数学教学设计

时间:2023-06-17 11:01:37 教学设计 我要投稿

数学教学设计15篇

  在教学工作者开展教学活动前,有必要进行细致的教学设计准备工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。那么什么样的教学设计才是好的呢?下面是小编为大家整理的数学教学设计,欢迎阅读与收藏。

数学教学设计15篇

数学教学设计1

  课题:二元一次方程

  一、教学目标:

  1.理解二元一次方程及二元一次方程的解的概念;

  2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

  3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

  4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.

  二、教学重点、难点:

  重点:二元一次方程的意义及二元一次方程的解的概念.

  难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.

  三、教学方法与教学手段:

  通过与一元一次方程的比较,加强学生的类比的思想方法; 通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.

  四、教学过程:

  1.情景导入:

  新闻链接:桐乡70岁以上老人可领取生活补助,

  得到方程:80a+150b=902 880.

  2.新课教学:

  引导学生观察方程80a+150b=902 880与一元一次方程有异同?

  得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程.

  做一做:

  (1)根据题意列出方程:

  ①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg , 梨的单价y元/kg ;

  ②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程: .

  (2)课本P80练习2. 判定哪些式子是二元一次方程方程.

  合作学习:

  活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.

  问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人.

  团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行? 为什么? 把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等? 由学生检验得出代入方程后,能使方程两边相等. 得出二元一次方程的`解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.

  并提出注意二元一次方程解的书写方法.

  试一试:

  检验下列各组数是不是方程2x=y+1的解:

  ①??x?4,

  ?y?3,②??x?2.5,

  ?y?4,③??x??6,

  ?y??13.

  ②③是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.

  3.合作学习:

  给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值; 接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

  出示例题:已知二元一次方程 x+2y=8.

  (1)用关于y的代数式表示x;

  (2)用关于x的代数式表示y;

  (3)求当x= 2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.

  (当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

  4.课堂练习:

  (1)已知:5xm-2yn=4是二元一次方程,则m+n=;

  (2)二元一次方程2x-y=3中,方程可变形为y= 当x=2时,y= ;

  (3) 已知 ??x?2,

  ?y?1是关于x,y的方程2x+ay=5的一个解,则a= .

  5.你能解决吗?

  小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.

  6.课堂小结:

  (1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

  (2)二元一次方程解的不定性和相关性;

  (3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

  7.布置作业:(1)教材P82; (2)作业本.

  教学设计意图:

  依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.

  在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学. 并对教学

  内容进行适当的重组、补充和加工等,创造性地使用了教材. 所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力. 这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.

  其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的. 重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.

  二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象. 在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.

数学教学设计2

  教材:

  义务教育课程标准实验教科书人教版数学一年级下册

  教学目标:

  1.通过对图形(或实物)、数排列的观察、分析,使学生初步学会怎样发现规律。

  2.学习运用“规律”解决简单的实际问题,如美化教室、排队及认识数等。

  3.在找规律中初步感悟规律存在的普遍性,为发现与掌握更多的数学规律打好基础。

  一、创设情境,引出课题

  1.导语:同学们,“六一”儿童节是我们小朋友自己的节日,这天××学校的同学举行了庆“六一”联欢会。他们找来彩旗、灯笼、小花,把教室布置得特别漂亮。现在他们正在漂亮的教室里唱歌跳舞呢!

  2.多媒体播放动画:彩旗、灯笼、小花布置的教室,小朋友们边唱歌边跳舞,伴着歌声《我们的祖国是花园》,灯光由暗变明,最后静止于主题图。

  3.让学生仔细观察教室的布置并思考:都看到了什么?发现了什么?

