平行四边形面积教学设计

时间:2023-12-25 08:14:15 教学设计 我要投稿

平行四边形面积教学设计

  作为一名优秀的教育工作者,编写教学设计是必不可少的,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那要怎么写好教学设计呢?以下是小编整理的平行四边形面积教学设计,仅供参考,欢迎大家阅读。

平行四边形面积教学设计

平行四边形面积教学设计1

  一、教学目标:

  1、知识目标:经历动手操作、讨论、归纳等探讨平行四边形面积公式,并能用字母表示,会用公式计算平行四边形面积。

  2、能力目标:在剪一剪、拼一拼中开展空间观念;在想一想、看一看中初步感知“转化〞的数学思想和方法。

  3、过程与方法:通过观察、操作、测量、思考、讨论交流、小组合作等数学活动,体会转化等数学方法,开展推理能力。

  4、情感态度与价值观:使学生在探索平行四边形面积的计算方法中,获得成功的体验,形成积极的数学学习情感。

  二、教学重点、难点及关键点剖析:

  1、重点:平行四边形面积公式的推导及应用。

  2、难点:理解平行四边形面积计算公式的推导过程。

  三、教具、学具准备:

  平行四边形纸片、剪刀及电脑课件、

  四、教学过程:

  一、创设情境,导入新课

  猪八戒和孙悟空西天取经回来后,就回到高老庄种起地来,可是孙悟空的地在猪八戒家的旁边,猪八戒的地却在孙悟空家的旁边,它们都觉得干活时很不方便。于是它们商量把地换一下。可是孙悟空的菜地是长方形的,猪八戒的菜地是平行四边形的,它们都在想这样交换公平吗?同学们,你们说这样交换公平吗?我们怎样才能知道这样交换是否公平呢?

  生:算出这两块地的面积,比比就知道了。

  师:那长方形的面积怎么算呢?

  生:长方形的面积=长某宽

  师:平行四边形的面积怎么算呢?

  生摇摇头。

  师:那你们想学吗?这节课我们就一起来研究平行四边形的面积。〔板书课题〕

  齐读学习目标:

  1、通过操作,能推导出平行四边形的面积计算公式。

  2、会运用平行四边形的面积计算公式解决实际问题。

  二、自主学习

  在下面的方格纸上数一数,然后填写下表。〔一个方格代表1m2,不满一格的都按半格计算。〕

  小组讨论:〔1〕仔细观察、比拟表格中的数据,你发现了

  〔2〕猜测:平行四边形的面积=_________________________

  三、动手操作,验证猜测

  〔1〕小组讨论:能不能将平行四边形转化成长方形来计算?该怎样转化?(把平行四边形转化成长方形或正方形,必需沿着平行四边形的高剪)

  〔2〕以小组为单位进行剪拼。

  〔3〕指学生演示平行四边形转化成长方形的过程,并观看电脑演示过程。

  〔4〕讨论:

  A、平行四边形转化成长方形后面积变了吗?为什么?〔没有,因为它的大小没变〕,〔物体的外表或封闭图形的大小,叫做它们的面积〕

  B、转化成的长方形的长相当于原平行四边形的(),转化成的长方形的'相当于原平行四边形的()。

  〔6〕交流汇报

  板书:长方形的面积=长某宽

  ↓ ↓ ↓

  平行四边形的面积=底某高

  师:如果用字母S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成S=a某h,也可以写成S=ah或S=ah〔师板书〕

  四、当堂检测

  1、师:通过同学们的努力,我们已经推导出了平行四边形面积的计算公式,那现在你们会利用公式解决问题了吗?

  出例如1平行四边形花坛的底是6m,高是4m,它的面积是多少?

  学生独立完成,并展示学生作业。

  2、计算下面平行四边形面积,列式正确的选项是:〔〕

  A:8某3B:8某6C:4某6D:4某3

  通过做此题,你想提醒大家注意什么?

  3、你能想方法求出下面这个平行四边形的面积吗?

  五、拓展提升

  下面图中两个平行四边形的面积相等吗?它们的面积各是多少?

  通过做此题,你发现了什么?

  六、课堂小结

  说说本节课,你收获了什么?

  七、板书设计:

  平行四边形的面积

  长方形的面积=长某宽

  ↓ ↓ ↓

  平行四边形的面积=底某高

  S=a某h=ah =ah

平行四边形面积教学设计2

  设计说明

  在学习本节课之前,学生已经掌握了一定的求图形面积的方法,积累了一些求图形面积的实际经验,针对学生的学情,本节课是这样设计的:

  1.通过具体情境提出计算平行四边形面积的问题。学生已经学习了长方形面积的计算方法,在复习这些知识时,逐步将问题转到平行四边形的面积上,从而使学生感到学习新知识的必要性,也容易引起他们认知上的冲突。

  2.动手实践、主动探索、合作交流是学生学习数学的主导方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。学生通过动手操作,把平行四边形转化成长方形,再现已有的知识表象,借助已有的知识经验,进行观察、分析、比较和推理,概括出平行四边形面积的计算公式。

  3.满足不同学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积的计算方法,提高学生的思维能力。

  课前准备

  教师准备 PPT课件 平行四边形纸片 方格纸剪刀

  学生准备 硬纸板做的平行四边形 三角尺 剪刀

  教学过程

  ⊙创设情境,提出问题

  1.出示公园里的一块长方形空地的示意图:长10米,宽6米。

  提出问题:同学们,公园里有一块空地要进行绿化,你能算出这块空地的面积是多少吗?

  生:10×6=60(平方米)

  师:除了用计算的方法,我们还有其他的方法得到图形的'面积吗?

  生:数方格。

  2.出示空地中间一块平行四边形的区域,底边6米,斜边5米,高3米。

  提出问题:这块地是什么形状的?你们能用计算的方法求出它的面积吗?

  3.学生回答后引入新课:这节课我们就来学平行四边形的面积。

  设计意图:这一环节的设计,教师对主情境加以修改,先来复习长方形的面积计算方法,既复习了旧知识,又为学习新知识做好铺垫,同时又巧妙地引入新内容,激起学生的大胆猜想,体现出数学就在我们身边,从而激发了学生学习数学的兴趣及积极性。

  ⊙猜想尝试,获取新知

  1.出示教材53页问题一。

  师:我们会求什么图形的面积?我们可以用哪些方法求图形的面积?

  学生讨论,猜想求这块空地面积的方法。

  预设

  生1:用长方形的面积公式进行计算,因为平行四边形的特点也是对边相等。

  生2:把平行四边形的相邻的两边相乘。

  过渡:究竟哪种方法可行呢?我们该如何来验证猜想是否正确呢?

  2.借助方格纸数一数,比一比。

  师:以前我们用数方格的方法得到了长方形和正方形的面积,那么用这种方法能得到平行四边形的面积吗?

  (1)请大家仔细观察方格纸上的两个图形,数一数。

  (2)得到结论:长是6米,宽是5米的长方形面积时30平方米,而底边是6米,斜边是5米的平行四边形所占的小方格数不够30个,也就是不足30平方米,我们不能用邻边相乘的方法来求平行四边形的面积。

  (3)提问:平行四边形的面积是多少呢?你是怎样数出来的?平行四边形的面积与它的底和高有什么关系?

  引导学生发现:18=6×3,其中18是平行四边形的面积,6和3分别是平行四边形的底和高。

  提问:难道平行四边形的面积可以用底乘高来计算吗?我们会求长方形的面积,你能把平行四边形转化成长方形吗?

  设计意图:这个环节用数方格的方法得到了图形的面积,这种方法是学生熟悉的、直观的计算面积的方法。同时呈现两个图形,暗示了它们之间的联系,为下面的探究做了很好的铺垫。

  3.推导平行四边形的面积计算公式。

  师:下面我们来剪一剪、拼一拼。看看平行四边形和长方形之间究竟有怎样的联系。(出示课堂活动卡)请大家根据课堂活动卡来完成活动。

  (1)质疑:上面的方法有一个相同之处,都是沿高剪开。为什么一定要沿高剪开呢?

