比的意义教学设计

时间:2023-12-17 16:28:18 教学设计 我要投稿
  • 相关推荐

(推荐)比的意义教学设计

  在教学工作者开展教学活动前,编写教学设计是必不可少的,教学设计是把教学原理转化为教学材料和教学活动的计划。那么应当如何写教学设计呢?下面是小编精心整理的比的意义教学设计,仅供参考,希望能够帮助到大家。

(推荐)比的意义教学设计

  比的意义教学设计 篇1

  教学内容:

  人教版课标教材六年级上

  教学目标:

  1、理解比的意义、知道比是表示两个数之间的一种关系。

  2、会读比、写比、知道比的各个部分名称。

  3、渗透“变与不变”的函数思想。

  教学重点:

  理解比的意义、知道比是表示两个数之间的一种关系。

  教学难点:

  沟通比与倍数、分数(百分数)、除法之间的内在联系。

  教学过程:

  一、初步理解比是一种关系

  1、引入比。

  (1)问题:一个摸球游戏、在盒子里要放黄球和红球两种球、要求黄球和红球按4比1、应该怎么放?

  方案1:黄球4个、红球1个。

  方案2:黄球8个、红球2个。

  讨论:8个对2个应该是8:2、为什么也可以说成4:1、你能说明理由吗?

  学生独立思考。交流:1个看作1份、4个就是4份、2个红球也可以看作1份、黄球有这样的4份、所以是4:1。黄球个数是红球个数的4倍。

  方案3:红球12个、白球3个;红球16个、白球4个;、、、、、、

  讨论:为什么这些方法都是4:1?

  (2)红球和黄球的比呢?

  (3)小结:黄球个数除以红球个数等于4、黄球除以红球等于1/4。两个数的比其实就是两个数相除、4:1就是4除以1.1:4就是1除以4。

  2、认识比的各个部分的名称。

  中间象冒号的叫做“比号”、前面的数叫做比的“前项”、后面叫做比的'“后项”。

  二、进一步认识比的意义

  1、出示羊毛衫图。

  (1)讨论:从这个2:3中、你可以得到哪些信息?

  交流:兔毛是羊毛的2/3;羊毛是兔毛的1.5倍;兔毛是这件衣服的2/5。羊毛是这件衣服的3/5。……

  (2)2:3是羊毛和兔毛的比、那么、3:2是谁和谁的比?

  2、出示新生儿图。

  (1)讨论:这里的1:4是什么意思?

  交流:1:4是指新生儿的头长是身长的1/4、身长是头长的4倍。

  (2)如果新生儿的头长是10厘米、那么身长是多少?头长是15厘米呢?新生儿的头长是1米呢?

  说明新生儿的头长是有一定范围的。一般新生儿的身高在40到60之间。

  (3)讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么你估计大概是多呢?也就是说这个1:4是特指新生儿的。

  3、举例。

  三、完善比的意义

  1、出示:我坐飞机从杭州出发到成都、飞行的路程大约上1800千米、大约飞行了3小时。

  (1)你看出了什么?

  交流:飞机飞行的速度是1800÷3=600千米/小时。

  1800:3、这是路程和时间的比。

  (2)我们以前学的路程除以时间等于速度、其实就是路程和时间的比、结果就是速度。我们称它为“比值”、这里的600千米就是这个比的比值。

  2、出示:嘉兴的特产是五方斋的粽子、花20元可以买4个。

  讨论:你看到比了吗?

  交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。

  四、总结提升

  1、总结

  (1)今天我们研究了什么?说说什么是比?

  (2)比和我们以前学习的很多知识有联系、你能说说吗?

  2、应用。(机动)

  (1)出示:地球储水量中、淡水与海水的比是4:141。

  从杭州坐火车到成都、路程约是2480千米、需要行驶41小时。

  今年流行16:9的宽频数字电视。

  最新统计显示:我们在新生的婴儿中、男女人数的比约为119:100。

  (2)说说你看懂了什么意思?

  比的意义教学设计 篇2

尊敬的各位评委:

  你们好!我将从教材分析、学況分析、教学目标、教学重难点、教法学法、教学准备、教学过程、效果预测几个方面对本课进行介绍。

  一、教材分析

  1、教学内容:人教版六年级下册P39正比例的意义。

  2、教材的地位和作用:这部分内容是在学生学习了比和比例的基础上进行教学的,着重使学生理解正比例的意义。正比例关系是比较重要的一种数量关系,学生理解并掌握这种数量关系,可以加深对比例的理解,并能应用它解决一些简单的实际问题。同时通过正比例的教学进一步渗透函数思想,为学生今后学习打下基础。

  3、教学重点,难点、关键:

  教学重点是理解正比例的意义,难点是能准确判断成正比例的量,关键是发现正比例量的特征。

  4、教学目标:

  根据本课的具体内容,新课标有关要求和学生的年龄特点,我从知识技能、过程与方法、情感态度三个方面确立了本课的教学目标。

  知识与技能:学生认识成正比例的量以及正比例关系,并能正确判断成正比例的量。

  过程与方法:学生经历从具体实例中认识成正比例的量的过程,通过察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。

  情感态度:在主动参与数学活动的过程中、进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的'意识。

  二、学况分析

  六年级学生具备一定的分析综合、抽象概括的数学能力。在学习正比例之前已经学习过比和比例,以及常见的数量关系。本节课在此基础上,进一步理解比值一定的变化规律。学生容易掌握的是:判断有具体数据的两个量是否成正比例;比较难掌握的是:离开具体数据,判断两个量是否成正比例。

  三、教法

  遵循教师为主导,学生为主体,训练为主线的指导思想,通过游戏引入、自主探究、合作学习等方式进行教学,让学生在自主、合作、探究的过程中归纳正比例的特征。

  四、学法

  引导学生在观察比较的基础上,独立思考、小组合作交流。具体表现在学会思考,学会观察,学会表达,并对学生进行激励性的评价,让学生乐于说,善于说。

  五、教学过程

  本节课我安排了六个教学环节

  第一个环节:游戏导入,激发兴趣

  用游戏的方法将学生带入轻松愉快的学习氛围,激发学生的学习兴趣,活跃课堂气氛,同时也为后面教学做好了铺垫,使学生很快进入学习状态。

  第二环节:引导观察,启发思考

  教学中让学生自己计算游戏得分,并引导学生进行观察,从而得出:得分随着赢的次数的变化而变化,他们是两种相关联的量,初步渗透正比例的概念。

  第三环节:创设情景,观察实验

  用多媒体呈现数据的获取过程,让学生直观地感受到水的体积和高度是两个相关联的量以及二者之间的变化规律。

  第四环节:探究成正比例的量

  学生在反复观察、思考,讨论、交流的过程中自己建立概念,深刻的体验使学生感受到获得新知的乐趣。

  第五环节:巩固练习,拓展提高

  第六环节:全课小结

  六、效果预测

  在教学的始终,我一直引导学生主动探索正比例的意义,加上课件的辅助教学和课堂练习,学生在理解掌握并且运用新知上,一定会轻松自如。所以,我预测本节课学生在知识、能力和情感上都能全面促进,达到预定的教学目的。

  本节课在教学设计和具体环节的安排上,可能还存在不足的地方,恳请各位评委给予批评指正。

  比的意义教学设计 篇3

  教学目标:

  1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。

  2、掌握求比值的方法,并能正确求出比的比值。

  3、培养学生抽象、概括能力。

  教学重点:

  理解比的意义,掌握求比值的方法。

  教学难点:

  理解比的意义,建立比的概念

  教学过程:

  活动一:

  同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。

  课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?