  4.引出课题“找规律”。

  [设计思路:本节课为“找规律”第一课时。应充分挖掘教材资源,活用教材,结合本地实际,对教材“主题图”进行灵活、恰当的处理。鉴于此,本课以“六一联欢会”为主题展开教学,选取富有儿童情趣的活动内容来激发学生的学习兴趣,让学生在学习过程中体验到身边蕴藏着有趣的数学知识,寓数学知识教学于学生喜闻乐见的活动中。]

  二、认真观察,发现规律

  1.教学例1。让学生观察主题图,找一找小旗、灯笼、花和小朋友的排列规律,重点引导学生分析各种排列是否有规律,有怎样的规律。根据小旗、灯笼、花、小朋友的排列规律,说一说最后一个应是什么?小旗、灯笼的排列规律比较简单,不难发现,教师应着重让学生说小朋友的排列规律。先看男女生围成一个圈,再以某个具体的男生(或女生)为观察的起点,看一看排列有什么特点,然后再说出规律。

  2.想一想。看,谁来啦?(多媒体出示老师来参加“六一”活动,并带来西瓜、桃、香蕉三种水果。)根据前面我们学到的“找规律”的方法,请同学们仔细观察并说一说三种水果的排列是否有规律,有怎样的规律。

  [设计思路:对教材的领悟与处理,是教师教学的首要任务。本环节找主题图中四组图的规律难度并不大,学生易于掌握,所以,教师一方面要大胆地放手让学生找规律,另一方面可以根据学生实际适当地改编教材。如例1的四组图都是两种事物交替出现的,比较简单,学生容易产生思维定式,所以此环节可以设计一组找三个事物交替出现的排列规律,拓宽学生的思路。]

  3.教学例2。引导学生观察比较(与例1)发现找规律时既可以从形状又可以从颜色入手,说出各自遵循什么规律。

  [设计思路:从找具体事物小旗、灯笼、花、小朋友、水果的排列规律过渡到几何图形正方体、圆柱、三角形、圆、正方形的排列规律。使学生亲历从具体事物到数学图形再到抽象数学符号的找规律过程,为下节课学习理解更复杂事物的规律打好坚实基础。]

  三、巩固新知,运用规律

  1.涂一涂。学生完成涂色卡(根据第89页例3、“做一做”改编)后,引导学生对每一组图形的排列规律进行再认识,多角度思考。展示部分学生的涂色卡。

  [设计思路:这一设计的目的是进一步加强学生对规律的体验和感知,为下一步学习做更好的铺垫。]

  2.利用学具,小组合作按一定规律摆放图形。

  3.请部分小组展示摆出的有规律的`图形,其余学生观察并说出规律,相互对摆出的图进行点评。(进一步引导学生掌握方法:可以从颜色或形状入手找规律;可以从前往后观察,也可以从后往前观察找规律。)

  [设计思路:培养学生的思维能力是数学教学的一项重要任务。设计“涂”、“摆”、“设计有规律的图案”等数学活动,使学生在活动中兴趣盎然,思维明晰活跃,同时注意培养学生认真听取别人意见,与人合作的精神等。]

  四、联系生活,拓展新知

  1.其实在我们身边有很多地方运用事物的排列规律美化环境。让我们一起去看看吧!

  (课件出示:江边的石柱、斑马线、马路护栏、少数民族服饰图案、有规律的花柱、花钟……)

  2.同桌交流、分组汇报。(对说得好的重点引导分析,使认识得以深化。)

  3.师:同学们发现了这么多规律,让我们鼓掌表扬自己。(连续响起三次掌声。)

  师:你们发现掌声有什么特点?(我们的掌声有“慢慢快快快”的规律。)

  师:掌声有规律,有的乐声也是有规律的!你听。

  (教师播放有规律的音乐,学生根据音乐的节拍,有规律地做动作或表演。)

  师:今天同学们的表现真不错,老师想和大家一起来照张相。照相要站队,请你想想我们可以怎么有规律地排队?和小组的同学商量一下。

  (我们可以按高矮来站,可以按男女相间来站,可以按照衣服的颜色站;还可以一个人朝前,一个人朝后来站……)

  师:同学们想的方法真不少啊,我们就按同学们说的办法挑几种试试。

  (整队出教室,按学生说的方法试着站队。)

  设计思路:

  设计“拓展延伸”,让学生找“生活中有规律的设计”、“发现有规律的声音”、“设计有规律的动作”、“进行有规律的站队”。这些练习的设计,既使学生有兴趣,又能体现数学与其他学科的整合,更能培养学生的创新意识。

数学教学设计3

  一、课题:

  人教版全日制普通高级中学教科书数学第一册(上)《2.7对数》

  二、指导思想与理论依据:

  《数学课程标准》指出:高中数学课程应讲清一些基本内容的实际背景和应用价值,开展“数学建模”的学习活动,把数学的应用自然地融合在平常的教学中。任何一个数学概念的引入,总有它的现实或数学理论发展的需要。都应强调它的现实背景、数学理论发展背景或数学发展历史上的背景,这样才能使教学内容显得自然和亲切,让学生感到知识的发展水到渠成而不是强加于人,从而有利于学生认识数学内容的实际背景和应用的价值。在教学设计时,既要关注学生在数学情感态度和科学价值观方面的发展,也要帮助学生理解和掌握数学基础知识和基本技能,发展能力。在课程实施中,应结合教学内容介绍一些对数学发展起重大作用的历史事件和人物,用以反映数学在人类社会进步、人类文化建设中的作用,同时反映社会发展对数学发展的促进作用。

  三、教材分析:

  本节内容主要学习对数的概念及其对数式与指数式的互化。它属于函数领域的知识。而对数的概念是对数函数部分教学中的核心概念之一,而函数的'思想方法贯穿在高中数学教学的始终。通过对数的学习,可以解决数学中知道底数和幂值求指数的问题,以及对数函数的相关问题。

  四、学情分析:

  在ab=N(a>0,a≠1)中,知道底数和指数可以求幂值,那么知道底数和幂值如何求求指数,从学生认知的角度自然就产生了这样的需要。因此,在前面学习指数的基础上学习对数的概念是水到渠成的事。

  五、教学目标:

  (一)教学知识点:

  1、对数的概念。

  2、对数式与指数式的互化。

  (二)能力目标:

  1、理解对数的概念。

  2、能够进行对数式与指数式的互化。

  (三)德育渗透目标:

  1、认识事物之间的相互联系与相互转化,

  2、用联系的观点看问题。

  六、教学重点与难点:

  重点是对数定义,难点是对数概念的理解。

  七、教学方法:

  讲练结合法八、教学流程:

  问题情景(复习引入)——实例分析、形成概念(导入新课)——深刻认识概念(对数式与指数式的互化)——变式分析、深化认识(对数的性质、对数恒等式,介绍自然对数及常用对数)——练习小结、形成反思(例题,小结)

  八、教学反思:

  对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,教材内容的处理收到了一定的预期效果,尤其是练习的处理,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。

  对于本教学设计,时间仓促,不足之处在所难免,期待与各位同仁交流。

数学教学设计4

  一、教学目标

  1、在初中学过原命题、逆命题知识的基础上,初步理解四种命题。

  2、给一个比较简单的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

  3、通过对四种命题之间关系的学习,培养学生逻辑推理能力

  4、初步培养学生反证法的数学思维。

  二、教学分析

  重点:四种命题;难点:四种命题的关系

  1、本小节首先从初中数学的命题知识,给出四种命题的概念,接着,讲述四种命题的关系,最后,在初中的基础上,结合四种命题的知识,进一步讲解反证法。

  2、教学时,要注意控制教学要求。本小节的内容,只涉及比较简单的命题,不研究含有逻辑联结词“或”、“且”、“非”的命题的逆命题、否命题和逆否命题,

  3、“若p则q”形式的命题,也是一种复合命题,并且,其中的p与q,可以是命题也可以是开语句,例如,命题“若,则x,y全为0”,其中的p与q,就是开语句。对学生,只要求能分清命题“若p则q”中的条件与结论就可以了,不必考虑p与q是命题,还是开语句。

  三、教学手段和方法(演示教学法和循序渐进导入法)

  1、以故事形式入题

  2、多媒体演示

  四、教学过程

  (一)引入:一个生活中有趣的与命题有关的笑话:某人要请甲乙丙丁吃饭,时间到了,只有甲乙丙三人按时赴约。丁却打电话说“有事不能参加”主人听了随口说了句“该来的没来”甲听了脸色一沉,一声不吭的走了,主人愣了一下又说了一句“哎,不该走的走了”乙听了大怒,拂袖即去。主人这时还没意识到又顺口说了一句:“俺说的又不是你”。这时丙怒火中烧不辞而别。四个客人没来的没来,来的又走了。主人请客不成还得罪了三家。大家肯定都觉得这个人不会说话,但是你想过这里面所蕴涵的数学思想吗?通过这节课的学习我们就能揭开它的庐山真面,学生的兴奋点被紧紧抓住,跃跃欲试!

