整式教学设计

时间:2023-09-15 11:00:57 教学设计 我要投稿

整式教学设计

  作为一名辛苦耕耘的教育工作者,可能需要进行教学设计编写工作,借助教学设计可以让教学工作更加有效地进行。你知道什么样的教学设计才能切实有效地帮助到我们吗?下面是小编收集整理的整式教学设计,仅供参考,大家一起来看看吧。

整式教学设计

整式教学设计1

  教学目标

  1.知识与技能

  会用代数式表示简单的问题中的数量关系,能用合并同类项,去括号等法则验证所探索的规律。

  2.过程与方法

  经历探索数量关系,运用符号表示规律,通过运算验证规律的过程,培养学生观察、分析、推理的能力。

  3.情感态度与价值观

  培养学生不怕困难、勇于探索的学习态度,合作交流的意识和能力,感受符号运算的作用。

  老师:请同学们观察并找出规律

  学生独立完成

  老师:请同学们拿出你们的学具按要求亲自动手摆一摆,算一算。

  学生:老师,摆几个三角形呀?

  老师:先摆一个,再摆两个、三个、四个。关注学生与他人进行合作与交流的意识。

  鼓励每个同学尽可能独立思考,并与同伴进行交流,教师关注学生在探索数量关系活动中的参与态度、思维水平和抽象能力:分析:

  三角形个数12345

  火柴棍根数357911

  教师演示,学生观察

  老师:每增加一个三角形,火柴棍根数增加多少?

  学生:2根

  老师:火柴棍根数是一组怎样的数?

  生:连续奇数。

  师:奇数可用整式2n+1(或2n-1)表示。

  师:从多角度思考,也可以分析表格中火柴棍根数与三角形个数之间的关系生:怎样找?

  师:如3=2×1+1,5=2×2+1

  生:哦,明白了

  师:从而得排n个三角形需要火柴棍根数为什么?

  生:2n+1

  师:请同学们亲自拼一拼,想一想,在探索规律的.过程中从多个角度进行考虑,并与同伴进行交流。

  生:好

  关注学生在活动中的参与态度,能否积极地从事数量关系的探索过程,不要以教师的演示代替学生的实际活动。

  提出问题后,学生分四人小组进行讨论,并派代表在班组交流。

  师:当n≤100时,n本笔记本所需钱数为多少?

  生:2.3n元,师:当n>100时,n本笔记本需要多少元?

  生:2.2n元。

  生:观察这两个整式,当n=100时,需花钱230元,而当n=101时,只需花钱2.2×101=222.2(元),出现多买比少买反而付钱少的情况,所以如果需要100本笔记本,应该购买101本能省钱。

  师:请同学们继续探索,至少需要多少本时,可以按上面方式购买。

  组织学生按四人小组,进行探究,鼓励每个学生尽可能独立思考,并与同伴进行交流。

  师:请同学们再找几个方框试试,看自己的规律是否还成立

  生:好

  教学时,也可以先开放,让学生发现月历中数与数之间的关系,再讨论浅色方框中数字和与该方框正中间的关系课本。让学生独立完成之后,再小组讨论,让学生自己整理这节课的内容。

整式教学设计2

  教材分析

  1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。

  2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。

  学情分析

  1.去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;(2)去括号的法则增加了解题长度,降低了学习效率;(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。

  教学目标

  1.熟练掌握去括号时符号的变化规律;

  2.能正确运用去括号进行合并同类项;

  3.理解去括号的依据是乘法分配律。

  教学重点和难点

  重点

  去括号时符号的变化规律。

  难点

  括号外的因数是负数时符号的变化规律。

  教学过程

  一、创设情景问题

  青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的`形式速度可以达到120千米/时。

  请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?

