米?
学生在列式解答时,可能会出现两种情况:
(1)39+34+2和34+2+39
(2)(39+34)+2和39+(34+2)。
2.问题二:黄河全长多少千米?
学生可能出的情况:
(1)、3470+1210+790和1210+790+3470
(2)(3470+1210)+790和3470+(1210+790)。
今天我们要学的知识就在这两组算式中。
(设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)
3.观察、比较、发现规律
(1)观察这些算式,你们发现了什么?
生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。
例如:
(39+34)+2=39+(34+2)
(3470+1210)+790=3470+(1210+790)。
(2)是不是所有的三个数相加都符合这些规律呢?举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)
生汇报:
(35+63)+15=35+(63+15)
(325+82)+18=325+(82+18)…
(3)把你的发现告诉大家?(将学生的举例用实物投影展示)
(三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)
师指出这条规律叫做加法结合律。
(4)你能用你喜欢的方法表示这加法结合律吗?
学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上
小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。
(设计意图:本环节经历了猜测—举例—验证—得出结论的过程,无形之中培养了学生一种数学思想。)
4.学法迁移,探索加法交换律。
那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。
(1)游戏:找朋友。
在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?
(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗?
加法交换律和结合律教学设计6
教学目标
1、知识与技能:结合具体的情境,引导学生认识和理解结合律的含义。
2、过程与方法:能用字母式子表示加法结合律,初步学会应用加法结合律进行一些简便运算。
3、情感态度与价值观:
①体验自主探索、合作交流,感受成功的愉悦,树立学习数学的自信心,发展对数学的积极情感。
②培养学生观察,比较,抽象,概括的初步思维能力。
教学重点
认识和理解加法结合律的含义。
教学难点
引导学生抽象,概括加法结合律。
教学用具
多媒体课件。
教学过程
一、自主学习
(一)出示自学提纲
自学提纲(P29页例2并完成自学提纲问题,将不会的问题做标注)
1、根据例2情境图中信息列出算式。
2、用你喜欢的方法尝试计算
3、同桌交流自己的算法
4、教师板书出学生的算式及答案
88+104+96 88+(104+96)
=192+96 =88+200
=288 =288
5、对比上面的`两道算式,你发现了什么?用自己的话说一说。
(二)学生自学(学生对照自学提纲,自学教材P29页例2,并完成自学提纲问题,将不会的问题做标注)
(学生自学,教师在不干扰学生的前提下巡回指导,发现共性问题,以掌握学生学情)
(三)自学检测
1、填空
387+425=()+ 387 525+()=137+ 525
300+600=()+()()+65=()+35
2、连线
56+68 150+(25+75)
150+25+75 50+B
B+50 68+56
A+B+100 A+(B+100 )
三、合作探究
(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解。)
(引导学生正确地计算,鼓励学生分工合作,探索交流,教师巡回辅导,发现、收集学生存在的问题)
(二)师生互探
1、解答各小组自学中遇到不会的问题。
(1)让学生提出不会的问题,并让学生解决。
(2)教师引导学生解决学生还遗留的问题。
(3)如何用字母表示加法交换律和结合律?
(4)用字母表示这些运算定律有什么优点?
2、教师有针对性地请不同做法的同学汇报自己的解题思路与方法。
四、达标训练(1——3题必做,4题选做,5题思考题)
1、根据加法结合律填空题。
(1)78+25+22 =78 +()+25
(2)376+175+25=376 +(+)
2、连线。
147+(72+28)A+(B+100)
A+B+100 147+72+28
3、简便计算下面各题。
52+27+73 285+15+77+23
课堂小结:谈谈你有什么收获?有什么感受?还有问题吗?(学生总结不完整的地方,教师要适当补充总结)
五、堂清检测
(一)出示检测题
1、根椐加法的运算定律填空
(1)450+320=()+ 450 65+95=95+()
(2)()+ 100 =100+150 250+()=125+250
(3)78+25+22 =(78 +)+()
(4)495+125+75=495 +(+)
2、下面的哪些算式符合加法结合律,哪些算式符合加法交换律。
(1)A +(30+9)=A+ 30+9
(2)15+ ( 7+B )= (15 + 7 )+B
(3)10 + 20 + 30 + 40 =10 + (20 + 30) + 40
3、连线。
87+22+78(79+83)+17
498+125+75 498+(125+75)
(138+136)+162 87+(22+78)
79+(83+17)138+136+162
4、简便计算。
98+72+28 215+85+73+27
(二)堂清反馈:
作业布置
加法交换律和结合律教学设计7
[教材简解]
《加法交换律和加法结合律》是小学数学第七册第六单元第1课时的内容,这是学生第一次接触运算定律,对于加法交换律的内容,从知识的层面上看,学生学习、理解、运用起来比较容易。而且在以往的学习过程中也已经渗透,让学生积累了一定的感性认识。学习加法的运算定律,为以后学习用字母表示数打下初步基础,同时也为简便运算打下基础。
[目标预设]
1、使学生经历观察、猜想、验证、结论的探索加法运算律的过程,结合具体实例,理解并掌握加法的交换律和结合律,会运用加法交换律进行加法验算.