  在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。

  活动二;

  (一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?

  同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?

  让学生举出生活中这样的例子。

  (二)探究非同类量的比

  课件出示书中的第二个红点问题。

  让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?

  再让学生举出生活中这样地例子。

  活动三:

  仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)

  通过刚才的学习,我们理解了比的意义,在课本的'78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。

  课件出示问题:

  ⑴、比的读、写法?比都有哪些表示形式?

  ⑵、比的各部分名称?如何求比值?

  ⑶、比和除法、分数有哪些联系?

  ⑷、比的后项能不能是0?为什么?

  引导学生起来交流,在学生交流的基础上有针对性的板书。

  活动四:

  1、填一填。

  ⑴、把2克盐溶解在100克水中,盐和水的比的()。盐和盐水的比是()。

  ⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是(),比值是()。

  活动五;

  学生谈收获。

  比的意义教学设计 篇4

  教学内容:

  北师大版教材第八册 小数的意义

  教学目标:

  1.使学生了解小数的产生,理解小数的意义。

  2、培养学生收集信息、动手操作能力和抽象概括能力。

  3、渗透事物之间普遍联系的观点、实践第一的观点。

  4、加强对学生学习方法的指导。

  相对应的课程目标:

  1、进一步认识小数,探索小数、分数之间的关系,并会进行转化。

  2、进一步体会数在日常生活中的作用,能运用数表示事物,并能进行交流。

  教学重点、难点:

  理解和抽象小数的意义。

  教学理念:

  1、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。让学生用个性化的理解方式表达对小数的理解。

  2、尊重每一位学生的学习成果,建立平等、民主、愉悦的学习氛围。

  教材及学情分析:

  小数的认识是在三年级下册“元、角、分与小数”及“分数的初步认识”的基础上进行的。“小数的意义”是通过实际操作,借助几何模型使学生体会到小数与分数之间的关系。小数是十进分数的另一种书写形式,要使学生理解小数的意义,必须通过实际操作。把一个正方形看作“1”,把“1”平均分成10份,1份是它的十分之一,就是0.1;把“1”平均分成100份,1份就是它的一百分之一,也就是0.01。从而使学生体会到分母是10.100.1000等的分数可以用小数表示。在练习中通过在直线图上表示十进分数和小数的问题,进一步沟通小数和分数之间的关系。

  教师的教就是为了不教,作为学生学习活动的参与者、合作者、引导者,只有让学生拥有好的学习方法才会有真正意义上的有效学习。这也是学生一直迫切需要掌握的。那么这节课在学习新知识的同时另外一个重点就是对学生进行学习方法的指导。

  教具准备:

  课件

  一、导入。

  在我们以前的学习当中,重点研究了整数。但是由于在日常生活中我们进行测量、计算等活动的时候往往经常得不到整数的结果,所以我们又进一步学习了分数。其实在用分数表示的基础上我们还可以用小数表示。这个学期我们将重点学习小数。

  二、介绍方法:

  怎样学好小数呢?要想学好它,就要讲究一定的学习方法,制定一个计划,按一定的步骤学习,就能收到事半功倍的效果了。今天老师就向大家介绍一种学习方法。(出示学习步骤)

  学习步骤:关于小数:

  1、我已经知道了什么?

  2、我还想知道什么?

  3、通过学习我又知道了什么?

  4、动动手,检测一下。接下来我们就按照这样的步骤开展学习。

  三、思考、讨论:

  1、我已经知道了什么?

  小数点、小数在生活中的广泛运用……

  师:看来大家对小数的了解很有限,那么更有必要认真的学习小数了。

  2、还想知道什么?

  小数的起源、发展、计算、数位顺序、读写法、意义……

  师:要想了解小数的这些知识,首先最基本的就是要了解小数的意义。那么这节课我们就来了解小数的意义吧。

  四、引导学生自主学习小数的意义。

  1.小数的意义,自学小数的意义(看书第3页)

  (1)出示课件,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;取其中3份就是十分之三,用小数表示是0.3。

  把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。

  (2)以1米为例结合具体的数量理解小数

  把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。

  2、同桌之间互相交流,用数学语言说一说自己的涂色部分用分数和小数表示,分别是怎样的。

  4、师:像这样的小数是一位小数。像这样的小数是二位小数。

  5、想一想:1/1000.1/10000用小数怎样表示?23/1000.127/1000呢?它们分别是几位小数?观察黑板上的数据,想一想: 什么样的`分数可以写成小数呢?

  6、看书P3,找一找你认为最重要的那句话,读一读。分母是10.100.1000……的分数可以用小数表示。

  7、看学习步骤3:通过学习我又知道了什么?集体交流

  8、质疑(学生提问)

  五、学习步骤4:检测。

  1、在直线上标出相应的小数、分数。见P5.1

  2、分数小数的转化P5 2.3

  3、同伴相互出题。

  教学反思:

  这节课既是一节数学知识学习课,同时又是一节学习方法的指导课。通过对教学的设计,教学,对学生的检测、我有以下体会:

  1、教师要善于倾听。学习活动要以学生为本,在学生思考、讨论的过程中,经常会有精彩的见解,教师要善于捕捉。尤其是当学生有独特的见解出现时,教师要及时给予反应,以此保护学生对数学的积极性。当然这需要教师在平时的教学实践中注意有意识地积累。

  2、注重方法指导。 本节课的特色和重点之一即学习方法的指导。但是学习方法的指导应该是贯穿整个学习过程的,所以教师在进行方法指导的时候要让学生清楚本节课介绍的方法还适合那些内容的学习,其他的学习内容应该用什么样的学习方法更好。

  3、注重基础知识的掌握。本节课既让学生学习了好的学习方法,又让学生扎实地学习了小数的意义,关注了学生多方面能力的发展。

  存在的问题:数学课程要让学生了解数学在我们生活中无处不在,但本课与生活的联系不够,在学生的发言中教师的把握不及时。另外,要注重多样化的课程资源的整合,学习方式还可以更丰富一些,如认识一位小数、两位小数的方法可以有变化,以拓展学生的思维。

  案例点评:《小数的意义》这一节课整体框架好,是一节学习方法指导课。本节课能够很好地确定研究的课题、目标、即学习方法的指导,有研究的方向。并且能够引导学生参与目标的制定;学习过程中能用多种方法引导学生学习,学生基础知识、基本技能掌握较好;师生关系融洽,学习氛围好。

  比的意义教学设计 篇5

  教学目标

  1.从生活实际出发感知和理解百分数的意义;

  2.掌握百分数的写法,明确百分数与分数在意义上的区别;

  3.组织和引导学生经历学习过程,培养学生的问题意识及合作、交流能力和自学能力。

  教学重点:百分数意义的理解

  教学难点:百分数与分数在意义上的区别

  教学准备:.师生共同搜集身边或日常生活中的百分数。

  2.教师制作多媒体课件。

  教学形式:学生自主学习与小组合作、交流相结合,教师组织、引导与师生互动、交流相结合。

  教学过程:

  一、信息发布,感知百分数

  (一)教师发布信息。以声音、图片、文字结合的方式,出示下列信息(见课件)谈话:我们虽然已经认识了许多的数,但,像18%,25%,37.3%,7%,22%,70%这样的数,仍需要我们来认识和了解。人们称这样的数为百分数(板书:百分数)

  (二)学生发布信息

  师:生活中,你们见过这样的数(百分数)吗?在哪儿见过的?请说来听听。信息交流分两步进行,

  1.分小组交流。

  2.每组推荐一人在班上交流。

  (三)小结。同学们真了不起,从生活中找到了这么多百分数。

  二、质疑问难,明确学习目标

  师:百分数在生活中的应用这么广泛,请问:同学们想知道有关百分数的哪些知识呢?