  解:这段铁路的全长为100t+120(t-0.5)(千米)

  冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。

  提出问题,如何化简上面的两个式子?引出本节课的学习内容。

  二、探索新知

  1.回顾:

  1你记得乘法分配率吗?怎么用字母来表示呢?

  a(b+c)=ab+ac

  2-(-2)=(-1)*(-2)=2+(-3)=(+1)*(-3)=-3

  2.探究

  计算(试着把括号去掉)

  (1)13+(7-5)(2)13-(7-5)

  类比数的运算,去掉下面式子的括号

  (3)a+(b-c)(4)a-(b-c)

  3.解决问题

  100t+120(t-0.5)=100t-120(t-0.5)=

  思考:

  去掉括号前,括号内有几项、是什么符号?去括号后呢?

  去括号的依据是什么?

  三、知识点归纳

  去括号法则:

  如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;

  如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.

  注意事项

  (1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;

  (2)括号内原有几项去掉括号后仍有几项.

  四、例题精讲

  例4化简下列各式:

  (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).

  五、巩固练习

  课本P68练习第一题.

  六、课堂小结

  1.今天你收获了什么?

  2.你觉得去括号时,应特别注意什么?

  七、布置作业

  课本P71习题2.2第2题

整式教学设计3

  师:同学们,还记得同类项,合并同类项的定义吗?

  生:基本能完整地回答出来。

  师:(板书)

  下列各题合并同类项的结果对不对?若不对,请改正。

  (1)2ax2+3ax2=5ax4。

  (2)6x+2y=8xy。

  (3)8x2-3x2=5。

  (4)9a2b-9ba2=0。

  生:口头回答。

  师:给予评价。

  师:引导学生用两种方法解决问题:直接代入求值法;先合并同类项再代入求值。

  生:先在座位上演算第一小题。

  师:巡视,指导学生分别用两种方法解决问题(1)。

  师生:老师分析题目,老师根据学生口头回答的结果板书完整的两种解答过程。

  生:体会到合并同类项法则在运算中的地位。

  师:请两名学生上黑板分别板书两种解题过程,再次体会合并同类项的好处。

  师生:一起评价结果。

  生:学生一起朗读题目,然后独立思考。学生将重要信息写在课堂练习本上。

  师:巡视学生解答情况,并给予必要的知道。特别是给予基础薄弱的学生鼓励,消除他们对应用题的恐惧感。

  师:引导学生用正负数表示相反意义的量,然后列出式子,剩下的工作就是利用合并同类项法则化简式子。

  生:学生口头回答所列的式子,以及运算结果。

  师:提醒学生合并同类项时,第一项的负号不能丢。

  师:强调解题格式。

  师:请两名学生上黑板扮演解题过程,其他同学写在课堂练习本上。

  生:齐朗读题目,然后独立思考。

  师:评讲学生的板演过程。再次强调格式的重要性。

  师:强调合并同类项时,各项的'系数相加时,第二项的符号是负的。

  师生:鼓掌鼓励这两名学生。

  师:小试牛刀!哪个同学自告奋勇来解决这两个问题呢?

  生:部分学生踊跃举手,积极参与课堂活动中。

  生:两名学生上黑板板演。

  师生:一起评价学生的解题过程。

  师:强调知识的灵活应用,特别是在第二题的解答过程中。

  师:人往高处爬!我们现在一起来挑战这座“高山”!先独立思考两分钟,然后小组讨论。

  生:先独立思考,少部分同学能在两分钟内完成这道题。

  生:两分钟后学生自由讨论一分钟,然后继续解题或检查刚才的答案是否出错。

  师生:分享讨论的结果,给予优秀者鼓励。

  师:分析题目的内涵,完整地板书整个解题过程。培养学生规范解题的能力。

  师生一起分享本节课的收获。

整式教学设计4

  第一课时

  教学目标:

  1、经历探索整式的乘法运算法则的过程,会进行简单的整式的乘法运算。

  2、理解整式的乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。

  教学重点:

  整式的乘法运算。

  教学难点:

  推测整式乘法的运算法则。

  教学过程:

  一、探索练习:展示图画,让学生观察图画用不同的形式表示图画的面积。并做比较。由此得到单项式与多项式的乘法法则。观察式子左右两边的特点,找出单项式与多项式的'乘法法则。

  跟着用乘法分配律来验证。

  单项式与多项式相乘:就是根据分配律用单项式去乘多项式的每一项再把所得的积相加。

  二、例题讲解:

  例2:计算(1)2ab(5ab2+3a2b);

  (2)解略。

  三、巩固练习:

  1、判断题:(1)3a3·5a3=15a3( )

  (2)( )

  (3)( )

  (4)—x2(2y2—xy)=—2xy2—x3y( )

  2、计算题:

  (1);(2);(3);(4)—3x(—y—xyz);(5)3x2(—y—xy2+x2);(6)2ab(a2b—c);(7)(a+b2+c3)·(—2a);(8)[—(a2)3+(ab)2+3]·(ab3);(9);(10);(11)(。

  四、应用题:

  1。有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?