  释疑:只有沿高剪开,才能出现直角,才能拼成一个长方形。

  (2)师生共同总结。

  ①通过剪一剪、拼一拼,把平行四边形变成了长方形。

  ②剪拼后的长方形与原来的平行四边形相比,面积不变。

  ③长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等。

  (3)推导平行四边形的面积计算公式。

  长方形的面积=长×宽,得出:平行四边形的面积=底×高。

  字母公式:Sah

  (4)梳理平行四边形面积计算公式的推导方法。

  师:刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?

  (学生汇报)

  师小结:同学们总结出的方法,其实就是数学上的转化法。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的生活、学习中,我们可以应用这种方法去解决问题。

  设计意图:此环节留给学生充分的探索、交流空间,使学生在剪、拼等一系列实践活动中理解、掌握平行四边形与转化后的长方形之间的联系,从而推导出平行四边形的面积计算公式。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。

平行四边形面积教学设计3

  教学目标

  1.知识目标:通过长方形面积计算知识迁移,理解平行四边形面积的计算公式,并能正确计算平行四边形面积。

  2.能力目标:在数方格、剪拼图形中发展空间观念;初步感知等积转化的思想方法,提高解决问题的能力。

  3.过程与方法目标:通过实践――感性认识――理性认识――实践应用的辩证唯物主义思想方法教学,培养小组合作学习、交流、评价的意识。

  4.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系,使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

  教材分析重点使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形的底和高的关系。

  难点平行四边形面积公式的推导过程。

  教具1、多媒体计算机及课件;

  2、每个学生3张平行四边形硬纸片及剪刀一把、尺子。

  教学过程

  一、质疑引新:

  1、(电脑出示长方形)这图形你认识吗?长方形面积公式是怎样的?[板书:长方形的面积=长×宽]

  (出示平行四边形)这又是什么图形?指出平行四边形的底和高?

  2、谈话引入:你想知道你所做的平行四边形面积有多大吗?[板书课题:平行四边形的面积]----------请同学们打开课本69页。

  二、引导探求:

  ㈠、提出问题:

  1、用数方格法求平行四边形的面积

  ⑴、谈话:我们以前研究长方形面积计算的.时候,用到了数方格的方法,今天为了研究平行四边形面积的计算,我们也可以用数方格的方法。请同学们看屏幕(微机显示教材P69图)。

  ⑵、数出方格图中平行四边形的面积。提问:

  A、师:每个方格代表多大的面积?(电脑闪烁小方格,并在学生齐答后显示“1平方厘米”图例)

  B、指名来数一数,这个长方形的面积是多少平方厘米?平行四边形的面积是多少平方厘米?

  ⑶、若以下面的这条边作为平行四边形的底(电脑显示),那么它的底和相应的高各是多少厘米?

  2、电脑显示教材P69图,数出图中长方形的长和宽各是多少厘米?并求出它的面积。

  1平方厘米

  3、比较两个图形的关系(电脑同时显示图)请大家仔细观察上面二个图形,比较平行四边形的底和长方形的长,平行四边形的高和长方形的宽,大家发现了什么?再请大家看看它们的面积呢?

  电脑逐步显示:平行四边形的面积=长方形的面积。

  平行四边形的底=长方形的长;

  平行四边形的高=长方形的宽;

  引导学生猜想“平行四边形的面积与它的什么有关?”到底对不对?我们用数方格的方法算出平等四边形的面积,你认为这种方法方便吗?还有更方便的方法吗?让我们一起开动脑筋,想办法来证明它吧!

  电脑展示:(1)底、高、不变,面积不变。

  (2)底、高改变,面积变化。

  你们的猜想正确,平行四边形的面积大小与它的底和高有关,如果给你一个平行四边形,你能想办法算出它的面积吗?

  ㈡、推导公式:

  1、小组合作研究:

  长方形的面积是长乘以宽,那么能不能想个办法将平行四边形转化成长方形,进而用公式来计算呢?下面我们来做个实验,四人小组合作请同学们拿出1个平行四边形纸片及剪刀,以学习小组合作为形式,一人动手,三人留意看,并请同学们在剪拼的过程中,思考以下二个问题:(显示)

  ⑴、怎样剪拼才能将平行四边形转化成长方形?

  ⑵、转化后的图形与原平行四边形有什么关系?

  (要求:比一比,看一看,哪一个小组最能干,拼得又对又快?)

  2、各小组实验操作,教师巡视指导。

  3、各小组交流实验情况:

  ⑴、谁愿意把你的转化方法说给大家听呢?请上台来交流!

  ⑵、有没有不同的剪拼方法?(继续请同学演示)。

  ⑶、电脑演示各种转化方法。

  4、小组合作讨论归纳总结规律:

  ⑴、平行四边形剪拼成长方形后,什么变了?什么没变?

  ⑵、剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?

  ⑶、剪样成的图形面积怎样计算?

  ⑷、小组上台汇报,指着图形说一次得出:

  因为:长方形的面积=长×宽

  所以:平行四边形的面积=底×高(同位指着图形说)

  7、自学字母公式:记文字公式不方便,我们一起来学习用字母公式表示,如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么S=a×h(板书)。同时强调:在含有字母的式子中,字母和字母之间的乘号可以记作“.”,也可以省略不写,所以平行四边形的面积公式还可以记作S=a.h或S=ah(板书)。

  ㈢、巩固公式:

  1、刚才我们已经推导出了平行四边形的面积公式,那么,要求平行四边形的面积,必须要知道哪些条件?(平行四边形的底和相对应的高)

  ㈣、应用解决:

  1、自学教材P70例题

  下面让我们用公式来解决一些实际问题。电脑显示:“一块平行四边形菜地(如下图),它的底长32.6米,高8.4米,它的面积是多少?(得数保留整平方米)

  板书:32.6×8.4≈274(平方米)

  答:它的面积约是274平方米.

  (挑一学生的作业投影评讲)

平行四边形面积教学设计4

  教学内容:

  小学数学五年级上册第87——88页

  教学目标:

  知识与技能目标:

  理解并掌握平行四边形面积计算公式。

  过程与方法目标:

  能够运用公式解决实际问题。

  情感态度与价值观:

  通过公式的推导,向学生渗透事物之间的普遍联系;通过解决实际问题,提高学生对生活中处处有数学的认识。

  教学重难点:

  (1)教学重点:平行四边形面积计算公式的推导和运用。

  (2)教学难点:如何让学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形之间的底和高的关系。

  教学用具:

  1、课件

  2、每位同学准备两个完全一样的平行四边形,并在上面做任意一条高。小剪刀一把,尺子一把。

  学情分析:

  这节课是学生在掌握了长方形面积的基础上学习的。学生已经有了用数方格的方法来推导长方形的面积的计算公式的经验,那么这节课学生肯定也会想到同样的方法。在此基础上让学生明确怎样数方格最好最快,由此联想到隔补转化成一个面积相等的长方形。进而动手操作,找到转化后的长方形和原来平行四边形的联系,得出平行四边形的面积计算公式。

  教学过程:

  一、激情导课

  (大屏幕出示校园情景图)

  同学们,这是育才小学校门口场景图,请同学们看看图上有哪些我们认识的图形?(有长方形、正方形、平行四边形)再请大家把目光聚焦到校门口的这两块草坪,一块是(长方形),一块是(平行四边形)那么这两块草坪哪一块大呢?(猜一猜)需要知道这两块草坪的(面积)。对,谁来说说长方形的面积怎样求?那么平行四边形的面积怎样求呢?这节课我们就来一起学习一下平行四边形的面积。(板书课题:平行四边形的面积)

  看了课题,你觉得这节课我们应该达到哪些学习目标呢?(出示学习目标)

  1、探究平行四边形面积计算公式。

  2、运用公式解决生活中的实际问题。

  师随着学生的回答在课题前板书:探究和运用

  师:好,老师相信只要同学们善于观察,积极动手,勤于思考,就能获得新知识,达到我们的学习目标,你们有信心吗?(有)

  二、民主导学

  任务一:自主探究平行四边形的面积计算方法。

  同学们,长方形的面积是用什么方法推导出来的?(数方格)那你这节课能不能也用同样的方法推导出平行四边形的面积计算方法?(能)除了数方格的方法,还有别的方法吗?(剪拼的方法)

  任务呈现:请同学们动动手动动脑,想办法探求平行四边形的面积,并在小组内交流自己的方法。

  提示:如果采用数方格的方法,同学们可以参照课本87页的表格完成。如果采用的是剪拼的方法,可以利用课前准备的学具,并参照课本88页内容进行学习探究。(现在各小组开始自己的探究活动吧!)