  设计意图:创设情景,激发学生学习兴趣

  (二)复习提问:

  1.命题“同位角相等,两直线平行”的条件与结论各是什么?

  2.把“同位角相等,两直线平行”看作原命题,它的逆命题是什么?

  3.原命题真,逆命题一定真吗?

  “同位角相等,两直线平行”这个原命题真,逆命题也真.但“正方形的四条边相等”的原命题真,逆命题就不真,所以原命题真,逆命题不一定真.

  学生活动:

  口答:(l)若同位角相等,则两直线平行;

  (2)若一个四边形是正方形,则它的四条边相等.

  设计意图:通过复习旧知识,打下学习否命题、逆否命题的基础.

  (三)新课讲解:

  1.命题“同位角相等,两直线平行”的条件是“同位角相等”,结论是“两直线平行”;如果把“同位角相等,两直线平行”看作原命题,它的逆命题就是“两直线平行,同位角相等”。也就是说,把原命题的结论作为条件,条件作为结论,得到的命题就叫做原命题的逆命题。

  2.把命题“同位角相等,两直线平行”的条件与结论同时否定,就得到新命题“同位角不相等,两直线不平行”,这个新命题就叫做原命题的否命题。

  3.把命题“同位角相等,两直线平行”的条件与结论互相交换并同时否定,就得到新命题“两直线不平行,同位角不相等”,这个新命题就叫做原命题的逆否命题。

  (四)组织讨论:

  让学生归纳什么是否命题,什么是逆否命题。

  (五)课堂探究:“两条直线不平行,则同位角不相等”是否真?“若一个四边形的四条边不相等,则不是正方形”是否真?若原命题真,逆否命题是否也真?

  (六)课堂小结:

  1、一般地,用p和q分别表示原命题的条件和结论,用¬p和¬q分别表示p和q否定时,四种命题的形式就是:

  原命题若p则q;

  逆命题若q则p;(交换原命题的条件和结论)

  否命题,若¬p则¬q;(同时否定原命题的条件和结论)

  逆否命题若¬q则¬p。(交换原命题的条件和结论,并且同时否定)

  2、四种命题的关系

  (1).原命题为真,它的逆命题不一定为真。

  (2).原命题为真,它的否命题不一定为真。

  (3).原命题为真,它的.逆否命题一定为真。

  (七)回扣引入

  分析引入中的笑话,先讨论,后总结:现在我们来分析一下主人说的四句话:

  第一句:“该来的没来”其逆否命题是“不该来的来了”,甲认为自己是不该来的,所以甲走了。

  第二句:“不该走的走了”,其逆否命题为“该走的没走”,乙认为自己该走,所以乙也走了。

  第三句:“俺说的不是你(指乙)”其值为真其非命题:“俺说的是你”为假,则说的是他(指丙)为真。所以,丙认为说的是自己,所以丙也走了。

  五、作业

  1.设原命题是“若断它们的真假.,则”,写出它的逆命题、否命题与逆否命题,并分别判。

  2.设原命题是“当时,若,则”,写出它的逆命题、否定命与逆否命题,并分别判断它们的真假。

数学教学设计5

  教材分析

  1.与其他单元相比,本单元的视野更加宽广。课文均可堪称文化与语言的富矿,将把学生引向更为广阔、深邃的人文世界和五彩斑斓的语言王国。

  2.从内容上看,是文化巨人梁启超对人生与事业关系的宣讲;这篇课文在洋溢着激情的同时,蕴含着深刻的哲理。细细品读,将使学生对人生、事业、等问题有逐步深入的领悟与思考。学习本单元,在感受人类精英思想的闪光点得同时,更要体会不同文体的差异,品味不同场合、不同背景下口语运用的技巧。