  此时,教师要肯定学生提出的每个问题,并及时地在黑板上作简要的记录(如意义,读,写等)

  当学生谈不到分数与百分数的区别时,教师便质疑:人们为什么不用分数来表示这些关系,而大量地使用百分数?难道百分数与分数不同吗?(板书:百分数与分数有什么不同?)

  三、自学释疑,达成共识

  (一)学生自学(课件出示要解决的问题)

  (二)分小组交流自学情况

  师:通过自学,你明白了哪个或哪几个问题?自己是怎么理解的`?请同学们在组长的组织下进行交流。

  教师了解、指导学生解决问题,为释疑做准备。

  (三)师生释疑、解难

  1.组长汇报本组同学自学、交流和解决问题的情况。

  提示:一个组选取一个问题来重点汇报,主要介绍你们组是怎么理解的?

  汇报时,教师还要提醒:其余同学注意倾听,并准备针对别人的发言发表自己的见解。

  2.针对组长汇报,引领或指导学生以教材为依托把一个一个的问题加以理解(做到不流于形式,不规定学生必须先回答什么问题,再回答什么问题。)

  人们为什么喜欢百分数?

  引导学生从教材中的实例出发去领会——将分母统一为100便于比较的道理。

  关于百分数的意义

  引导学生从教材中的实例入手,逐步感受——百分数是把“一个数是另一个数的几分之几”中的“几分之几”转化成“百分之几”的一种特殊表达方式。即,百分数是“分率”中的一种特殊情形。所以,百分数也叫百分率或百分比,其意义是——表示一个数是另一个数的百分之几。同时,辅以练习。

  [练习]

  说一说,自己搜集信息中百分数的意义。

  教师指导:将百分数的意义叙述成“……是……的百分之几”的形式

  关于百分数的写法

  先抽取几名学生从自己搜集来的百分数中各选取一个自己最喜欢的写在黑板上,其余学生注意观察他们的写法;再师生互评,并谈自己搜集时的写法是否正确,从而规范写法。关于百分数与分数在意义上的区别

  先让学生谈一谈,当学生谈不到或谈不清楚时,教师再组织学生讨论。

  比的意义教学设计 篇6

  教学目标:

  1.使学生在现实的情境中,理解小数的意义,掌握小数的读写方法。

  2.使学生经历小数意义的探索过程,积累数学活动的经验,进一步发展数感,培养观察、比较、抽象、概括以及合情推理的能力。

  3.使学生能体会到小数与日常生活的密切联系,增强自主探索与合作交流的意识,树立学好数学的自信心。

  教学重点、难点:

  理解小数的意义,会正确读写小数。

  教学过程:

  一、导入

  同学们,我们在三年级的时候就认识了这样的一些小数,今天这节课我们将进一步学习有关小数的知识,让我们一起来认识小数的意义和读写法。(板书课题)

  二、回顾旧知,铺垫新知

  1、(1)生活中,许多地方都能看到小数,你在那些地方看到过的?

  (2)这些商品的价格你想了解一下吗?注意小数部分的读法,从左往右依次读出各个位上的数。

  你能用角或分做单位说出下面物品的价钱吗?

  2.旧知铺垫

  以“元”为单位,3角用分数表示是几分之几元?你是怎么想的?

  (1元是10角,1角是1元的十分之一,3角是1元的十分之三,所以3角就是十分之三元。)

  用小数表示就是0.3元。

  3.初步认识两位小数。

  (1)5分和48分都是以什么为单位的?

  如果以“元”为单位,1分用分数表示是几分之几元,用小数表示呢?你是怎么想的?(1元=100分,1分是1元的百分之一,就是1/100元,也就是0.01元。)

  (2)5分用分数表示是多少元呢?48分呢?学生讨论

  (3)学生汇报,教师根据学生回答完成板书。

  (4)5分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,5分就是1元的百分之五。)

  百分之五元可以写成小数0.05元。

  (5)48分是( )元,你是怎么想的?(把1元平均分成100份,1分是1元的百分之一,48分就是1元的百分之四十八。)

  百分之四十八元可以写成小数0.48元。

  三、探究新知

  1.理解一位小数的意义。1分米用分数表示是几分之几米?3分米用分数表示是几分之几米?你是怎么想的?

  2.进一步理解两位小数的.意义。

  下面,我们请尺子来帮助我们认识小数。

  (1)1厘米用分数表示是几分之几米?你是怎么想的?

  (2)百分之一米用小数表示是多少?

  (3)把4厘米和12厘米改写成以“米”作单位的分数和小数。

  (4)观察一下,这二个小数都是把1米平均分成几份?表示其中的1份就是0.01米,表示其中的4份就是多少米?表示其中的12份呢?你是怎么想的?

  3.自主探究三位小数的意义。

  (1)拿出你的尺子,看一看1毫米有多长,(教师拿出一把米尺),我这里有一把米尺,想一想,1米等于多少毫米?1毫米用分数表示是几分之几米,用小数表示是多少米?你是怎么想的?

  (3)0.001米小数点和1之间为什么要多写二个0?(因为1毫米是1米的千分之1,少二个0,就是十分之一了。)

  (4)这几个小数跟前面的不太一样,你们能读准吗?学生齐读三位小数。

  (5)观察一下,这三个小数都是把1米平均分成几份?表示其中的1份就是0.001米,表示其中的40份就是多少米?表示其中的105份呢?你还能想到什么?

  4.

  总结归纳小数的意义。

  (1)看黑板,哪些是一位小数?哪些是两位小数?哪些是三位小数?

  (2)从分数往小数看,什么样的分数可以用小数表示?(分母是10、100、1000……的分数都可以用小数表示。)

  从小数往分数看,一位小数可以表示怎样的分数?两位小数?三位小数呢?

  谁能连起来说说。

  总结:分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,你还能想到什么?能说得完吗?这就是小数的意义。

  (3)同桌互相说一说。

  四、巩固拓深认知

  1.试一试:

  学生独立完成,并交流汇报。

  (提示:7角3分可以看作多少分,这样改写就比较容易了。)

  2.数形结合(练一练)。

  请同学们看下面这些图,每个图形都表示整数“1”,第一个图是把什么看做整数“1”?将这个整数“1”平均分成了多少份?第二个图呢?第三个图呢?

  学生自己填,再汇报。说说每题你是怎么想的?

  观察这些图形,你还能想到哪些分数和小数?

  判断这些小数各是几位小数?为什么?(小数部分有几位就是几位小数。)

  3.练习四1

  我们把整数“1”用一个正方形来表示,你能根据要求涂色,并填出相应的小数吗?

  五、课堂小结

  这节课你学了什么?