  自主学习:先独立动手操作,再在小组内交流自己的发现。师巡视指导。

  展示交流:

  1、先请数方格的小组上台展示。

  预设:我们小组是这样数方格的,先数整格的(手指大屏幕),然后数半格的。(不满一格的都按半格算)这样可以数出来平行四边形一共是24格,也就是24平方米。同样长方形的面积也是24平方米。

  我们还发现了平行四边形的底是6米,高是4米,把这两个数相乘正好是24平方米。

  (对小组进行评价)

  师:是不是所有的平行四边形都能用数方格的方法来计算呢?如果是一个很大的平行四边形还能这样吗?(有局限性)他们组发现了底和高相乘的积正好就是平行四边形的`面积,这是巧合还是必然呢?这就需要大家进一步的验证。那么,我们接下来请用不同方法的小组上台展示。

  2、请用割补法的小组上台展示自己的研究成果。

  预设:(1)、沿着平行四边形的高剪开,分成了一个直角三角形和一个直角梯形,然后把直角三角形平移到右边,就把平行四边形转化成了一个长方形。长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为长方形的面积是长×宽,所以平行四边形的面积就是底×高。

  (师随着生的表述板书)

  长方形的面积=长×宽

  平行四边形的面积=底×高

  (对小组进行评价)

  预设:(2)、沿着平行四边形中间的任意一条高剪开,变成了两个直角梯形,然后把其中一个梯形平移到另一个的一边,也拼成了一个长方形。同样这个长方形的长是原来平行四边形的底,长方形的宽是原来平行四边形的高。因为......所以......

  (对小组进行评价)

  预设:(3)、师演示。

  师:计算公式我们通常都可以用字母来表示。面积用S,底用a,高用h来表示,那么平行四边形的面积可以表示为:S=ah。

  师小结:刚才我们用割补平移的方法把一个平行四边形转化成了长方形,找到了它们之间的内在联系,从而得出平行四边形的面积计算公式。接下来老师告诉你刚才平行四边形花坛的底和高,你能列式求出它的面积吗?(能)

  任务二:解决问题

  出示例题:平行四边形花坛的底是6m,高是4m,它的面积是多少?

  自主学习:独立在练习本上解答,完成后与小组内同学交流。

  展示交流:注意指导学生的书写格式。

  三、检测导结

  1、计算下面每个平行四边形的面积。

  2、已知下面图形的面积和底,怎样求出它的高?

  以上三题,做对一道得一颗星,全部做对得三颗星。

  集体订正,组内互批。

  反思总结:请同学们谈谈这节课的收获吧!

平行四边形面积教学设计5

  一、所在班级情况,学生特点分析

  本校是一所比较偏僻的山村小学,本班有39名学生,全都是农民的子女。虽然现在农民的生活越来越好,但家长都希望自己的子女学到更多知识,将来有更大的发展,特别重视对学生的教育。因此,学生由于在社会、家庭、学校、教师的重视下,学习兴趣浓厚,能够认真学习,会主动学习,积极与他人合作,共同探索知识的形成过程。

  二、教学内容分析

  平行四边形面积的教学是在学生已经认识了平行四边形的特征以及长方形和正方形面积计算方法的基础上进行学习的,它同时又是进一步学习三角形面积、梯形面积的基础。学好这部分内容,对于培养学生的空间观念,发展学生的思维能力,以及解决生活中的实际问题的能力,都有重要的作用。

  三、教学目标

  1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

  2、通过操作、观察、比较,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

  3、通过教学活动,激发学生学习兴趣,培养互助合作、交流、评价的意识,感受数学与生活的密切联系。

  四、教学难点分析

  把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推导出平行四边形面积计算公式。

  教材提示通过剪一个平行四边形纸片来研究如何求平行四边形的面积,而且提供了两种提示性的方法:一种是数格子的方法,数出这个平行四边形的面积;一种是通过剪与拼的活动,将平行四边形转化为长方形,然后计算出面积。使学生在数、剪、拼的学习活动中,通过探索、合作、交流与指导,寻找解决问题的方法。

  五、教学课时

  一课时。

  六、教学过程

  (一)复习

  1、做一做,说一说。

  师:我们已经学习了平行四边形的一些知识,认识了平行四边形的底和高课前,老师要求自己动手,做两个平行四边形,现在拿出一个平行四边形,找出它的,划出它的高,量一量,并表示出来。

  学生做—教师巡视—同桌互相评价—个别台前讲说。

  2、复习长方形面积计算公式

  我们学过长方形面积的计算公式,谁能说出长方形面积的计算

  公式?

  生:长方形面积=长×宽

  师:那么平行四边形的面积该怎么计算?这一节,我们就一起来研讨它。

  (板书课题)

  (二)推导平行四边形的面积公式

  1、数方格法:

  师:这儿有两个图形,请同学们比较它们的大小。

  出示课件(图1):

  要比较这两个图形的大小,就是比较它们的面积。我们先用数方格的方法数出它们各自的面积。

  教学活动:

  (1)数出平行四边形和长方形的面积各是多少?

  (2)平行四边形的底和高各是多少?

  (3)长方形的长和宽各是多少?

  (4)通过数方格,你发现了什么?

  (平行四边形的底与长方形的长相等,平行四边形的高与长方形的宽相等。)

  上面我们用数方格的方法得出平行四边形的面积,在实际的`生活中,要求

  的平行四边形的面积很大时,比如,一块平行四边形的果园,用数方格的方法就难以解决了。因此,我们能不能把一个平行四边形转化为我们已经学过的某一种图形,从而得出平行四边形面积的计算方法呢?

  2、割补法:

  (1)学生用学具演示。

  师:同学们拿出另一个平行四边形,想一想,做一做,怎样才能把它转化成为一个长方形?

  教学活动:

  学生用学具做,同桌进行互相交流转化过程,边演示边述说,教师巡视指导。

  (2)教师用教具演示。

  同学们完成的真好,现在我们共同来演示怎样将一个平行四边形转化成一个长方形的呢?

  出示课件(图2)。

  教学活动:

  在演示过程中,应尊重学生的观点,教师进行适当引导,坚持以学生为主体,生生互动,师生互动的原则,激发学生的学习积极性。

  3、推导、归纳平行四边形的面积计算公式:

  把一个平行四边形转化成一个长方形,什么变了,什么没变?

  (形状变了,面积没有变。)

  也就是说拼成后长方形的面积和原平行四边形的面积相等。

  拼成后的长方形的长与平行四边形的底有什么关系?(相等)

  长方形的宽和原平行四边形的高有什么关系?(相等)

  在问答过程中,出示课件(图3)。

  师:拼成后的长方形的长与原平行四边形的底相等,长方形的宽与原平行四边形的高相等,它门的面积也相等。我们知道长方形的面积是长乘宽,谁能说出平行四边形的面积怎样求?(平行四边形的面积等于底乘高。)

  板书:平行四边形的面积=底×高

  请看课件(图4):

  如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形面积的字母公式该怎样表示呢?

  学生口述,教师板书:

  S=a×h

  师:一般含有字母的。式子里,乘号可以用“·”表示,读作a乘h,板书:

  S=a·h

  也可以把乘号省略不写,板书:

  S=ah

  学习活动:

  将上面公式请同桌同学互相说说。

  (通过同学相互述说,既弄清了平行四边形的面积、底、高之间的关系,又培养了学生的口头表达能力。)

  要计算平行四边形的面积,必须知道几个条件,是什么?