  学情分析

  1.我所在学校在乡村,农村学生的学习基础较差、学习习惯差,学习的主动性、积极性不强。思维慢、课外阅读量小,特别是阅读能力和写作能力太差,个人的阅历及生活经验不足,对知识的迁移运用能力差。

  2.针对农村学生阅读能力差、知识基础差的特点、对于本节课主要教育学生,了解文章内容中的一个人的'职业选择,及如何对待职业的重要问题。理解文章的结构安排,体会层次分明、条例清晰的特点。

  3.分析文章的观点和材料是如何统一的。把握文章的论证结构,总结文章为证明论点运用哪几种论证方法、

  教学目标

  1.知识与技能

  (1)理解文章的中心论点,了解“敬业”与“乐业”的重要,以及怎样才能做到敬业和乐业。

  (2)理解这篇演讲词的结构安排,体会层次分明、条理清晰的特点。

  (3)体会语言表达通俗浅显、准确周密、生动有力的特点。

  (4)理解文章引用的材料和列举的事例。

  2过程与方法

  (1)在自读中学会圈点勾画,快速捕捉主要信息。

  (2)以小组讨论、个人感悟为主。

  3情感、态度与价值观

  了解“敬业”与“乐业”的重要,培养敬业与乐业的职业精神。

  教学重点和难点

  1.理解这篇讲演词的结构安排,体会层次分明、条理清晰的特点。

  2.体会语言表达通俗浅显、准确周密,生动有力的特点。

  教学过程

  教学环节

  教师活动

  预设学生行为

  设计意图

  一、导入新课

  二、简介作者

  三、指导学生阅读课文

  四、学习课文内容

  五、小结

  六、布置作业

数学教学设计6

  一、内容简介

  本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

  关键信息:

  1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。

  2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。

  二、学习者分析:

  1、在学习本课之前应具备的基本知识和技能:

  ①同类项的定义。

  ②合并同类项法则

  ③多项式乘以多项式法则。

  2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。

  三、教学/学习目标及其对应的课程标准:

  (一)教学目标:

  1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

  2、会推导完全平方公式,并能运用公式进行简单的计算。

  (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、方程、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、方程、不等式、函数等进行描述。

  (三)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

  (四)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解,能从交流中获益。

  四、教育理念和教学方式:

  1.教师是学生学习的组织者、促进者、合作者,学生是学习的主人,在教师指导下主动的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。教学是师生交往、积极互动、共同发展的过程。当学生迷路的时候,教师不轻易告诉方向,而是引导他怎样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

  2.采用“问题情景—探究交流—得出结论—强化训练”的模式展开教学。

  3.教学评价方式:

  (1)通过课堂观察,关注学生在观察、总结、训练等活动中的主动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

  (2)通过判断和举例,给学生更多机会,在自然放松的状态下,揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

  (3)通过课后访谈和作业分析,及时查漏补缺,确保达到预期的教学效果。

  五、教学媒体:

  多媒体

  六、教学和活动过程:

  〈一〉、提出问题

  [引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗? (2m+3n)2=_______________,(-2m-3n)2=______________, (2m-3n)2=_______________,(-2m+3n)2=_______________。 〈二〉、分析问题

  1.[学生回答] 分组交流、讨论

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特点。 (2)结果的项数特点。

  (3)三项系数的特点(特别是符号的'特点)。 (4)三项与原多项式中两个单项式的关系。 2.[学生回答] 总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。 3.[学生回答] 完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2.

  〈三〉、运用公式,解决问题 1.口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2.判断:

  ()① (a-2b)2= a2-2ab+b2 ()

  ② (2m+n)2= 2m2+4mn+n2 ()

  ③ (-n-3m)2= n2-6mn+9m2 ()

  ④ (5a+0.2b)2= 25a2+5ab+0.4b2 ()

  ⑤ (5a-0.2b)2= 5a2-5ab+0.04b2 ()

  ⑥ (-a-2b)2=(a+2b)2 ()

  ⑦ (2a-4b)2=(4a-2b)2 ()

  ⑧ (-5m+n)2=(-n+5m)2

  3.小试牛刀

  ① (x+y)2 =______________;

  ② (-y-x)2 =_______________;

  ③ (2x+3)2 =_____________;

  ④ (3a-2)2 =_______________;

  ⑤ (2x+3y)2 =____________;

  ⑥ (4x-5y)2 =______________;

  ⑦ (0.5m+n)2 =___________;

  ⑧ (a-0.6b)2 =_____________.