  比的意义教学设计 篇7

  教材分析

  《分数的意义》是在学生初步认识分数的基础上系统学习的,也是把分数的概念由感性上升到理性的开始。分数的意义是今后学习分数四则运算和分数应用题的重要前提,对发展学生的思维潜力有着重要作用。学生已经明白把一个物体、一个计量单位平均分成若干份,取这样的一份或几份能够用分数来表示。本节课重点是让学生理解不仅仅一个物体一个计量单位可用自然数1来表示,许多物体看作的一个整体也可用自然数1来表示,进而总结概括出分数的意义。

  教学目标

  知识与技能:初步建立单位“1”的概念,理解分数的意义以及分数单位的意义。

  潜力与方法:透过主动学习探究,理解并构成分数的概念,培养学生的科学探究和实践潜力。

  情感态度价值观:借助为分数配图,发展学生对美的体验与欣赏;揭示分数的产生,丰富学生的数学文化;透过同学间的合作,养成学生倾听、质疑等良好学习习惯。

  教学重点和难点

  教学重点:建立单位“1”的概念,能从具体实例中理解分数的意义。

  教学难点:准确理解单位”1”。

  教学方法

  本课坚持以学生为主体,教师为主导的原则。采用启发诱导、探究等教学法。透过动手操作直观演示让学生充分感知,整堂课层层推进、步步深入。课堂中教师力求教给学生探索知识的方法,在引导学生在获取知识的同时,让他们归纳总结。

  教学用具准备

  多媒体课件,准备圆形纸,正方形纸、练习纸、小木棒等多种学具。

  教学过程

  一、理解单位“1”

  1、谈话交流引入

  教师板书“1”,同学们老师在黑板上写的是几?这天我们就从这个小小的“1”来开始展开学习这节课的资料。

  老师往这一站就能够用几来表示?“1”除了能够表示一个人,还能够表示什么?(生答:一台电脑、一块黑板、一张桌子等等)

  这个问题太简单了,一年级的孩子都明白,但此刻我们是五年级的同学了。“1”除了能够表示一个人、一台电脑、一块黑板等等,还能够有其它的表示方法吗?(引导学生说出“1”还能够表示一群人、一堆物品、一排桌子等等)

  演示:课件出示生活中的物体,深入理解一个物体和一些物体都能够用“1”来表示,加深对整体单位“1”的.理解。

  比较:此刻的“1”和以前的“1”还是一样的意思吗?(此刻的“1”不但能够表示一个个物体,还能够表示一堆物体、一群物体等等。)

  结论:透过我们刚才的谈话和观察我们发现一个物体或是一些物体都能够看做一个整体,都能够用“1”来表示。在数学中我们通常把这个广义的“1”叫做单位“1”。

  2、深入理解单位“1”

  课件出示:三个西瓜你会用几来表示?如果我想用单位“1”来表示就应怎样办?(用集合圈把它圈起来)。六个西瓜还能用一来表示吗?那就应用几来表示呢?为什么?12个西瓜呢?为什么?(因为那里有四圈也就是4个“1”)

  总结:原先我们发现有一个单位“1”就能够用1来表示。有几个单位“1”就能够用几来表示。

  导入新课:这些都是我们了解的整数,可要是不足单位“1”那还能用整数来表示吗?那你会想到什么数?揭示课题:分数的意义

  二、理解分数的意义

  课件出示四分之一,看到这个分数你想到了什么?(让学生自由回答,回忆三年级学过的资料。)

  1、理解一个物体的四分之一

  同学们刚才说的很好,课前老师给同学们准备了一些学具圆片、正方形纸、和练习册等等,利用这些材料折一折、分一分、画一画,找出四分之一。

  可引导学生想想:你是把什么看做一个整体单位“1”的?分成了几份?其中的几份就是四分之一?

  学生可能会有以下的想法:

  生:把一个圆片平均分成4份,取其中的一份就是这个圆片的四分之一。

  生:把一张正方形平均分成4份,其中一份就是这张正方形纸的四分之一。

  生:把一条线段平均分成4份,其中的一份就是这张圆片的四分之一。

  ……强调:你在分时就应怎样分才合理?你找到的四分之一是把什么看作单位“1”?是谁的四分之一?。

  2、理解一个整体的四分之一

  课件出示下方一些物体:你能不能从下方这些物体中找到出四分之一呢?我想让同学们先交流交流,在练习纸上分一分,画一画找出四分之一,小组交流后汇报。

  在学生找的同时,引导他们思考:你是把什么看作单位“1”的?平均分成了几份?取其中的几份就是单位的“1”的四分之一?

  生:把这四个苹果平均分成4份,一份就是这4个苹果的四分之一。

  生:把八个正方体看做单位“1”平均分成4份,1份就是这八个正方体的四分之一?

  生:把十二个五角星看作单位“1”平均分成4份,1份就是这十二个五角星的四分之一。

  这个四分之一是把谁看做单位一呢?怎样才能把这四个苹果看做单位“1”呢?课件展示四分之一的构成过程。

  操作:你们的学具袋中也有一些像老师这样许多物体组成的单位“1”,拿出来画一画、分一分,从单位“1”中找出四分之一,并和同学们交流交流。

  生:我把8个圆圈看做单位“1”,平均分成4份,其中的1份就是这8个圆圈的四分之一。

  ……强调:你在分时是把谁看作单位“1”。

  3、比较总结

  我们找到了这么多的四分之一,这些四分之一的单位“1”相同吗?各是把谁看作单位“1”?可为什么都用四分之一来表示呢?

  引导学生理解:虽然它们的单位“1”不相同,但它们都是把单位“1”平均分成四份,取了其中的1份。

  4、寻找分母是四的其他分数

  课件出示刚刚同学们的操作材料想:除了四分之一你还能找到其他分母是4的分数吗?说说你是怎样找到的?

  5、创造分数

  拿出学具中的12根小棒,利用这些小棒摆一摆、分一分,看看你能从小棒中发现哪些分数。思考:你把这些小棒分成了几份其中的几份就是这12根小棒的几分之几?

  生:我把这些小棒分成了6份,我找到了六分之一,六分之二等等。

  生:我把这些小棒分成了3份,我找到了三分之一,三分之二等等。

  ……教师顺势板书学生找到的分数。

  6、总结分数的意义

  在前面观察、操作、交流的基础上我们能够总结出分数的意义:把单位“1”平均分成若干份,其中的一份或几份都能够用分数来表示。

  三、认识分数单位

  告诉学生:分数和整数一样也有它的分数单位。在分数中把单位“1”平均分成若干份,表示其中一份的数就是分数单位。如:四分之一、六分之一、三分之一、十二分之一都是分数单位。并让学生说说都是哪些分数的分数单位。如六分之一是六分之五的分数单位等等。

  练习:老师报数学生说出这个分数的分数单位,并说说有几个这样的分数单位。

  四、深化练习

  1、读读下方有关分数的资料,说说每个分数的具体含义,并谈谈你的感受。

  (1)我国小学生的近视人数约占总数的五分之一。

  (2)小学生睡眠不足的人数大约占总人数的三分之二,小学生每一天的睡眠时光应占一天(24小时)的八分之三。

  (3)死海的表层的海水中含盐量到达了十分之三。

  2、用分数表示下方各图的涂色部分(见课件)

  3、下方各图中用分数表示的阴影部分对吗?说说理由。(见课件)

  4、图形中找分数

  图中蓝色部分是由一个长方形和一个正方形重叠后得到的,根据图形填空。

  图形中的蓝色部分面积各占大正方形面积的,占大长方形面积的()、占整个图形面积的()。

  5、数学智慧

  那里有三盒巧克力,老师要求只能拿走每盒巧克力的1/5,但是小玲却从第一盒中拿走了1颗,从第二盒中拿走了2颗,从第三盒中拿走了3颗,这是为什么?