  (两个条件,底和高。)

  七、课堂练习

  1、运用公式,尝试学习。

  师:请同学们打开课本24页,看“试一试”题目:

  出示课件(图5)。

  (在学生独立完成之后,与同学们说说各自的想法、做法,征求同学们的意见。)

  2、巩固练习,拓展学习。

  (1)选择正确的答案。

  出示课件(图6)。

  师:在上面A、B、C三个平行四边形中哪一个的面积是:2×3=6(平方厘米),并说出理由。

  (A:错误,因为3和2是两条邻边,不是对应的底和高;

  (B:错误,因为底3和高2不对应,也就是说高2不是底边3上的高;

  (C:正确。

  (通过练习,使学生进一步明确,要求平行四边形的面积,不仅要知道底和高两个条件,而且底和高必须对应。)

  3、操作观察,探究学习。

  出示课件(图7)。

  如上图,分别计算图中每个平行四边形的面积,你发现了什么?(单位:㎝)

  (引导学生通过计算、观察、比较等,发现平行四边形底和高相等时面积也一

  定相等。)

  讨论:

  当两个平行四边形的面积相等时,它们的底与高是否也相等?

  (平行四边形的面积相等,底与高却不一定相等。)

  八、作业安排

  课本24页“练一练”,第3题、4题。

  九、附录(教学课件)

  十、教学反思

  平行四边形的面积是北师大版五年级数学上册第二单元的内容。教材设计的思路是:先通过数方格的方法数出平行四边形的底、高、面积。再通过对数据的观察,提出大胆的猜想。通过操作验证的方法推导出平行四边形面积的计算方法。再利用所学的公式解决问题。我认为让学生简单记忆公式并不难,难的是让学生理解公式。因此,必须让每个学生亲历知识的形成过程。在独立思索的基础上亲自动手剪一剪、拼一拼,并带着自己的操作经历进行小组内的讨论和交流。

  课堂是充满未知的,尽管课前我精心设计了教学中的每个环节,但课堂上所呈现出的效果,还是不尽人意的。

平行四边形面积教学设计6

  一、教材分析

  本课时是北师大版八年级上册第四章《四边形性质的探索》的第二节第二课时,是在七年级下册学习了全等三角形之后,继续深入学习几何推理问题的开始,而有关四边形的探索中重点探究的就是平行四边形的有关问题。在第一节平行四边形性质的研究基础上,在第二节逆向研究了平行四边形的五种判定方法之后,为了使学生能够对所学知识灵活运用,并更清楚地区分每一条性质和每一种判定法所安排的一节练习课。

  二、教学目标

  1。综合运用平行四边形的五种判定方法和性质解决实际问题;

  2。进一步理解平行四边形的性质与判定的区别与联系;

  3。通过练习提高学生的逻辑思维能力以及分析问题的能力。

  三、教学重难点

  重点:能灵活运用平行四边形的性质和五种判定方法解决实际问题。

  难点:在应用中明晰性质与判定的区别与联系。

  四、教学方法

  通过简单,典型,针对性质和判定的应用的实际问题搭建学生探索的平台,由简到难地设计了三个问题,并通过学生“独立思考————组内有效交流讨论————组内归纳方法————全班展示————及时评价”,让学生对知识的灵活应用有一个逐步熟练并掌握的过程。

  五、教学反思

  题目“平行四边形的周长为56cm,两邻边的比是3:1,那么这个平行四边形的边长分别是多少?”处理时没有留够独立思考的'时间,虽然题目简单但效果不佳。所以在处理第二个题目“平行四边形ABCD中,E、F是对角戏BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上且AG=CH,连接GE、EH、HF、FG,求证:四边形GEHF是平行四边形”时,先让每个学生进行独立思考5分钟————小组交流5分钟————小组展示————全班讲评,小组展示因小组的有效讨论而显得更有章法,虽然推理论证的能力还有待提高但课堂气氛活跃组间竞争激烈,代表小组讲解的同学思路清晰语言准确更是体现了小组合作的有效性。最后老师的简单讲评及时评分将学生自主发展小组的作用发挥到了极致,整个题处理下来,不但让学生在过程中收获了多个解题思路,重要的是体现了全员参与及自主发展小组在课堂中的作用。

平行四边形面积教学设计7

  教学目标:

  1.通过剪一剪,拼一拼的方法,探索并掌握平行四边形的面积计算公式。能正确计算平行四边形的面积。

  2.通过操作、探究、对比、交流,经历平行四边形的推导过程,初步认识转化的思想方法,发展学生的空间观念。

  3.培养学生的合作意识,初步渗透平移和转化的思想。

  教学重点:

  探索并掌握平行四边形的面积计算方法。

  教学难点:

  理解平行四边形面积计算公式的推导过程。

  教具准备:

  一个长方形、一个平行四边形,PPT课件一套。

  学具准备:

  平行四边形、剪刀、三角板。

  一、以旧引新,激起质疑

  1.同学们,我们以前认识了很多平面图形,你能说出它们的名字吗?

  2.老师这里有两张纸,猜一猜那张纸大一些??我们说谁大,其实是说它们的什么大?长方形的面积我们已经会计算了,这节课我们就来研究如何计算平行四边形的面积。(板书课题)

  二、动手操作,探究方法

  (一)利用方格,初步探究

  1.下面我们就用数方格的方法,数出长方形和平行四边形的面积。图中的每一小格表示1平方厘米,不满一格的都按半格来计算,你能不能数出这两个图形的面积?(能)那大家就数一数吧!

  2.学生独立数出平行四边形和长方形的面积。

  3.谁来说说你数的结果?学生汇报

  4.你们都是这个结果吗?通过数方格,我们得出这个长方形和平行四边形的面积都是24平方厘米,也就是它们的面积相等,现在大家再仔细观察表格中的数据,看看有什么发现?

  你们发现这个关系了吗?看来长方形和平行四边形之间存在着非常密切的联系。

  我们刚才用数方格的方法得出了平行四边形的面积。可是在现实生活中,数方格的方法太麻烦了,而且,要是一个非常大的平行四边形,比如草坪或一块地,我们还能用数方格的方法吗?那我们能不能研究出一种更简便的方法,来计算平行四边形的面积呢?

  (二)动手操作,推导公式

  1.动手操作

  a.下面我们就拿出课前准备的平行四边形,想一想:怎样才能把它变成以前学过的图形呢?怎么变?

  b.静静地想,想好了吗?

  c.动手操作,把这个平行四边形变成以前学过的图形。

  d.谁来说说,你把平行四边形变成了什么图形,怎么变的?

  2.合作探究

  a.我们把一个平行四边形变成了一个长方形,请大家仔细观察拼出的长方形与原来的平行四边形,看看你能发现什么?

  b. 小组讨论

  c. 汇报。

  3、如果用字母S表示平行四边形的面积,用a来表示平行四边形的底,h表示平行四边形的高,那么,平行四边形的`面积公式用字母怎么表示呢?

  (三)指导点拨,总结方法

  刚才大家在剪拼的时候,都把平行四边形变成了长方形,你们为什么都把平行四边形变成长方形呢?

  我们把平行四边形变成长方形的这种方法,是一种很重要的数学思想方法——转化。通过转化,我们可以找到新旧知识之间的联系,从而解决新问题。在今后的学习中我们会不断运用这种方法来解决一些问题。

  孩子们,看,我们多厉害!通过剪拼,把平行四边形转化成了长方形,还总结出了平行四边形的面积计算公式!下面让我们带着我们的收获来解决问题!相信你们一定没问题!

  例1.读题后独立解答一生板演

  师:你们都是这么做的吗?老师要强调一点,在计算图形面积的时候,通常我们第一步要先把公式写上,这是求平行四边形面积的,所以我们要先写S=ah,再把底和高的数字代进去,再计算出结果,清楚了吗?

  三、解决问题,拓展延伸

  1、练习十五1题。

  2、练习十五3题。

  3、下面两个平行四边形,它们的面积一样大吗?

  4、你能算出芸芸家这块菜地的面积吗?

  四、全课小结,完善新知

  这节课你有什么收获?

  这节课,你们也运用自己的智慧,利用转化的方法,探究出了平行四边形的面积计算公式,并能应用公式解决一些实际问题,真了不起!