  五、提高题:

  1。计算:(1)(x3)2―2x3[x3―x(2x2―1)];(2)xn(2xn+2—3xn—1+1)。

  2。已知有理数a、b、c满足|a―b―3|+(b+1)2+|c—1|=0,求(—3ab)·(a2c—6b2c)的值。

  3。已知:2x·(xn+2)=2xn+1—4,求x的值。

  4。若a3(3an—2am+4ak)=3a9—2a6+4a4,求—3k2(n3mk+2km2)的值。

  小结:要善于在图形变化中发现规律,能熟练的对整式加减进行运算。作业:课本P11习题1。3教学后记:

  第二课时

  教学目标:

  1、经历探索多项式乘法的法则的过程,理解多项式乘法的法则,并会进行多项式乘法的运算。

  2、进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力。

  教学重点:

  多项式乘法的运算。

  教学难点:

  探索多项式乘法的法则,注意多项式乘法的运算中“漏项”、“符号”的问题

  教学过程:

  一、探索练习:如图,计算此长方形的面积有几种方法?如何计算?小组讨论。你从计算中发现了什么?多项式与多项式相乘,_____________________________。

  二、巩固练习:1。计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8);(9);(10);(11)。

  三、提高练习:

  1、若;则m=_____,n=________

  2、若,则k的值为( )(A)a+b(B)—a—b(C)a—b(D)b—a

  3、已知,则a=______,b=______。

  4、若成立,则X为__________。

  5、计算:+2。

  6、某零件如图示,求图中阴影部分的面积S。

  7、在与的积中不含与项,求P、q的值。

  一、小结:

  本节课学习了多项式乘法的运算,要特别注意多项式乘法的运算中不要“漏项”、和“符号”的正确处理。

  六、作业:第28页习题 1、2

整式教学设计5

  教学目标

  1.知识与技能:

  理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想;会进行单项式与多项式相乘的运算。

  2.过程与方法:

  在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。

  3.情感态度与价值观:

  使学生获得成就感,培养学习数学的兴趣。

  教学重点难点

  1.教学重点:

  单项式与多项式相乘的运算法则及其运用

  2.教学难点:

  灵活地运用单项式与多项式相乘的运算解决数学问题。

  教学过程

  一、复习导入

  1.如何进行单项式乘单项式的运算?

  单项式的系数?相同字母的幂?只在一个单项式里含有的`字母?

  (系数×系数)×(同字母幂相乘)×单独的幂

  计算:(2a2b3c)(-3ab)=-6a3b4c

  2.应用运算律来计算:6×(+-)

  二、新课讲解

  探究新知

  为了扩大绿地的面积,要把街心花园的一块长m米,宽b米的长方形绿地,向两边分别加宽a米和c米,求扩大后绿地的面积?

  m(a+b+c)=ma+mb+mc

  引导学生用自己的话叙述上面的运算过程,然后师生共同总结:

  单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。

  用公式表示上面的运算过程:m(a+b+c)=ma+mb+mc

  通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。

  三、典例剖析

  例1.计算:

  (-4x2)·(3x+1)注意:多项式中“1”这项不要漏乘.

  (2) ( ab2-2ab) ·ab

  学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:

  单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。

  点评:

  (1)多项式每一项要包括前面的符号;

  (2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致(1不要漏乘);

  单项式系数为负时,改变多项式每项的符号。

  巩固法则

  练习1下列计算对吗?若不对,应该怎样改?