  比的意义教学设计 篇8

  教材简析:

  这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:

  (1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。

  (2)比的后项不能是0。

  教学内容:

  苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。

  教学对象分析:

  学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。

  教学目标:

  1、理解并掌握比的意义,会正确读写比。

  2、记住比各部分的名称,并会正确求比值。

  3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。

  4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。

  5、养成认真观察、积极思考的良好学习习惯。

  教学重点:

  理解和运用比的意义及比与除法、分数的联系。

  教学难点:

  理解比的意义。

  教学媒体:

  电脑课件、实物投影

  教学过程

  一、创设情景,激发兴趣

  1、 引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。

  你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)

  32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)

  27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)

  2、联系奥运,分析题目.

  在奥运会上,你认为我国的哪块金牌的分量最重?(学生畅所欲言)如果没有人说刘翔,教师就稍微引一下

  新科110米栏奥运冠军刘翔用沉甸甸的金牌让轻视黄种人的人闭上了嘴巴,他为中国夺得了有史以来中国在田径短跑项目上的第一块金牌,下面我们就共同回顾一下刘翔的夺冠历程(播放刘翔夺冠视频)。

  看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?(12.91)

  那你知道他的速度到底有多快吗?

  如果我要你们列式来求该怎么求呢?(110÷12.91)你是根据什么来列式的?(路程÷时间=速度)

  看完奥运,我们再来看看我们学校的事情

  3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)比的意义教学设计 相关内容:分数除法(第5课时)六(下)第一单元 比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>> 小学六年级数学教案

  4、学校用150元买来3个小足球,每个小足球多少元?

  (请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?

  学生读题回答,教师板书(总价÷数量=单价 150÷3)

  3、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)

  [设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]

  二、自主探究,合作交流

  1、比的意义。

  (1) 那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。

  那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)

  (2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。

  质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?

  引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。

  (2) 同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)

  都说完了,那谁愿意站起来说一说呢?

  (女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。

  那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)

  那单价呢?可以怎么说啊?(单价是总价和数量的比)

  在我们常用的数量关系中还有工作效率=工作总量÷工作时间

  这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的比)

  [设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的'方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的意义,充分发挥了教师的引导作用。]

  (3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)

  汇报,板书:两个数相除又叫做两个数的比。(齐读)

  你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)

  [设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]

  (4)练习题:填空。

  有5个红球和10个白球,白球和红球个数的比是( )比( ),红球和白球个数的比是( )比( )。比的意义教学设计 相关内容:分数除法(第5课时)六(下)第一单元 比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>> 小学六年级数学教案

  [设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]

  2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。

  (1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!

  [设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]

  (2)汇报。

  1:我学会了比的写法,3比4记作3∶4。(让学生板演)

  问:这个“∶”叫做什么呢?谁愿意给它起个名字?(强调:写“∶”应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比12.51又记作什么?(指名板演,其他同学写在练习本上)3∶4 4∶3 110∶12.91又怎样读呢?

  思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)

  [设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]

  2:我学会了比的各部分名称。(结合3∶4来说明)

  如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)

  3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)

  问:那么怎样求比值呢?(前项除以后项的商)

  练习题:(课件出示)求出下面各比的比值。3∶4 0.7∶0.35 8∶4 0.2∶1/5

  想:比值通常可以是什么数?

  [设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]

  4:两数相除又叫做两个数比,看来比和除法之间有着一定的联

  系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。

  出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)

  相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数

  设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。

  5:我还知道比的后项不能为“0”。

  问:为什么呢?(引导学生从不同角度说明)

  三、多层练习,巩固新知

  比的意义教学设计 篇9

  赵喜梅老师执教的是北师大版六年级下册《正比例》第19页——21页的内容。赵老师教学思路清晰,课堂上,让学生自己观察,自己比较分析,自己归纳,来发现正比例量的特征,并常试抽象概括正比例的意义,提高学生分析,判断、概括、推理能力。突破了难点,基本上达到了教学目标。下面,谈一下我对这节

  课的个人看法:

  一、注重数学和生活的联系,课堂灵活开放。

  老师从生活中的例子“买了一些苹果,已经吃了一部分,你想知道什么?”入手,引出数学的关联的量上,然后让学生从生活中找出相关联的量,让学生明白数学和生活密切相关。从“人的体重与门的高度”还有“我们班的总人数,满意的人数和不满意的人数是否成正比例?为什么?”,无不体现了数学知识运用与生活的特点,课堂设计灵活开放,锻炼了学生的分散思维。

  二、如花微笑,温暖学生。

  这节课上,赵老师从开始到结束,脸上都洋溢着迷人的微笑。微笑让学生感到温暖,身心放松,创造了和谐的教学课堂。我想在课堂微笑很容易做到,但难的是微笑一节课,不管是引导学生发言,讲授新知识,还是针对练习我想赵老师是达到了教学思想的很高境界。

  三、用问题引领学生,突出学生的主体地位。

  “如果已知正方形的边长,你能想到什么?”“你能用具体的'数字说明它们之间的关系吗?”“请同学们挑选其中的一个表格认真观察,说说你发现了什么?”“如果把5个表格进行分类,你该怎么办?”每到关键的部分,老师并不着急告诉学生答案,而是用思考性的问题引着学生积极思考,最后由学生自己一点一点总结出来,让学生深刻理解知识点,从而达到突破重难点的目的。

  比的意义教学设计 篇10

  教学内容:

  义务教育课程标准实验教科书《数学》五年级下册P60—64。

  教学目标:

  1.结合具体情境,在学生原有分数知识基础上,了解分数产生的背景,理解分数的意义,理解单位“1”不仅是一个物体,也可以是许多物体;知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,进而理解分数的意义和分数单位的意义,并学会用分数描述生活中的事物,体会“整体”与“部分”之间的关系。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  4.在轻松和谐的氛围中学习数学,感受生活中处处有分数,并培养抽象、概括能力。教学重难点:明确分数和分数单位的意义,理解单位“1”的含义。教学准备:多媒体课件、练习纸、一支水彩笔

  教学过程:

  一、回忆旧知

  1.师:把6个苹果平均分给2个小朋友,每人分得几个?若老师只有1个苹果平均分给2个小朋友,每人分得多少?

  2.师:你们认识它吗?请大声地读出它?(二分之一)

  它是什么数?

  3.师:你已经知道了分数的哪些知识?

  (分子,分母,分数线)

  二、探究新知

  (一)了解分数的产生

  1.师:对于分数同学们知道的真不少,那你们知道分数是怎么来的吗?

  2.师:我给你们准备了几幅图,大家看(课件出示60页主题图1)。

  3.师:古人把绳子按相同的长度打上结用来测量物体的长度,两个结中间的一段就表示长度的一个计量单位,(指着图)如图上这样的一段就用1表示,这里有1、2、3三段就用(3)表示,剩下的不足一段,还能用1表示吗?(不能)

  4.师:(课件出示60页主题图2)再来看,把桌上的东西平均分给两个同学,每个同学分到的东西还能用整数表示吗?(不能)

  5.师:在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。

  6.师:你知道第一个发明分数的人,他是怎么写这个分数的吗?