平行四边形面积教学设计8

  一、在引入中体现

  通过课本中的情境图和老师的引导,使学生感受到数学源于生活,寓于生活,用于生活。让学生领悟到数学的价值,从而体现《课标》的人人学有价值的数学的基本理念和数学与生活实际相结合的要求。

  二、在联系中感知

  通过数方格求平行四边形和长方形的面积并完成书上的表格,让学生观察发现它们之间的联系:即面积相等、平行四边形的底与长方形的长相等、平行四边形的高与长方形的宽相等。由长方形的面积=长×宽,让学生初步感知平行四边形的面积=底×高的方法。

  三、在比较中掌握

  通过学生剪拼、平移的动手操作,将平行四边形转化成已学过的长方形后,引导学生观察思考。比较转化前后的平行四边形的底和高与长方形的长和宽之间的关系,面积之间的关系。利用联想和可逆性思维推导出平行四边形的面积计算公式。从而理解掌握平行四边形面积的计算方法。

  四、在过程中渗透

  在整个教学过程中渗透数学思想和方法。如在面积公式的推导中渗透平移、转化和化归的.数学思想和方法。在习题中设计要计算平行四边形的面积必须将对应的底和高相乘,以及单位不同的底和高直接相乘得面积的判断题,从而渗透对应的数学思想。在推导公式时引导学生观察平行四边形转化成长方形后形状发生了改变而面积未发生变化来渗透“变与不变”的辩证思想。

  五、在习题中训练

  通过出现不同层次、形式多样的习题。如只出现平行四边形的图形要学生求面积,单位不同的底和高直接相乘得面积的判断题和出现不相对应的底和高求面积的题目等。从而训练学生思维的有序性,深刻性和批判性,避免思维的随意性。

  六、在交流中培养

平行四边形面积教学设计9

  教学目标:

  1、经历动手操作、讨论、归纳等探索平行四边形面积公式的过程。

  2、探索并掌握平行四边形的面积公式,会用公式计算平行四边形的面积。

  3、在探索平行四边形面积公式的过程中,感受转化的数学思想;感受面积公式推导过程的条理性和数学结论的确定性。

  教学重难点:

  总结出平行四边形的面积公式。灵活运用平行四边形面积公式。

  教具准备:

  教师准备长方形一个、平行四边形两个;学生准备三个平行四边形。

  教学过程:

  一、复习导入

  师:同学们,我带来了长方形和平行四边形,说一说你都知道长方形的哪些知识。

  (学生说出长方形面积板书出来)

  师:你还知道哪些平行四边形的知识?

  (如有学生说不出高,师提醒)

  师:长方形和平行四边形有哪些相同点,又有哪些不同点?

  (平行四边形没有直角)

  师:刚有同学说到了面积,那你知道这两个图形哪个面积大吗?

  (学生说,比较)

  师:那有同学说将这个平行四边形剪拼以后,它们两个的面积就相等了,这个想法非常棒。那我这还有一个平行四边形,这两个比较呢?

  (学生说自己的`想法)

  师:那既然我们不能这样比较出它们的面积,那你们想不想知道还有没有其他的方法可以知道平行四边形的面积?

  师:那我们这节课就一起来探索平行四边形的面积。(板书课题)

  二、讲授新知

  师:我们知道长方形有面积公式,能很快的算出它的面积,那平行四边形有没有呢?

  师:有,那我们又如何来探究呢?我们学过长方形的面积,可不可以像刚才那位同学说的,将平行四边形转化成长方形我们再来探究呢?

  师:那接下来我们就一起来探究平行四边形的面积公式,先将平行四边形转化成长方形。先不要动,请带着老师的几个要求去做。(课件)

  师:(关注学生的剪法。让学生说说自己是怎样剪的,沿着什么剪的?如有很多同学剪的不标准,叮嘱沿着高剪以后,再让同学们剪一剪。多叫些学生来说想法。)

  师:通过同学们的探究你发现了什么,找到平行四边形的面积公式了吗?

  (生:说想法)

  (课件在演示一下平行四边形的底和高相当于转化后长方形的长和宽)

  师:那我有个问题,是不是平行四边形的面积就等于长方形的面积?

  (不是,并不是所有的平行四边形面积都等于长方形的面积)

  师:如果用S表示面积,那平行四边形的面积公式的字母表达是?

  (板书:S=ah)

  师:同学们今天很了不起,通过自己探索得到了平行四边形的面积公式,那就下来带着这个知识我们来完成几道题好吗?

  三、巩固练习

  师:1、计算下面平行四边形的面积,快速列算式不计算。

  师:2、同学们答得很快,都正确。那接下来将这两题写在本上。

  (集体订正答案)

  师:如果要想求平行四边形的面积的必备条件是什么?

  师:哦,也就是知道高和底就能求出它的面积,是吗?

  师:3、让我们一起来看看这道题。

  (让学生说说想法)

  师:也就是我们要找到相对应的底和高才能求出平行四边形的面积,那这条底边的高在哪?(课件出示)那能求出这条高的长度吗?

  (板书:S=ahh=S/aa=S/h)

  四、知识拓展

  师:同学们现在请比较一下这两个平行四边形的面积。

  (学生说想法)

  师:那这个呢?对它们的都是相等的,因为它们等底等高。

  五、小结

  师:本节课你学会了哪些知识?

平行四边形面积教学设计10

  一、《课程标准》分析――确定教学目标

  《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验。”所谓体验,从教育的角度看,是一种亲历亲为的活动,是一种积极参与活动的学习方式。本节课的设计充分利用学生已有的生活经验,把这一学习内容设计成实践活动,让学生在自主探究、合作学习中理解平行四边形面积的计算公式,并了解平行四边形与其他几种图形间的关系,让学生亲历学习过程,充分体验数学的精妙,感受成功的喜悦,增强信心,同时培养学生思维的灵活性,与他人合作的态度以及学习数学的兴趣。

  二、教材分析――确定教学的起点

  《平行四边形的面积》是义务教育课程标准实验教材五年级上册第五单元第一课时的内容。该内容是在学生已学习长方形、正方形的面积计算,已掌握平行四边形的特征,会画平行四边形的底和对应的高的基础上教学的。通过本节课的学习,能为学生推导三角形、梯形面积的计算公式提供方法迁移,同时也为学生进一步学习立体图形的表面积做准备。由于学生已掌握了长方形的面积计算公式,所以当学生掌握了割补法,把平行四边形转化成长方形之后,平行四边形面积的计算公式就自然而然地产生了。

  三、学情分析――确定教学的切入点

  五年级学生正处在形象思维和逻辑思维过渡的时期。他们有了一定的空间观念和逻辑思维能力。但对于理解图形面积计算的公式推导和描述推导的过程还是有难度的。这就需要教师利用生动形象的语言和从生活中找数学,通过复习学过的长方形的面积入手,为下一步尝试探究做好准备,同时在猜测中激发学生的学习兴趣和求知欲望,及时点出课题使学生尽快地明确本节课的学习目标。

  四、精心设计教学活动过程,把握好学与导的关系

  1.创设情境,铺垫引入

  在小学数学课堂的具体教学中,学生的思维活动是因遇到了问题且需要解决问题而引起的。学生对遇到的问题有兴趣,才有解决问题的愿望和要求,才能引起他们的积极思维。因此,在创设学习情境时要激疑引趣。

  在教学平行四边形的面积时,我设计了这样的学习情境。让学生看自己数学教材的封面,从而抽象出一个长方形,这个长方形有面积吗?是哪一个部分?怎样计算呢?自己动手测量并计算出结果。在此基础上,用这个长方形框架,捏住两个顶点,用力往外拉,得到了一个平行四边形。让学生思考:拉前与拉后发生了哪些变化?

  通过大胆猜想,动手验证(用学生已有的数方格的方法就可以),学生找到了初步的答案。接着就此提出疑问:“平行四边形的面积怎么计算?它与我们学过的长方形的面积有关吗?有什么关系?”