  (1) 3a(a-1)=3a2;

  (2) 2x2(x-y)=2x3-2x2;

  (3) (-3x2)(x-y)=-3x3-3x2y;

  (4) (-5a)(a2-b)=-5a3+5ab.

  练习2.填空

  (1)单项式与多项式相乘,就是用单项式去乘多项式的________,再把所得的积________。

  (2) 4(a-b+1)= ___________________。

  (3) -3x(2x-5y+6z)= _____________________。

  (4) (-2a2)2(-a-2b+c)=_____________________。

  练习3计算

  (1) (-3x)(2x-3y) (2) 5x(2x2-3x+1) (3) am(am-a2+1)

  例2.计算

  x(x2-xy+y2)-y(x2+xy+y2)

  练习1:计算

  x(x2-1)+2x2(x+1)-3x(2x-5)

  练习2:化简求值

  Yn(yn+9y-12)-3(3yn+1-4yn)其中y=-3,n=2

  引导学生观察思考后,让学生尝试解答,之后教师展示示范,共同总结出方法:

  计算代数式的值的一般步骤是先化简,再求值。

  四、课堂小结

  1.单项式乘以多项式的法则?

  2.一种思想:单项式与多项式相乘的实质是把单项式乘以多项式转化为单项式乘法。

  3.注意点:

  (1)单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定;

  (2)不要出现漏乘现象;

  (3)运算要有顺序:先乘方,再乘除,最后加减。有括号一般先去括号(小→大);

  (4)结果要合并同类项。

  五、布置作业

  书上习题14.1第4、7题

整式教学设计6

  一、知识目标:

  理解整式的加减实质就是去括号,合并同类项,其结果仍然是整式;掌握学生在掌握合并同类项、去括号与添括号的基础上,掌握整式加减的一般步骤;能够正确地进行整式的加减运算。

  二、能力目标:

  经历用字母表示数量关系的过程,发展符号感;培养用代数的方法解决实际生活中的问题的能力和口头表达能力。

  三、情感目标:

  渗透教学知识来源于生活,又要为生活而服务的.辩证观点;整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。

  教学重难点:利用去括号、合并同类项进行整式的加减运算;根据实际问题中的数量关系列出算式,并求出结果;

  教材处理与数学方法

  1、调动学生自觉性与积极性,由浅入深地传授知识,提高学生学习兴趣。

  2、运用启发式教学,让学生自行归纳出整式的加减的步骤。

  3、利用不同记号标出各同类项,有助学生合并同类项。

  4、让学生在实际解题过程中,体会到整式的加减实际上就是已经学过的去括号法则与合并同类项这两个知识的综合,这样更有利于学生学会将新知转化为旧知,不断更新知识结构。

  5、充分利用教学时间,在课堂上进行针对性辅导,把共性问题与典型题目展示,引导学生发现问题与纠错能力。

  四、复习旧知识

  1、合并同类项定义、法则;

  2、去括号法则。

  3、基础训练

  计算

  4、列式计算

  5、求值:

  五、归纳小结

  1、整式的加减实际上就是。

  2、整式的加减的步骤,一般分为。

  3、整式加减的结果是或(单项式或多项式)。结果更简单,体现我们数学中的简洁美。

  整式的加减是承有理数的加减、乘、除、乘方的运算,续整式方程的一系列运算,是学生从小进入初中含有字母运算的变化,认知上有新的突破,在教法引入过渡中,有其奥妙学法教法值得反思。

整式教学设计7

  回顾与反思

  师生共同讨论得出结论,教师指出注意的问题

  沙场练兵

  一、比一比看谁最快、最棒:

  1、-0.4ab3的系数是 次数是 。

  2、多项式3x2+2x-3x-4的最高次项是 ,同类项是 ,常数项是 。

  3、去括号3a-(2ab-3b2 +4)=

  4、与2a-1的和为7a2-4a+1的多项式是

  二、应用知识,提高能力,你一定行:

  已知小明的年龄是岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的年龄的.一半多一 岁,求三个人的年龄和。

  学生抢答

  学生独立思考,然后在本上做,找一名同学板书。

  培养学生运算能力和分析问题解决问题的能力。

  回顾与反思

  本节课的学习你有哪些收获?