  〈四〉、学生小结

  你认为完全平方公式在应用过程中,需要注意那些问题?

  (1) 公式右边共有3项。

  (2) 两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  〈五〉、冒险岛:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m) 2 =__________________________________

  (3)(-0.5m+2n) 2=_______________________________

  (4)(3/5a-1/2b) 2=________________________________

  (5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

  (7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  〈六〉、学生自我评价

  [小结] 通过本节课的学习,你有什么收获和感悟?

  本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  〈七〉[作业]

  p34 随堂练习

  p36 习题

  七、课后反思

  本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用方法,以提高运算速度。授课过程中,应注重让学生总结公式等号两边的特点,让学生用语言表达公式的内容,由于语言缺陷的原因,这一点对聋生来说比较困难,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用,为完全平方公式第二节课的实际应用和提高应用做好充分的准备。

  1 . 教学内容精心组织,容量恰当,重点突出,体现内容的有效性、系统性和有序性;

  2 . 重视启发,活跃思维,方式、方法多样,选择适当;教学环节紧凑、合理;

  3 . 教学媒体使用适时、适量、适度、有效。

  4 . 教学结构组合优化,优质高效。

数学教学设计7

  一、案例实施背景

  教材为人教版义务教育课程标准实验教科书七年级数学(下册)。

  二、案例主题分析与设计

  本节课是人教版义务教育课程标准实验教科书七年级数学(下册)第五章第3节内容——5.3.1平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。

  《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以“生活?数学”“活动?思考”“表达?应用”为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。

  三、案例教学目标

  1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。

  2 .数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。

  3.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。

  4.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。

  四、案例教学重、难点

  1.重点:对平行线性质的掌握与应用。

  2.难点:对平行线性质1的探究。

  五、案例教学用具

  1.教具:多媒体平台及多媒体课件.

  2.学具:三角尺、量角器、剪刀。

  六、案例教学过程

  1.创设情境,设疑激思

  ⑴播放一组幻灯片。

  内容:①供火车行驶的铁轨上;②游泳池中的泳道隔栏;③横格纸中的线。

  ⑵提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?

  ⑶学生活动:针对问题,学生思考后回答——①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行。

  ⑷教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7.2探索平行线的性质(板书)。

  2.数形结合,探究性质

  ⑴画图探究,归纳猜想。

  教师提要求,学生实践操作:任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)

  教师提出研究性问题一:

  指出图中的同位角,并度量这些角,填写结果:

  第一组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第二组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第三组:同位角( )( ) 角的度数( )( ) 数量关系( )

  第四组:同位角( )( ) 角的度数( )( ) 数量关系( )

  教师提出研究性问题二:

  将图中的同位角任先一组剪下后叠合。学生活动一:画图—剪图—叠合—猜想学生活动二:画图—剪图—叠合—猜想让学生根据活动得出的数据与操作得出的结果归纳猜想:两直线平行,同位角相等。

  教师提出研究性问题三:

  再画出一条截线d,看你的猜想结论是否仍然成立?

  学生活动:探究、按小组讨论,最后得出结论:仍然成立。

  ⑵教师用《几何画板》课件验证猜想,让学生直观感受猜想

  ⑶教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)

  3.引申思考,培养创新

  教师提出研究性问题四:

  请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。

  教师活动:评价学生的.研究成果,并引导学生说理

  因为a∥b(已知)所以∠1=∠2(两直线平行,同位角相等)

  又∠1=∠3(对顶角相等)∠1+∠4=180°(邻补角的定义)

  所以∠2=∠3(等量代换)∠2+∠4=180°(等量代换)

  教师展示:平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)

  平行线性质3:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)

  4.实际应用,优势互补

  ⑴(抢答)课本P21 练一练

  1、2及习题5.3

  1、3.