2、在探索运算律的过程中,发展学生的分析、比较、抽象、概括能力,培养学生的符号感。
3、让学生在数学学习过程中获得探究的乐趣和成功地喜悦,进一步增强对数学学习的'兴趣和信心,初步形成独立思考、合作交流的意识和习惯。
4、通过自主探究、相互合作获得成功的体验,提高学习数学的兴趣。
[重点、难点]
1、让学生在探索中经历运算律的发现过程。
2、理解不同算式间的相等关系,发现规律,概括运算律。
[设计理念]
1、尊重儿童的认知规律,注重新旧知识的联系,引导学生在自主、合作、探究中巩固旧知识,发现新知识,掌握新方法。
2、以学生的“最近发展区”为向导,精心设计课堂教学策略,由浅入深,由易到难,循序渐进,预设出合理的教学流程与思维坡度。
3、本着真实有效的宗旨,让课堂焕发生活的活力,让每个孩子在民主、平等的课堂中得到不同的发展。并注重教师与学生对话,学生与学生对话,在对话中加强情感交流,使得课堂真正成为师生互动、心灵对话的舞台,从而让教师与学生都获取丰富的,积极的情感体验,进一步增强学生学习数学的兴趣。
[设计思路]
1、展示生活题材的数学例题,唤起学生对旧知的回忆,从而初步感受规律。
2、充分感知,让学生在具体的数学活动中观察,比较、不断地思考与建构。得出规律,并能运用规律。
3、帮助学生反思学习过程,并总结数学思想与方法,并让学生尝试,通过小组合作学习,让学生相互启发,相互补充,完成新知识的学习。进一步培养学生的自主探究意识。
4、总结归纳。通过对一节课学习的回顾,让学生谈谈收获,尤其是在数学的思想与方法上做出评价。
[教学过程]
一、创设情境,激趣导入
1、出示高斯小学的故事:1+2+3+4+5+6……+97+98+99+100=?
2、引入新课:高斯为什么能快速的找到答案,计算加法时是不是有什么运算规律呢?我们今天就一起来探索这个问题。
板书:加法运算规律
二、自主探索,寻找规律(加法交换律)
(一)出示情境图
四年级的同学们在开展跳绳和踢毽子的活动,从图中你获得了那些数学信息呢?根据这些数学信息,你能提出用加法计算的数学问题吗?(多指名说)
(二)、解决问题,探究规律
1、出示问题:
(1)跳绳的有多少人?
(2)女生共有多少人?
(3)参加活动的一共有多少人?
2、师生研究解决第一个问题,揭示加法交换律。
(1)指名口头列式:28+17;还可以怎样列式?17+28;说说各算式表示的意思。
(2)这两个式子相等吗?为什么?(计算结果相等)(都是求跳绳的有多少人)那我们就可以用“=”把它们连接起来。教师板书:28+17=17+28,指名读算式。
(3)解答:女生共有多少人?板书等式:17+23=23+17
(4)仔细观察这两组等式左右两边的算式,思考:什么变了?什么没变?你有什么想法?(两个数的位置变了,数据、运算符号、结果没有变)
(5)这只是猜想,这种猜想在其他加法运算中也存在吗?你还能举几个像这样的例子吗?(指名说,教师板书。)这样的例子写的完吗?
(6)仔细观察这些等式,你有什么发现?能找出它们共同的规律吗?用自己的话说一说。全班交流。
(7)师:刚才老师用省略号把无数个这样的等式藏了起来,你还能用自己喜欢的方式比如字母、符号、文字等方式把这个规律简明的表示出来吗?试试看。
交流介绍:数学中一般用字母来表示:a+b=b+a,这里的a可以表示任意一个加数,b可以表示任意的另一个加数。这也是我们刚才通过观察、猜想、验证所得到的结论。这个规律叫加法交换律.这是我们今天要学习的第一个运算律。(板书课题)
3、其实加法交换律对于我们并不陌生,回顾一下,我们以前学习什么知识时也用了加法交换律?想一想加法是怎样验算的?
4、巩固练习,完成自主练习单(一)
自主练习单(一)
1、根据加法交换律填空。
23+35=35+()a+12=12+()
23+()=178+()()+98=()+56()+()=()+()
2、计算下面各题,并用加法交换律进行验算。
【加法交换律和结合律教学设计】相关文章:
加法交换律结合律教案02-13
加法交换律教学反思08-02
数学加法交换律教学反思02-16
加法教学设计11-03
加法的教学设计01-18
小数加法和减法教学反思04-19
加法和减法的教案11-24
加法和减法教案01-30
小数加法和减法教案11-07
比和比例教学设计07-20