  应注意什么问题?(出示本章的知识结构图:)

  师生互动梳理知识。弄清本章所学的概念、法则和有关的知识内容以及它们之间的联系与区别,并写出知识结构图。

  布置

  作业P192 6、8、11

  板书设计:

  回顾与反思

  一、知识结构

  二、1、整式有关概念注:单次

  三、整式加减(注:同类项的确定,去括号的应注意问题)

  教学反思:

  本节课在学生充分思考的基础上,开展小组交流和全班交流。使学生在反思交流的过程中,师生共同建立知识体系得出本章知识结构图,在整个过程中不仅注重对知识的总结,更注重对知识形成过 程的反思归纳。留给了学生充足的时间和空间,反思知识的发生发展过程。但由于留给学生时间较长,课时感到很紧张,今后要注意改进。

整式教学设计8

  【教学目标】

  1、理解同类项、合并同类项的概念。

  2、掌握合并同类项法则,会应用该法则及运算律合并多项式的同类项,会应用同类项及合并同类项解决实际问题。

  3、感受其中的“数式通性”和类比的数学思想。

  【教学重点】

  理解同类项的概念;掌握合并同类项法则。

  【教学难点】

  正确运用法则及运算律合并同类项。

  【教学过程】

  一、知识链接

  1、运用运算律计算下列各题。

  ①6×20+3×20=

  ②6×(-20)+3×(-20)=

  2、口答。

  8个人+5个人=8只羊+5只羊=

  8个人+5只羊=

  [意图:①复习乘法分配律;②感受“同类”。操作流程:幻灯片出示→学生口答(1)→分配律:ab+ac=a(b+c)→口答(2)→解释]

  二、探究新知

  探究一:一只蜗牛在爬一根竖立的.竹竿,每节竹竿是a厘米,第1小时向上爬了6节,第2小时向上爬了2节,问这个蜗牛在竹竿上向上爬了多少厘米?

  (1)请列式表示:,你能对上式进行化简计算吗?

  (2)说说化简计算的依据。

  [意图:联系生活情境,探究新知。操作流程:幻灯片出示→学生独立思考并回答→师生小结方法]

  探究二:根据以上式子的运算,化简下列式子。

  ①100t-252t②3x2+2x2

  ②3ab2-4ab2④2m2n3-5m2n3

  (1)上述各多项式的项有什么共同特点?

  (2)上述多项式的运算有什么共同特点,有何规律?

  [意图:让学生经历动手、观察、猜想、归纳的学习过程,从而探究出新知。操作流程:幻灯片出示→动手计算→回答并解释→观察(交流)→猜想→引导学生归纳新知]

  三、例题精炼

  例1、合并同类项。

  4x2+2x+7+3x-8x2-2

  例2、求多项式-x2+4x+5x2-3x-4x2+3的值,其中x=。

  [意图:运用知识解决问题,突出重点。操作流程:完成例1(3~4人演排)→学生质疑→师点评并规范格式、注意事项(例2处理方式同上)]

  四、课堂小结

  这节课你学到了哪些知识?

  [意图:养成总结反思的好习惯。操作流程:交流→小组代表→师补充]

  五、课堂检测(略)

  [意图:诊断、反馈学生学习效果。操作流程:8分钟内独立完成(学案)→学生互评→师统计答题情况→重点讲评]

整式教学设计9

  教学目标:

  教学内容分析:

  本节课的教学内容是《整式的加减》(第1课时),是在学习了整式的有关概念之后的一节课。整式的加减是整式的运算、因式分解、解一元二次方程及函数的基础,是“数”向“式”的正式过渡,它具有十分重要的地位,而整式加减的知识基础则是同类项的概念及同类项的合并,整式的加减主要是通过合并同类项从而把整式化简,所以本节课在中学数学中的地位不言而喻。

  教学重点和难点:

  同类项的概念及合并同类项的方法

  教学设计思路:

  长期以来,学生主动学习的意识淡薄,对教师的依赖性很大,学生长期处于被动接受的学习状态,使学生变得内向、被动、缺少自信、恭顺……窒息了学生的创造性。新课程要求“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流合作的能力”。为此要求我们教师努力变“知识给予”为“教育交往”,变“教程”为“学程”,在课堂上向学生提供从事数学活动的机会,帮助学生改变旧的学习模式,引导学生在学习活动中自主探究问题和解决问题,使每一个学生在数学课堂中各有所得。为了突出教学的重点、突破教学的难点,本节课拟采用探究式教学法:通过观察生活实例,从学生已有的生活经验出发,采取合作探究的学习方式,通过小组合作讨论等方式开展学习活动,让学生独立自主地发现问题、分析问题并独立地解决问题,在探究的过程中,获得成功的体验,增强学习数学的信心,发展学生学习数学的积极性,并通过探究活动,使学生体验探究的过程,培养思维的变通性和严密性,培养学生的探索精神和创新能力。

  教学主要过程设计:

  教后反思:

  这节课的教学设计是基于以学生探究为主的学习方式,目的是让学生在自主探索、亲身实践、合作交流的氛围中认识数学、理解和掌握基本数学知识、基本数学技能和基本数学方法,充分体现了新课程的理念。

  一、成功之处

  本节课突出了三个“注重”:

  (一)注重创设问题情境。上课伊始即以实物进行分类,激发学生的学习兴趣,把学生注意力和思维活动迅速调节到积极状态,接着,让学生通过观察把认为同类型的单项式进行分类,从而引出同类项概念,又通过“游戏”等方式对同类项概念进行辨析,这样可充分揭示同类项概念的'内涵,同时为学生提供了充分从事数学活动的机会。特别是[活动8]先是提出“3个人再加5个人得多少个人?”这一通俗易懂的问题,而后进一步提出“3个人再加5张桌子得8个人?还是8张桌子?”这一看似有些荒唐的问题,实际上却突破了合并同类项这一重点难点即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;合并同类项时,只能把同类项合并成一项,不是同类项不能合并。

  (二)注重学生之间的合作交流。学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程,动手实践、自主探索与合作交流是学生学习数学的重要方法。本节课设计过程中非常注重这方面的活动设计,从实物分类、引出概念到概念辨析以及课堂小结无处不体现学生是学习的主人这一新课程理念。

  (三)注重能力的培养。本节课教学设计中注重让学生动手、动口、动脑,发展了学生学习的积极性,既训练了学生的语言表达能力,又培养了学生自主探索、自主学习、合作交流、协作学习和归纳概括的能力,发展了学生发散性思维,培养了学生思维的变通性和严密性,培养了学生的探索精神和创新个性,提高了学生对信息的处理能力,锻炼了学生的实践能力。

  二、需要完善之处

  视学生实际情况,如能再给学生练习课本165页例1,然后教师再点评的话,那么就是锦上添花了。因为学生在掌握同类项的概念和合并同类项的方法后,再通过解决像例1这样生活中的实际问题,就更能使学生理解“数学来源于生活,而又服务于生活”,体现了“学数学、用数学”、“学有所用”的基本理念,使学生体会到数学是解决实际问题的有力武器,增强应用数学的意识。

整式教学设计10

  教学目标

  1、知识与技能

  能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

  2、过程与方法

  经历类比带有括号的有理数的运算,发现去括号时的符号变化的`规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

  3、情感态度与价值观

  培养学生主动探究、合作交流的意识,严谨治学的学习态度。

  重、难点与关键

  1、重点:去括号法则,准确应用法则将整式化简。

  2、难点:括号前面是“—”号去括号时,括号内各项变号容易产生错误。

  3、关键:准确理解去括号法则。

  教具准备

  投影仪。

  教学过程

  一、新授

  利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

  去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项。

  二、范例学习

  化简下列各式:

  (1)8a+2b+(5a—b);(2)(5a—3b)—3(a2—2b)。

  思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号。为了防止错误,题(2)中—3(a2—2b),先把3乘到括号内,然后再去括号。

  解答过程按课本,可由学生口述,教师板书。

  三、巩固练习

  1、课本第68页练习1、2题。

  2、计算:5xy2—[3xy2—(4xy2—2x2y)]+2x2y—xy2。[5xy2]