  7.师:(课件出示62页主题图)3000多年前,古埃及就有了分数记号,人们借助椭圆表示分子为1的分数;20xx多年前,我们中国用算筹表示分数,像这样上面摆3根,下面摆5根,就表示3/5;后来,印度用阿拉伯数字表示分数,这种方法和我国的类似,只是这两种方法都没有分数线,直至公元12世纪,也就是大约800年前,阿拉伯人发明了分数线,这种方法一直沿用至今。

  8.师:那分数到底表示什么呢?接下去我们就重点研究分数的意义。(板书:和意义)

  (二)探索研究,理解分数的意义

  1.师:你能举例说明1/4的含义吗?(学生答)

  2.师:下列图中的阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

  (强调一定要平均分)(板书:平均分)

  3.动手操作,创作分数。

  (1)操作。

  师:现在你能利用手中的学具,通过折一折、画一画、分一分等方法,创造出几个不同的分数吗?(学生动手操作,教师巡视。)

  (2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  4.认识单位“1”。

  师:利用手中的学具,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

  把4根香蕉、8块面包平均分,我们又可以称之为把一些物体平均分。

  师小结:

  不管是一个正方形、一个圆形、一条线段、、4根香蕉、8个面包都可以看作一个整体。(板书:一个整体)一个整体可以用自然数来表示,我们通常把它叫做什么?(学生回答:单位“1”,老师板书),这个1要用双引号,因为它不单单表示

  一个物体也可以表示一些物体。

  师:你能举例说说可以把什么看作单位“1”?

  5.概括分数的意义

  师:通过刚才的举例和学习,谁可以更准确地说说怎样才用分数表示呢?(两个学生讲后老师小结)把单位“1”平均分成若干份,(老师板书)这样的一份或几份可以用分数表示。

  (三)认识分数单位

  1、62页做一做

  2、师:自然数的单位是什么?7里面有几个1?26呢?

  分数也有自己的单位,什么是分数单位呢?请同学们自学课本62页。

  3.找生汇报:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫分数,这是分数的意义。而表示其中一份的`数叫做分数单位。如2/3的分数单位是1/3。

  3、练习:读出下面的分数,并说出每一个分数的分数单位。(课件)

  三、巩固新知

  1.完成课本练习十一部分练习。

  2.体会“整体”与“部分”之间的关系

  (结合课件演示)

  师:这1支粉笔,是全部粉笔的1/5,你能猜出一共有几支吗?(5支)师:为什么是5支呢?

  师:现在有2支粉笔,也是全部粉笔的1/5,你还能猜出一共有几支粉笔吗?你是怎么知道的?

  师:现在有3支粉笔,还是全部粉笔的1/5,你还能猜出一共有几支粉笔吗?怎么那么快就猜出来了?

  师:为什么都是,有的是1支,有的是2支,还有的却是3支呢?

  师小结:虽然都是把全部的粉笔平均分成了5份,但是因为单位“1”的数量不同,所以每一份的数量也就不同。因此说一个分数时,一定要强调是哪一个整体的几分之几,即:说清楚是“谁的”几分之几。

  四、全课总结

  师:谁能说一说我们班的每一个同学占全班同学的几分之几?通过这节课的学习,你有哪些收获呢?

  板书设计:

  分数的产生和意义

  一个物体

  一个整体单位“1”

  一些物体

  把单位“1”平均分成若干份,这样的一份或几份可以用分数表示。表示这样一份的数叫分数单位。

  比的意义教学设计 篇11

  教学目标:

  知识目标:在学生在了解小数产生的过程中,理解分数与小数的联系,理解小数的意义,知道小数的计数单位。知道小数和整数一样,相邻计数单位间的进率都是10。

  能力目标:在探究过程中培养学生的观察能力、分析能力、抽象概括和迁移能力。

  情感目标:在生活情境中了解小数的产生;体会数学与自然及人类社会的密切联系,了解数学的价值,增加对数学的理解和应用数学的信心

  教学重点:

  小数的意义,计数单位及进率。

  教学难点:

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率

  学情分析:

  三年级时学生已学习了小数的初步认识,会认识小数以及读写法,知道了小数在实际生活中的应用,并会进行两位以内小数大小的比较,以及一位小数的简单加减法。在生活中,小数的应用也普遍,所以学生已经具备一定的小数认识的基础。

  教学方法:

  操作法,观察法,讨论法,引导尝试法。

  教学课时:1课时

  教学过程:

  一、情景导入

  1.同学们,华东超市大家熟悉不熟悉啊?去过吗?今天,老师带大家再去哪儿逛逛,好不好?(课件出示)请大家在逛超市的同时,找找看,你在哪儿发现了数?是哪些数?

  2.认识他们吗?读一读,生活中,这样的数多不多?还在哪儿见过这样的数?

  3.在我们身边随处都能找到小数,小数的用处可大了,所以,我们今后还要反复学习小数,接下来我们继续去数学王国探究小数的奥秘。

  二、新课教学

  (一)认识一位小数

  出示一米长的纸条

  1.估一下,大概有多长?

  2.确定是一米长的纸条。

  出示长方形的纸片,老师想知道这个表的长和宽,怎么办?(量)

  3.用一米的纸条做尺子,来量数位表的长。

  4.发现:不够一米。不能得到一个整米数,怎么办?(用更小的单位,把一米分成10个一分米)

  (板书)1分米

  1/10米

  0.1米

  把1米平均分成10份,每一份是1分米。

  也就是说1分米是把1米平均分10份里面的1份,也就是1/10米

  也可以用小数表示为0.1米

  【设计意图】

  用一米的单位来量,得不到一个整米数,然后用分的方法引出小数0.1,让学生理解小数的产生及其作用。

  5.通过测量,得到:长是3分米。

  3分米

  3/10米

  0.3米

  6.学生活动

  (1)把“1”平均分成十份,其中五份用分数表示是(?),用小数表示是(??)。

  (2)在方格纸上涂出0.6,你打算把方格纸平均分成多少份?

  涂其中的几份?

  【设计意图】

  即时练习,举一反三,通过想、说、做,使学生明白以为小数与分母是10的分数的关系,理解一位小数的意义。

  (二)认识两位小数

  1.量出长方形的宽

  比2分米长点,但不够三分米,没法用整分米数表示怎么办?(用更小的单位厘米,把一米分成100个一厘米)

  (板书)

  1厘米

  1/100米

  0.01米

  2.得到21厘米,用米作单位怎么表示?

  21厘米

  21/100米

  0.21米

  3.学生活动

  (1)在方格纸上涂出0.06,你打算把方格纸平均分成多少份?涂其中的几份?

  (2)如果要在方格纸上涂出0.65呢?

  (三)认识三位小数

  如果仔细看,这个数位表的宽比21厘米还多一点点,但又比22厘米少,如果要得到更精确的宽度,可不可以再分?(用更小的单位:毫米,把一米分成1000个1毫米)

  1毫米

  1/1000米

  0.001米

  (四)如果我们需要更加精确的数,可不可以再分呢?分的完吗?