  2.实践操作,探索迁移

  《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”教师在数学教学活动中要充分体现这一点,发挥学生的主体作用。在教学活动过程中,教师要给学生充分的'活动时间,在学生已有的知识经验基础上,始终鼓励学生自己去发现,自己去思考,自己找到最好的解决办法,这样才能激发学生的积极性,激活学生的思维,让学生最大限度地参与探索新知的过程,顺利地到达目的地。在这一环节,我分了五个步骤来完成。

  (1)图形转换:面对问题,用“转化”的理念作指导,启发学生设法把所研究的图形转化为已经会计算面积的图形,以学生的自主探究与合作交流活动为主要形式,通过实践操作,把图形进行转换,渗透“转化”的思想方法。

  (2)探索联系:引导学生去主动探究所研究的图形与转化后的图形之间有什么关系。

  (3)推导公式:利用图形间的关系,找到平行四边形面积的计算方法,从文字表述到用字母表示。这样,学生在理解的基础上掌握面积的计算公式,印象深刻,思维也得到发展。

  (4)验证公式:动手测量,计算出前面我们拉出的平行四边形的面积,与数方格得出的结果进行比较,进行验证。

  (5)提问质疑:让学生阅读数学教材,把重点内容划一划,有什么疑问提出来,大家研讨解决。

  3.层层递进,拓展深化

  本节课的学习目标学生是否达成,可以通过设置算一算、选一选、画一画等问题进行检验。问题设置是为教学目标服务的,是检验教学目标是否达成的一个途径,在问题设计时应体现一定的层次性和灵活性。目的之一是夯实学生的基础,基础知识和基本技能是学生发展的根本,教学中不能淡化;另一方面让学生的思维走向深刻,着眼学生的后续发展。

  4.小结提升,画龙点睛

  通过这节课的学习,同学们有哪些收获?看来大家的收获还真不少。正像同学们说的,其实各种平面图形之间都有一定的联系,也是可以互相转化的,我们今天就是将平行四边形转化为已经学过的长方形,从而找到了计算平行四边形面积的方法。在以后的学习中,我们还将继续运用转化的方法来研究各种图形。

平行四边形面积教学设计11

  一、教学目标:

  1. 使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

  2. 通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

  二、教学重点、难点:

  教学重点:平行四边形的面积的计算

  教学难点:平行四边形的面积公式的推导过程

  三、教具准备:

  课件、方格纸、信封、平行四边形若干个

  四、学具准备:

  平行四边形四个,三角板,直尺,剪刀。

  五、教学过程:

  一、导入:

  1.看点猜图形:

  师:顾老师想考考大家的眼力。请看大屏幕。(出示一幅格子图淡、细;四个点依次闪烁出示)

  师:如果把刚才的四个点依次相连,谁知道能组成什么图形?(问两个同学,大家都同意吗?)

  2.说一说底和高:

  师:看来你们都有一双火眼金睛。如果顾老师告诉你们,每一个小正方形的面积都是1平方厘米。那么这个平行四边形,底有几厘米,高有几厘米?[课件里出示,底( )厘米,高( )厘米]

  3.导入新课:

  师:早在上学期我们已经认识了平行四边形。今天这节课,我们继续研究平行四边形的有关知识。[板书:平行四边形]

  二、新授:

  (一)操作猜想

  1.利用格子图画平行四边形,并说明底和高:

  (1)师:同学们的手上都有这样一幅格子图,你能在上面像顾老师这样画一个平行四边形吗?(学生回答:能)画完以后,请你数一数底有几厘米,高有几厘米。(学生试画。)

  (2)师:都画完的吗?请哪位同学上台展示自己的作品?(挑两个同学的作品上台展示。分别问生:你的底有几厘米,高有几厘米?对的打上勾)

  2.利用格子图,数面积

  (1)一起数。

  师:大家继续看大屏幕。我们已经知道屏幕上的平行四边形,底是5厘米,高是3厘米。那你能数出它的面积有几平方厘米吗?……让我们一起看着大屏幕数一数。(先数出整格的,一块块点击,并显示红色。当数到不是满格的时候,停顿……也就是说这边的这个图形可以与那边那个拼成一格。是的,有些图形可以拼起来数。)

  (2)独立数后同桌互查。

  师:会数了吗?(生回答:会)请你反自己刚才自己画的平行四边形数一数,并把数出来的面积,填在图下面的括号里。

  (生独立数,师巡视给予关注)

  师:数完了吗?请同桌互相检查一下。(生互相检查)

  (3)观察数据,交流发现。

  师:请同学们观察一下你记录在图下面的三个数据,你有什么发现?(停顿稍许,等有学生一一举手了)把你的想法在四人小组里交流一下,看一下别人想的跟你是否是一样的?(四人小组交流)

  师:请哪位同学代表小组汇报一下。(抽一生)说一说你的发现。(生:底和高乘在一起就是面积)(板书:平行四边形面积=底×高)你能用数据说明一下吗?(我的平行四边形,底是*,高是*,面积正好是它们的积*)

  师:(另抽一生)你发现的结果跟他的一样吗?(一样)你是以哪些数据来证明的?(生回答后师评价)你的发现很有根据!

  师:这些同学都发现了这个关系:底乘高等于面积。有没有不一样的?

  (4)小结:

  师:刚才同学们通过画图、数方格、观察等方法,发现平行四边形的底、高和面积之间有这样的关系。

  (二)转化验证:

  1.猜想:

  师:如果屏幕中的图形去掉方格图(去掉屏幕中的方格图),你的图形中的方格图也去掉,底和高之间还会有这样的关系吗?(有些学生有有,有学生则漠然)

  师:看大家的反应,我们有必要对这样的关系进行更进一步的验证。

  2.验证:

  (1)猜想将平行四边形变什么图形。

  师:(手里出示一个平行四边形)这是一个平行四边形,你能不能剪一剪,再拼一拼,把它变成一个我们已经会算面积的图形?(生静静思考一下)你说。(后抽生回答:长方形)

  师:你的想像能力很好。还有谁想到了把它剪拼成一个长方形?(生一一举手)很好,有越来越多的人想到了。

  (2)动手操作,剪拼成长方形。

  师:那好。请同学们利用手头的工具,把这个平行四边形剪拼成一个长方形。(学生独立操作,指点几个快的同学有没有其他方法,指明按中间的高剪。)

  师:(一半人已经做好)完成以后,想一想,得到的长方形与原来的'平行四边形,存在着怎样的关系?

  师:把自己的发现,在四人小组内交流一下。(四人小组交流)

  (3)上台展示,并说发现:

  师:谁愿意展示一下自己的作品(摸好底,抽二生,一人沿顶点上的高剪拼,一人沿图中间的高剪拼)

  师:请你介绍一下,你是怎么想的?(……)哦原来你是这样剪的。其实你刚才在剪的时候,是沿着平行四边形的什么在剪?(高,多媒体展示)请你继续说一说,剪拼后的长方形与原来的平行四边形有什么关系?(注意启发和关注)(长方形的面积与平行四边形的面积相等;长方形的长和平行四边形的底相等;长方形的宽和平行四边形的高相等。)(板书:长、宽、长方形面积)

  师:看来你跟你们小组的活动是非常有成效的。

  师:还有不一样剪拼的方法吗?……(沿中间的高剪的方法)你刚才沿着剪的那条线,其实也是什么?(高)你发现的联系,跟那位同学一样吗?(一样的)谢谢,你下去吧。还有不一样的吗?(说一说)

  (4)归纳:

  师:刚才同学们开动脑筋,用了多种不同的方法,把平行四边形剪拼成了一个长方形,让我们为自己的成功而鼓掌。(拍手)

  师:而且我们还发现了后来长方形的面积相当于平行四边形的面积(用两向箭头)。(长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高)

  师:我们早就知道,长方形的面积等于长乘以宽,现在我们可以理直气壮地说,平行四边形的面积等于(底乘以高)。

  师:现在我们可以说我们刚才的发现是完全正确的,是具有普遍意义的。

  (5)用字母表示公式:

  (屏幕出示一开始的平行四边形)

  师:如果面积我们用s表示,底和高和a和h表示。你能用字母公式表示平行四边形的面积计算方法吗?(文字公式上面写一个字母公式)

  师:(手指字母和文字公式)这两个公式是同学们今天需要掌握的新知识,让我们再用心地读一读。

  (6)练习:

  (大屏幕中的字母全部去,换上数据底6厘米,高4厘米。)

  师:这个平行四边形的面积大家会算吗?请你在自己的本子上计算一下。(生独立计算,选一个快的,正确的上台板书)

  师:这个6是什么?(a),4呢?(h),那么底和高求出来的是什么?(s)。你后面用的单位为什么是平方厘米呀?