  思路点拨:一般地,先去小括号,再去中括号。

  四、课堂小结

  去括号是代数式变形中的一种常用方法,去括号时,特别是括号前面是“—”号时,括号连同括号前面的“—”号去掉,括号里的各项都改变符号。去括号规律可以简单记为“—”变“+”不变,要变全都变。当括号前带有数字因数时,这个数字要乘以括号内的。每一项,切勿漏乘某些项。

整式教学设计11

  教学目标

  1.会进行含有括号的整式加减运算。

  2.会先进行整式的加减,再求值。

  复习旧知识,引入新知识

  复习“去括号法则”,请同学们先完成题目1:

  教师根据情况分析错误原因,并提醒学生注意括号前面的“—”号。分析:在去括号的运算中,当()前是“-”号时,容易犯的错误是只将第一项变号,而其他项不变。

  通过练习题1的分析后,再让学生继续完成练习题2,进行知识强化。(让4个学生出黑板板示,允许其他同学出来修改)

  师:前面我们学习了合并同类项、去括号,本节课我们学习整式的加减。进行整式的加减运算,实际上就是做两件事,第一件事是去括号,第二件事是合并同类项。请看例6.

  (按去括号、合并同类项两步先让生尝试)

  师:通过上面的学习,你能说出整式加减的基本运算步骤吗?

  每一步应注意什么?

  让学生观察例题的过程,找出解题的路径。

  试探练习,回授调节

  师:请学生4人出黑板板示,其他同学在自己座位上迅速完成,作好改错准备。

  生:在自己座位上独立完成?

  板示学生返回座位后,发现有错误的'学生可出黑板改正。

  师:提问学生,要求说出错误在什么地方,并加以改正。

  生:?

  学生练习,老师巡查并指导。

  学生多数会漏写括号。

  师:在这几个整式相加或相减时,为什么要加上括号

  生:思考回答?

  师:观察本例,并说出本例与之前练习有什么区别?

  生:此例最后给出x、y的值,要求多项式的值。

  师:请用两种方法做一做,并比较哪一种方法简单些?

  学生通过比较,都会认为先化简,后求值较为简单些。

  教师再板书规范的书写过程。

  通过本题的解答,让学生进一步熟练整式加减法的一般解题步骤,让学生先化简再求值,并培养学生规范的解题格式。

  学生练习,教师巡查指导,及时提醒出现差错的学生改正。注意不同层次学生的积极性的调动,使每个学生都参与到训练中来,积极动脑、动手,同时教师对差生进行指导和鼓励。

整式教学设计12

  内容:

  整式的乘法单项式乘以多项式P58—59

  课型:

  新授

  时间:

  学习目标:

  1、在具体情景中,了解单项式和多项式相乘的意义。

  2、在通过学生活动中,理解单项式和多项式相乘的法则,会用它们进行计算。

  3、培养学生有条理的思考和表达能力。

  学习重点:

  单项式乘以多项式的法则

  学习难点:

  对法则的理解

  学习过程

  1、学习准备

  2、叙述单项式乘以单项式的法则

  3、计算

  (1)(— a2b)(2ab)3=

  (2)(—2x2y)2(— xy)—(—xy)3(—x2)

  4、举例说明乘法分配律的应用。

  5、合作探究

  (一)独立思考,解决问题

  1、问题:一个施工队修筑一条路面宽为n m的公路,第一天修筑a m长,第二天修筑长b m,第三天修筑长c m,3天工修筑路面的面积是多少?

  结合图形,完成填空。

  算法一:3天共修筑路面的总长为(a+b+c)m,因为路面的宽为bm,所以3天共修筑路面m2。

  算法二:先分别计算每天修筑路面的面积,然后相加,则3天修路面m2。

  因此,有= 。

  2、你能用字母表示乘法分配律吗?

  3、你能尝试总结单项式乘以多项式的法则吗?