  【设计意图】

  在认识了一位小数的基础上,有层次,有规律地认识两位小数,学习三位小数,降低了学生对概念的理解难度。

  (五)小数的计数单位

  课件演示:用一个正方体的分解来演示

  小数的计数单位分别是:十分之一,百分之一,千分之一……

  分别写作:

  0.1、

  0.01、

  0.001……

  (六)教学小数计数单位之间的进率

  10个0.1是1,10个0.01是0.1,10个0.001是0.01,也就是说,小数中相邻的两个计数单位进率是10。

  师:同整数一样,小数里面每相邻的.两个计数单位进率都是10。

  【设计意图】

  直观演示,有两方面的作用,一是加深学生对用“分”的方法来学习小数意义的过程的理解,二是通过观察,能更容易的理解小数计数单位之间进率的理解。

  三、巩固练习

  “勇闯智慧岛”

  1.看图写出分数和小数。

  2.我是小法官

  四、课堂总结

  1.观察,思考,小数跟哪种数有着密切的关系?(分母是10、100、1000……的分数)

  2.评价学生活动,下课。

  四年级数学《小数意义》教学设计4

  教材来源:义务教育教科书,人民教育出版社xxxx年版

  教学内容来源:小学四年级数学(下册)第四单元《小数的意义和性质》

  教学主题:《小数的意义》

  课时:第一课时

  授课对象:四年级学生

  目标确定的依据:

  1.课程标准相关要求

  进一步认识小数,会进行小数和分数的转化(不包括将循环小数化为分数)。

  2.教材分析

  《小数的意义》是人教版四年级下册第四单元《小数的意义和性质》第一节的教学内容,是学生系统学习小数的开始。这是在学生三年级学习“分数的初步认识”和“小数的初步认识”基础上教学的,通过这部分内容的学习,使学生进一步理解小数的意义,为今后学习小数四则运算打好基础。

  3.学情分析

  本节课探究的内容是日常生活中的实际问题,具有很强的探索性和现实意义,学生学习探究的兴趣会很浓。教学中应因势利导,组织学生在小组中合作探讨,体会抽象和推理的数学思想方法。四年级的学生具备一定的独立思考能力,教学中可组织学生先独立思考,再在小组中相互交流,培养学生的探究品质和能力。

  学习目标:

  1.通过结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。经历抽象、推理等活动明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  2.借助熟悉的十进制关系的现实原型多角度理解小数与分数的关系,通过自学,理解计数单位0.1、0.01、0.001。通过数数的活动,知道相邻两个计数单位间的进率是10。

  评价设计:

  1、通过说一说,想一想,量一量,小组合作交流,探究出小数的意义,达成目标1。

  2、经历自学,数数等活动,独立探究,全班交流汇报,说出小数的计数单位和相邻两个计数单位间的进率,达成目标2。

  教学重点:

  理解一位、两位、三位小数的意义,知道相邻的两个计数单位间的进率是10。

  教学难点:

  理解一位、两位、三位小数的意义。

  教学准备:

  米尺、课件。

  比的意义教学设计 篇12

  本课教学目标:

  1、使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

  2、引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

  教学重点

  :比与除法、分数的关系

  教学难点

  理解比的意义

  教具准备

  多媒体课件

  教学过程:

  一、谈话启发,揭示课题

  师:今天很高兴能在这和大家一起学习,我们班的同学都到齐了,看看男生有几人呢?(29人),女生有几人?(25人)在日常的工作和生活中,我们常常把两个数量进行比较。现在你能不能根据我们班男生和女生的人数,提出数学问题,并会用以前学过的什么方法进行比较?

  启发学生提问题,解答后教师板书。

  比差关系:用减法29-25=4(人)

  比倍关系:用除法29÷25=

  25÷29=

  师:从男生和女生的比较中可以知道,比较数量的意义和方法有两种:一种是求一个数量比另一个数量多多少(比差关系)用减法,另一种是求一个数量是另一个数量的几倍或几分之几(比倍关系)用除法。今天这节课,我们要在对两个数量用除法比较的基础上,来学习一种新的数学比较方法——比。

  2、板书课题(出示教学目标)

  二、新知探究

  l.教学比的意义。

  师问:29÷25是哪个量和哪个量比较?(男生人数和女生人数比较)

  师述:用新的一种数学比较方法,求男生人数是女生人数的几倍,又可以说成男生人数和女生人数的比是29比25。(板书:男生人数和女生人数的比是29比25)

  扶放启发:请同学们想一想,仿上例(指29÷25),那么25÷29又可以怎么说呢?

  (生说后师板书:女生人数和男生人数的比是25比29)

  小结:从求我班男生人数和女生人数的倍比关系知道:谁是谁的几倍或几分之几,又可以说成谁和谁的比。应注意的是:两个数量进行比较要弄清谁和谁比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。(如29比25是男生人数和女生人数的比,25比29是女生人数和男生人数的比。)

  师:同学们真聪明,很快就学会了用“除法”和“比”的方法对我们班的男生和女生人数进行了比较,请同学们再看下面一个例子。

  (投影出示)

  “一辆汽车2小时行驶100千米。每小时行驶多少千米?”

  教师提出如下几个问题启发学生思考:

  (投影出示)

  (1)求汽车行驶的速度应怎样计算?

  [用除法计算:100÷2=50(千米/小时)]

  (2)题中的100千米是汽车行驶的什么?2小时呢?(路程、时间)

  (3)汽车的速度又可以说成哪个量和哪个量的比,是几比几?

  学生回答后教师板书:路程和时间的比是100比2。

  引导学生总结出比的意义:

  师启发:从上面两个例子可以看出,比较两个数量的倍比关系可以用什么方法?(用除法)又可以用什么方法?(比的方法)那么表示两个数的相除关系又可以怎样说呢?板书:

  两个数相除又叫做两个数的比。(完善板书:比的意义)

  接着帮助学生深化理解比的意义(提出如下问题启发):

  (l)两个数的比是表示两个数之间的什么关系?(相除关系)

  学生回答后教师在“相除”两字下面点上着重号,然后让学生齐读两遍。

  (2)上面两例,它们的解法有什么共同点?(都用除法,又可以说成几比几)

  (3)两个例中的各个比有什么不同点?(第一个例子中的比是同类量的'比,第二个例子中的比是不同类量的比。不同类量比,得到的是一种新的量,如路程和时间的比表示的意义是速度。)

  2.教学比的读写法、各部分名称、求比值的方法及比同除法的关系。

  (一)课件出示自学提纲。

  1、比的读、写法2、比的各部分的名称分别叫什么??3、怎样求一个比的比值?

  4、比值可以怎样表示??5、比和比值有什么联系与区别?

  (二)各小组根据提纲自学。

  教师巡回查看,了解学生学习中的疑难,以便有目的的开展教学。

  (三)逐步汇报并举例。

  1、两个数相除,又叫做两个数的比。

  2、“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。

  3.15比10记作15∶1010比15记作10∶15

  4、比的前项除以后项所得的商,叫做比值。

  例如:3∶2=3÷2=

  引导学生根据比值的定义,弄清比值是一个数。(通常用分数表示,也可以用小数表示,有时也可能是整数)。

  5、理解比和比值的联系和区别。

  比的意义教学设计 篇13

  教学目标:

  1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

  2、经历认识分数意义的过程,培养学生的抽象、概括能力。

  3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

  教学重点:

  明确分数和分数单位的意义,理解单位“1”的含义。

  教学难点:

  对单位“1”的理解。

  教具和学具:

  卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

  教学过程:

  一、创设情景,温故引新。

  1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

  二、教学分数的产生。

  2、能根据成语说出下面的分数吗?