  师:对的举手。……写错也没有关系,待会你订正一下。

  三、小结:

  师:一起告诉我,今天我们新认识了什么?(板书补充:的面积)你是用什么样的方法得到平行四边形的面积计算公式的?……哦,原来都是把我们的新知识转换成旧的知识。有没有什么疑问了?那么接下来让我们运用这个计算公式,来解决一些实际的问题。

  四、练习:

  1.猜一猜小精灵后面藏着谁(口答)?

  (1)知道底和高;

  (2)知道面积和底求高;你是怎么想的?如果知道面各和高,怎么求底?

  (3)知道面积和高求底。

  2.出示一个平行四边形,高与底不对应,求一求面积。

  不能求,为什么?

  给一个条件,求一条。

  3.课件,长方形。变化成一个平行四边形?今天我们学了平行四边形的面积,根据你已经有的知识,判断这两个图形谁的面积大?

  说一说为什么?班内分成两派,能不能说出充分的理由说服对方

  根据自己的经验;相信自己的眼睛。

  小结:数学学习要根据不同的情况得出灵活的判断。

平行四边形面积教学设计12

  学习目标

  1、利用自己的方法,探索并掌握平行四边形面积的计算公式,会计算平行四边形的面积。

  2、重点理解拼成的长方形和原来平行四边形的关系

  教学过程:

  一:回顾以前的知识、

  师:今天我们学习什么知识?

  生平行四边形的面积

  师:先让我们汇报一下以前学过的相关知识吧?

  生:长方形的面积=长乘宽正方形的面积=边长乘边长

  平行四边形对边平行且相等平行四边形有无数高(出示课件)

  师:小结从平行四边形的任何一边的一点,向对边都可以做一条高

  二:我有成果展示

  1师:通过预习,你有什么成果要向大家展示的?

  生:汇报

  2:师:好,大家自己都学会了这么多有关平行四边形面积的知识,现在,谁能简单的猜猜我们本节课的学习目标是什么?

  3:师出示学习目标。

  4:依据学习目标,你有什么疑问要提出吗?

  生:汇报

  师:不管有什么疑问,我们通过以下环节,看看是否其他同学能帮助你解决?

  三:自主探究

  一:拿出导学案:

  师:谁能汇报一下,你完成表格的情况。(教材第80页的表格)

  生:汇报

  师:谁能说一说,平行四边形的面积,你是怎样知道的.?

  谁能说一说,你是怎样数出来的吗?

  生:我先数整个格的是20个,在数八个半格的是整四个格,合起来是24个整个,也就是24平方米

  师:我们也可以用平移的办法来得出平行四边形的面积,(课件演示)

  师:那长方形的面积呢?

  生可数出来,也可以用长乘宽计算

  师:请大家观察表格的数据,你发现了什么?

  生:平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,平行四边形的面积等于长方形的面积。

  生:我们可以看出平行四边形面积=底乘高

  师:我们如果用数方格的方法来计算平行四边形的面积,你会感觉怎样?

  生麻烦

  三合作探究

  师:那我们可以用什么方法研究呢?

  生:把平行四边形转化成长方形。

  师:你是怎样把平行四边形转化成长方形的吗,请拿着你的平行四边形学具边演示边说。

  生:过平行四边形一个顶点,沿着平行四边形地边上的高剪开。

  师还有其他不同的剪法吗?

  生:沿着平行四边形这一条边上的高剪开。

  师:同时出示课件

  师:听了同学们的简拼方法,你还有什们疑问吗?

  生:老师为什么要沿着高剪开呢?

  师:谁能帮助这位同学回答。

  生:这样剪可以使两边变成直角,变成我们学过的长方形。

  师刚才有的同学说沿高剪成了正方形,者必须满足什么条件呢?

  生:平行四边的高等于平行四边形的底,这是特殊情况。

  师:小结我们从平行四边形一组对边任意一点作高,通过平移都可拼成长方形或正方形。(课件出示结论)

  师:观察拼成的长方形和原来的平行四边形,你能发现什么?

  小组合作交流自己预习的成果。

  请生汇报。

  生:拼成长方形的面积和平行四边形的面积相等,面积不变。

  拼成的长方形的长等于原来平行四边形的底,长方形的宽等于平行四边形的高

  师:既然面积没变,什么变了呢?形状变了。

  师:还有什么变了?

  生沉默

  师:周长变了吗?

  生:变了

  师:变大了还是变小了呢?谁能说说?

  生:边指边说长方形的长就是平行四边形的底,长方形的宽比平行四边形高变短了,所以周长变小了。

  师:给予积极肯定。

  师:既然长方形的面积=长乘宽,那么同学们可以推导出平行四边形的面积吗?

  生:平行四边形的面积=底乘高

  师:为什么平行四边形的面积等于底乘高?

  生:因为拼成的长方形的长等于平行四边形的底,宽等于高,长方形的面积等于长乘宽,所以平行四边形的面积的等于底乘高

  师:用字母怎样表示?

  生:s=ab

  师:小结刚才你们用剪拼的方法,将平行四边形转化成长方形,用旧知解决了新问题,非常好!实际这种解决问题的方法是应用了数学转化方法,今后在数学中,我们会经常用到。

  师:出示例1:平行四边形的花坛的底是6m,高是4m,它的面积是多少?

  生:自己解决。(集体纠正)

  四:达标测评

  一:人人轻松来过关

  1:选择条件计算平行四边形的面积(单位:米)

  二:迈开大步跨过关:

  (看大屏幕略)

  三:大胆跳起闯过关:

  (1)平行四边形的底越长,它的面积就越大。()

  (2)形状不同的两个平行四边形,面积可能相等。()

  (3)把一个长方形木框拉成一个平行四边形木框,周长不变,面积也不变。()

  四:一题多解

  人民公园有一个平行四边形的草坪,草坪上有一个长30m,宽2。5m的甬道,求草坪的面积

平行四边形面积教学设计13

  在实施新课程的过程中,我们经常看到“焕发着生命活力”的好课,但也有的课“形似神离”、“活而欠实”,一部分学生争先恐后地应答,表现得很出众,虽表面上看“一切顺利”、“全班都会”,但一旦出现“节外生枝”,意想不到的事情发生,教师不是漠视就是将其强行拉回来,或匆匆的予以否定,生生的地浇灭学生的火花,凸现出数学课堂教学中“预设”与“生成”的矛盾。

  随着课程改革的不断深入,“预设”和“生成”这两个相互对立的概念融入到了我们的教学实践中。“预设”是指紧紧围绕教学目标、任务,预先对课堂环节,教学过程等一系列展望性的设计,“生成”是指实际教学过程的发生、发展与变化。课堂教学不是一个机械执行教案的过程,而是一个动态的、开放的、不断生成的过程,当教学预设与生成表现差异,甚至截然不同时,对教师而言将面临严峻的考验和艰难的抉择——课堂的尴尬与精彩,虚浮与真实。

  如何让课堂亲近真实,用生成打造真实,我们必须要思考如何把握学习“预设”与“生成”。首先,预设既要备教材,又要备学生。教学需要预设,高质量的预设是教师发挥主导作用的重要保证,它有利于教师从宏观上、整体上把握教学过程,为了能在课堂上游刃有余,教师的课前预设就要尽量具体些,周密些。

  那么如何进行高质量的教学预设呢?高质量的教学预设需要精心备教材,更需要备学生。教师课前钻研教材设计教案,本身就是应该的,特别是个性化地设计某个环节,是非常值得提倡的,问题是不能一味地钻研教材而忽视了学生这个主体。新课程标准明确指出:数学教学活动必须建立在学生认知发展水平和已有的知识经验基础上,这就要求教师在研究教材教法的同时要加强对学生的研究,教师要充分了解学生的认知基础及心理状态。根据学生的现实状况研究预设教学过程。那是一次苍白教学给予的顿悟,前些年上过的一节“平行四边形面积”的计算,其中的片段至今记忆犹新。