  (二)师生探究,合作交流

  1、例3计算:

  (1)(—2x)(—x2x+1)(2)a(a2+a)— a2(a—2)

  2、练一练

  (1)5x(3x+4)(2)(5a2 a+1)(—3a)

  (3)x(x2+3)+x2(x—3)—3x(x2x—1)

  (4)(a)(—2ab)+3a(ab—b—1))

  (三)学习体会

  对照学习目标,通过预习,你觉得自己有哪些方面的收获?有什么疑惑?

  (四)自我测试

  1、教科书P59练习3,结合解题,体会单项式乘以多项式的'几何意义。

  2、判断题

  (1)—2a(3a—4b)=—6a2—8ab()

  (2)(3x2—xy—1)x =x3 —x2y—x()

  (3)m2—(1— m)= m2— — m()

  3、已知ab2=—1,—ab(a2b3—ab3—b)的值等于()

  A。 —1 B。 0 C。 1 D。无法确定

  4、计算(20xx贺州中考)

  (—2a)(a3 —1)=

  5、(3m)2(m2+mn—n2)=

  (五)应用拓展

  1、计算

  (1)2a(9a2—2a+3)—(3a2)(2a—1)

  (2)x(x—3)+2x(x—3)=3(x2—1)

  2、若一个梯形的上底长(4m+3n)cm,下底长(2m+n)cm,高为3m2n cm,求此梯形的面积。

  3、一块边长为xcm的正方形地砖,因需要被裁掉一块2cm宽的长条,为剩下部分面积是多少?

整式教学设计13

  【教学目标和要求】

  知识与技能目标

  理解单项式及单项式系数、次数的概念.会准确迅速地确定一个单项式的系数和次数.

  过程与方法目标

  初步培养学生观察、分析、抽象、概括等思维能力和应用意识.

  情感态度价值观目标

  通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.

  【教学重点和难点】

  重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

  难点:单项式概念的建立。

  【教学过程】

  一、情景引入:

  1.你坐过火车吗………. 青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:

  (1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

  (2)字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?

  (3)回顾以前所学的知识,你还能举出用字母表示

  ???? 数或数量关系的例子吗?

  例1.用含有字母的式子填空

  1)苹果原价是每千克p元,按8折优惠出售,用式子表示现价;

  (2)某产品前年的产量是n件,去年的产量是前年产量的`m倍,用式子表示去年的产量;

  (3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;

  (4)用式子表示数n的相反数.

  (数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔。)

  活动一:请学生观察所列代数式包含哪些运算,有何共同运算特征。

  由小组讨论后,经小组推荐人员回答,教师适当点拨。

  (充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

  二、学习新知:

  1.单项式:

  通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即数与字母的积 ,像这样的式子叫做单项式.

  然后教师补充,单独一个数或一个字母也是单项式,如2、-3,、a

  2.练习:判断例1中所列式子在哪些是单项式?

  ?(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

  3.单项式系数和次数:

  直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。从而引入单项式系数的概念并板书,接着让学生说出这个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

  例2:用单项式填空,并指出它们的系数和次数.

  (1)、每包书有12册,n包书有_____册.

  (2)、底边长为a,高为h的三角形的面积是_____,

  (3)、一个长方体的长和宽都是a,高为h,它的体积是_____.

  (4)、一台电视机原价为a元,现按原价的九折出售,这台电视机现在的售价为____元

  (5)、一个长方形的长为0.9,宽为a,面积是____

  字母表示数后,同一个式子可以表示不同的含义,你能赋予 0.9a 一个含义吗?

  通过其中的例题及练习,强调应注意以下几点:

  ①圆周率π是常数;

  ②当一个单项式的系数是1或-1时,“1”通常省略不写;

  ③单项式次数只与字母指数有关。

  三、课堂小结:

  ①单项式及单项式的系数、次数。

  ②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

  ③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

  四、课堂作业: 课本第59页:1,2。

【整式教学设计】相关文章:

《整式的加减》教学设计04-19

整式的加减教学反思06-23

《整式的乘法》说课稿12-11

整式的乘法教案03-08

教学设计模板-教学设计模板07-16

经典教学设计03-05

课程设计教学设计12-26

教学设计与教学反思04-27

教学论与教学设计05-20