  一分为二( )七上八下( )百里挑一( )十拿九稳( )

  1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

  2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

  3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

  4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

  三、教学分数的意义。

  师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

  出示一个1/4的正方形的阴影部分。

  师:阴影部分可以用什么分数表示?它表示什么意思?

  2、师:下列图中的`阴影部分能用1/4表示吗?为什么?

  如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

  (强调一定要平均分)(板书:平均分)

  3、动手操作,探索新知。

  (1)操作。

  师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

  学生动手操作,教师巡视。

  (2)交流

  师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

  小组交流。

  (3)认识单位“1”。

  师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

  生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

  师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

  (课件显示:一个物体)

  把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

  把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

  师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

  师:(投影出示):我们可以把这3只象看作一个整体吗?

  我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

  我们还可以把哪些物体也看成一个整体呢?(学生举例。)

  师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,(课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

  概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

  (4)理解分子分母的意义。

  师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

  (5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

  ①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

  生:1/2

  ②师:为什么可以用1/2来表示?

  ③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

  如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

  如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

  ④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

  ⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

  师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

  四、教学分数单位。

  师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

  显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

  加强练习,深化概念。

  练习:

  1、35表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

  2、67的分数单位是( ),有( )个这样的分数单位。

  3、说出每个分数的意义。

  (1)五(1)班的三好生人数占全班的29 。

  (2)一节课的时间是23小时。

  4、课本练习十一第9题。

  5、判断(对的打“√”,错的要“×”)。

  (1)一堆苹果分成4份,每份占这堆苹果的14 ( )

  (2)把5米长的绳子平均分成7段,每段占全长的57 ( )

  (3)14个19是914 ( )

  (4)自然数1和单位“1”相同。( )

  五、小结。

  今天这节课我们学习了?你有哪些收获?

  小学数学分数的意义教学设计5

  教学内容:

  义务教育五年制小学数学第八册分数的意义。

  义务教育六年制小学数学第十册分数的意义。

  教学目标:

  1.使学生知道分数的产生和其它数学知识一样是由人类的生产和生活实际中产生的。

  2.使学生理解分数的意义和单位“1”的含义及分子、分母的含义。

  3.培养学生形象思维,抽象概括能力和初步的逻辑思维能力。

  4.使学生受到初步的辨证唯物主义观念的启蒙教育。

  教学重点与难点:

  让学生理解分数的意义是本节课的重点,讲清单位“1”的含义是本节课的难点。

  教具准备:

  电脑软件一套。

  学具准备:

  每人一张正方形纸片、每组一个信封里面装有一张圆形、长方形纸片,4个苹果图片,6个玩具熊猫图片。

  教学过程:

  课前组织教学

  今天我们和许多小动物一起去参加小猴的生日聚会高兴吗?你们看小猴准备了许多好吃的、好玩的东西(电脑显示画面)请同学们观察一下都有什么?它还想测测同学们的智力利用课堂上所学的知识帮它分一分、算一算能做到吗?(上课)

  一、分数的产生

  在日常生活中,人们在进行测量和计算的时候,有时不能得到整数得结果,例如,用一个计量单位“米”测量黑板的长度(屏幕显示)量了3米后,剩下的一段不够1米了,还能用整数表示吗?又如,老师只有一个苹果要平均分给两个小朋友,每个小朋友分得多少个/还能用整数表示吗?这就需要用新的数,谁知道用什么数来表示?

  板书:分数

  对于分数同学们并不陌生,在三年级的时候我们已经初步认识过谁能说几个分数(指名说老师板书),谁还记得分数各部分的名称是什么?

  到底什么样的数叫分数呢?分子、分母各表示什么意思呢?这节课我们就来进一步学习分数的意义,板书:的意义

  二、分数的意义

  1。把小猴准备的一部分礼物装在信封里,倒出来看一看都有什么?下面小猴要利用这些东西测测同学们的智力,看哪一个小组表现的好?听要求小组同学研究想办法表示出每种东西的。小组研究汇报。

  2.根据刚才分的过程,把这些物体归两类,为什么这样分?

  根据学生的回答板书:一个物体、一个整体(解释整体的含义)。

  说明一个物体、一个计量单位或许多物体组成的整体都可以用自然数1来表示,通常叫做单位“1”

  上面我们分的这些物体就可以用一句话表示出来谁能说出来?(把单位“1”平均分成两份,每份是它的)

  3.请同学们看屏幕,仔细观察回答问题

  (1)把一块饼平均分成两份,每份是它的()。

  (2)把一张正方形的纸平均分成4份每份是它的(),其余的3份是它的()。

  (3)把一条线段平均分成5份,每份是它的()其余的是它的()。

  (4)同时显示以上3幅图,让同学们认真观察它们的分法和表示每一部分的分数有什么异同?小组讨论汇报。

  4.请同学们拿出准备好的苹果和熊猫图片,平均分看有几种分法,其中的一份用什么数表示,小组讨论汇报,电脑显示平均分的苹果和熊猫图画,让学生按照第一幅图的说法说一说其余的几幅图的意思。

  5.电脑同时显示一块饼、一张正方形纸、一条线段、四个苹果、六只熊猫图,提问:刚才我们分了这些物体都是把谁看作单位“1”?谁来说一说什么叫做单位“1”?电脑显示单位“1”的含义。

  6.根据刚才所学的知识小组讨论到底什么样的数叫做分数呢?引导学生总结分数的意义,电脑显示分数的意义。

  7.根据分数的意义指名说出刚才写的这些分数表示的意义。

  8.教学分子、分母的含义:电脑显示分数各部分的名称,指名回答分子、分母各表示什么?写几个分数让学生说出分子、分母所表示的含义。

  9.做一做电脑显示。

  三、课堂练习:

  1.让同学们闯三关,电脑显示三关题。

  2.三关闯过了,别忘了还要帮小猴分东西呢,苹果、熊猫已分过,还有西瓜和蛋糕,看小狗分西瓜(电脑显示)学生回答。提问:如果小狗把西瓜平均分成8块,小猴吃了3块,吃了西瓜的几分之几?小兔吃了2块,吃了几分之几?还剩下西瓜的几分之几?

  分蛋糕,蛋糕上有四朵小花、12支蜡烛,平均分成4份,每份都能用来表示,但是这个所表示的数量一样多吗?为什么?

  四、课堂小结:

  这节课你学会了什么?

  五、板书设计:

  分数的意义

  一个物体

  一个计量单位单位“1” 2/3 4/15 5/11

  一个整体

  把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。

  比的意义教学设计 篇14

  教学目标

  1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。

  2、培养学生比较、分析和概括等思维能力。

  教学重难点

  使学生认识比的`意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系

  教学准备

  幻灯片

  教学过程设计

  教学内容

  师生活动

  备注

  一、 引入新课

  二、教学新课

  三、巩固联系

  四、作业

  1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)

  引入新课

  2、出示两道文字题

  (!)3千米是5千米的几分之几?

  (2)8吨是4吨的几倍?

  学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。

  1、学生用十分钟自习书本52到53页

  2、问:通过自习你知道了哪些知识?还有哪些疑问?

  3、小组内互相说,解决问题。

  4、教师请个别同学说,然后师生一起探讨、研究。

  5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。

  6、说明相关注意点。如:单位、比值、名称、写法、读法......

  1、书本53页练一练

  2、练习十二1、2

  练习十二3、4、5