  师:今天我一起来学习怎样计算平行四边形的面积,请同学们拿出老师发给你们的长方形和平行四边形(长方形长5厘米,宽3厘米,平行四边形底5厘米,高3厘米),请同学们想办法比较一下这两个图形的面积哪个大哪个小。

  (学生开始以小组为单位比较,然后汇报)

  生1:我把平行四边行沿着它的一条边剪开然后拼到平行四边形的右面,就变成了一个长方形,然后把长方形放在拼成的图形上一比,我发现这两个图开的面积一样大。

  生2:我把平行四边形沿着它的一条高剪开然后平移到平行四边形的右面就变成了一个长方形,然后把长方形放在拼成的.图形一比,我发现这个长方形和平行四边形的面积相等。

  师:很好,我们今天就来学习平行四边形的面积计算公式。请同学们拿出老师发给你们的学具——一个平行四边形纸板。同学们动一下脑筋,看看可以把平行四边形转化成什么图形。

  (学生开始以小组为单位操作,师巡视期间,曾多次询问能把平行四边形转化成什么图形)

  接下来学生汇报自己的做法。大致和课的开始相同。我又用课件演示将平行四边形转化为长方形的过程,并强调什么叫平移,然后要求学生按课件演示的过程再做一遍。接下来就是讨论拼成的长方形和原来平行四边形之间的关系,总结面积计算公式。

  课后我是这样反思的:我这样设计是想让学生通过数方格的方法比较出长方形和平行四边形的面积是相等的。然后说明,因为数方格求平行四边形的面积比较慢,也不方便,在此基础上激发学生学习平行四边形面积的欲望。谁知,学生并没有数方格,而是通过剪拼,比较的方法得出结论,还有一个学生居然说出了“平移”,觉得自己做的课件不就没用了吗?当时由于自己调控课堂的能力不足,教学机智的欠缺,导致课堂效率事倍功半,如今想想可以就着学生的回答,提出表扬和鼓励,然后,以学生的方法让还没有找到方法的学生试一试,必要时也可用课件,将教学的重点一下子转移到研究图形关系上来。让学生自己分析研究两种图形之间的内在关系,推导出平行四边形面积计算公式。使整个教学过程从有序(预设)到无序(生成),再到有序(采取相应的对策),主要是我们要转变教育观念,认识到课堂教学是一个师生互动、资源共生的过程,正确定位教师和学生的关系,树立以学生为主体的观念,放下“师道尊严”的架子,从讲台上走下来,加强自身的学习,与时俱进,提高自己的业务水平和教学策略,必能应对教学中出现的各种现象。

  “动态生成”是新课程标准提倡的一个重要理念。课堂教学应该是师生、生生积极互动、动态生成的过程。传统教学的弊端是教师把教学过程统得过死,把课堂变成自己的“报告厅”,学生是一个个听众,教师提出一个问题,学生往往不敢“造次”,总是先揣摩老师的意图,然后答出老师想要的答案,教学过程成了学生配合老师教的过程。曾多次在公开课时,听老师这样总结:同学们,这堂课上你们都很认真,谢谢你们对老师的配合。课堂是学生配合老师吗?这样不是演戏吗?其实教学过程应该是师生、生生之间不同思考、不同见解交流与碰撞的过程,在这个过程中老师如果视预设如法规一样,一成不变,那么教学就会变得暗淡无光,毫无生机与活力。

平行四边形面积教学设计14

  一、教学目标:

  1、使学生通过实际操作和讨论分析,探索并掌握平行四边形的面积公式,能应用公式正确计算平行四边形的面积,解决一些简单的实际问题。

  2、使学生经历观察、操作、测量、填表、讨论、推理等数学活动过程,初步体会图形转化的意义和价值,培养空间观念,发展初步的逻辑思维。

  3、使学生在探索平行四边形面积公式的活动中,进一步增强与同伴合作交流的意识,初步感受“变”与“不变”的辩证思想。

  二、教学重点:

  理解并掌握平行四边形的面积公式。

  三、教学难点:

  理解平行四边形的推导过程。

  四、教学过程:

  一、回顾导入:

  提问:我们学习过哪些平面图形?你已经会求哪些平面图形的面积?

  小结:通过前面的学习,我们已经掌握了正方形、长方形面积的计算方法,今天我们就运用一些学过的知识来研究平行四边形面积的计算方法。

  (一)、探究新知:

  1、教学例1。

  出示例1图,提问:下面每组的两个图形面积相等吗?说说你是怎么比较的?交流后指出:可以数格子,可以移一移,转化成右边的图形再比较。演示移一移的过程,并说明:把①号图形中小长方形剪开、平移、拼合,和②号图形面积相等;把③号图形中小长方形剪开、平移、拼合,和④号图形面积相等。

  讨论:数格子和移一移的方法,哪个更方便?提问:通过刚才的操作,你能说说我们是怎样比较的?

  指出:我们把每组里左边的不规则图形,经过剪、移、拼,变成了和右边完全一样的长方形或正方形,比较出每组两个图形面积相等,这个过程叫作转化,是计算图形面积的一种常用方法。今天我们就运用这种转化的的思想来研究平行四边形面积的计算。(板书:转化)

  (设计意图:引导他们初步体会:复杂图形可以转化成简单的图形,割补,平移是实现转化的基本方法,转化前后的图形形状变了但面积不变。

  2、教学例2。

  出示题目,提问:你能把这个平行四边形转化成长方形吗?拿出准备好的平行四边形,想一想你打算怎么剪,先画一画,然后再剪一剪。学生操作后,交流:谁愿意把自己的操作过程说给同学听听?

  预设1:从平行四边形的一个顶点出发,沿着一条高剪成一个三角形和一个梯形,将三角形向右平移或将梯形向左平移,转化成长方形。

  预设2:沿平行四边形一条高,剪成两个梯形,将其中一个梯形向左或向右平移转化成长方形。

  投影演示后,追问:还有不同的剪法吗?

  比较:大家的剪、拼方法不完全相同,这些方法之间有什么相同的地方吗?(都是沿着平行四边形的一条高剪开的)

  追问:为什么都要沿着平行四边形的高剪开?

  指出:沿着高剪开,能使转化后的图形中出现直角,从而也就能使平行四边形转化为长方形。

  (1)设疑:任意一个平行四边形沿着高剪都能转化成长方形吗?平行四边形转化成长方形后,它的面积大小变化了吗?与原来的平行四边形之间有什么联系?

  (2)动手操作,然后小组讨论:

  转化成的`长方形与平行四边形面积相等吗?

  ②长方形的长和宽与平行四边形的底和高有什么关系?③根据长方形的面积公式,怎样求平行四边形的面积?

  (3)全班交流:你是怎样知道平行四边形的面积的?为什么说平行四边形与转化成的长方形面积相等?

  指出:从转化过程可以看出,这两个图形尽管形状变了,但面积没变。指名读表中每个平行四边形的底、高和面积,提问:根据这几组数据,你认为平行四边形的面积与它的底和高有什么关系?

  进一步指出:大家的想法究竟对不对呢,我们再做进一步研究。

  (4)分析关系,推导公式。

  提问:要求平行四边形的面积,就是求哪个图形的面积?为什么?长方形的面积公式是怎样的?它的长、宽与平行四边形的底、高有什么关系?平行四边形底与高的乘积是长方形的面积吗?也是平行四边形的面积吗?

  根据交流形成板书:因为

  长方形的面积=长×宽

  转化为平行四边形的面积=底×高

  提问:如果用S表示平行四边形的面积,a表示底,h表示高,你能用字母表示平行四边形的面积公式吗?板书:S=a×h,齐读。

  (二)、回顾:

  谁来说说我们是怎样推导平行四边形的面积公式的?你从推导过程中有什么体会?

【平行四边形面积教学设计】相关文章:

人教版平行四边形的面积的教学设计11-04

平行四边形的面积公式教学设计11-05

《圆的面积》教学设计07-11

数学面积的教学设计06-05

圆的面积教学设计04-05

平行四边形的面积公式教学设计12篇12-18

五年级《平行四边形面积》教学设计07-02

平行四边形的面积教学反思12-19

《平行四边形的面积》教学反思06-05