  ⑵(讨论解答)课本P22 习题5.

  32、

  4、5.

  5.课堂总结:

  这节课你有哪些收获?

  ⑴学生总结:平行线的性质

  1、

  2、3.⑵教师补充总结:

  ①用“运动”的观点观察数学问题;(如前面将同位角剪下叠合后分析问题)。

  ②用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)。③用准确的语言来表达问题(如平行线的性质

  1、

  2、3的表述)。

  ④用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)

  6 .作业。学习与评价: P 2 3 6 ( 选择);P24

  7、12(拓展与延伸)。

  七、教学反思

  数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为“过程”不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得“情感、态度、价值观”方面的体验。这节课的教学实现了三个方面的转变:

  1.教的转变

  本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生“教”你他们活动的过程和通过活动所得的知识或方法。

  2.学的转变

  学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地“学”数学,而是深入地“做”数学。

  3.课堂氛围的转变

  整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。

  总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!

数学教学设计8

  这堂课给人的感觉是水到渠成,如沐春风,教师教得亲切,自然,活泼,学生学得轻松愉快,有以下优点值得我们学习:

  1、教学设计新颖别致,整堂课不觉得在学,而觉得是一堂套圈的活动课,学生是参与者,教师是评委,在玩中学,比生硬的说理更让人信服,更富有感染力,哪个学生不好玩,不好动?这堂课满足了学生的兴趣,所以气氛也相当的活跃,无疑,教学设计是成功的。

  2、教学流程生动,流畅,层次感强。如三次套圈,每次的目的都不同,第一次引出连加,第二次引出连加中的进位,教师并进行重难点引导,第三次是估算,也是在游戏中进行,为后来的`环节打下基础,最后,用600元钱买价格不同的动物娃娃,够不够?将连加运用到生活中,一气呵成,环环相扣,层层铺垫,教学环节相当严谨。

  3、学生真正成为了学习的主人。让学生动手实践,自主探究,合作交流,是新课标倡导的学习方式,这节课也把权力下放,教师只作点拔,成为活动的组织者,巧妙设疑,引导学生去发现问题,解决问题,拓展他们的解题思路,激活他们的思维,如套圈比赛,男女生竞争,提高了学生的主动参与的面和质量,让人觉得是学生在推波助澜,学生们自主合作完成了学习任务,有一点启发:只要教师放开你呵护的双手,就会发现,孩子也是一个发现者,研究者,探究者。

  几点建议:

  一、生活中处处有数学,能否多举几个例子;

  二、在学生上台套圈时,能否交给台下的同学一些任务,如让他们算结果等;

  三、课堂要有小结,但这堂课的小结过于匆忙,流于形式

数学教学设计9

  教学目标:

  (1)知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

  (2)过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

  (3)情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

  教学重难点:

  (1)重点:了解集合的含义与表示、集合中元素的`特性。

  (2)难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

  教学过程:

  【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?

  [设计意图]引出“集合”一词。

  【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

  [设计意图]探讨并形成集合的含义。

  【问题3】请同学们举出认为是集合的例子。

  [设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

  【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?

  [设计意图]区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。理解集合与元素的关系。

  【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有实数根”组成的集

  [设计意图]引出并介绍列举法。

  【问题6】例1的讲解。同学们能用列举法表示不等式x-7<3的解集吗?

  【问题7】例2的讲解。请同学们思考课本第6页的思考题。

  [设计意图]帮助学生在表示具体的集合时,如何从列举法与描述法中做出选择。

  【问题8】请同学们总结这节课我们主要学习了那些内容?有什么学习体会?

  [设计意图]学习小结。对本节课所学知识进行回顾。布置作业。

数学教学设计10

  教学目标:

  1、通过测量活动体验1分米的长度,培养学生的空间想象和动手能力。

  2、采用同桌合作、小组合作的学习方式,初步理解分米、厘米、米之间的关系。

  3、通过估、量的活动,发展估测能力。

  教学重难点

  1、体验1分米的长度。

  2、掌握长度单位之间的进率。

  3、建立1分米的长度概念。

  教学过程:

  一、创设情境,生成问题:

  让学生动手测量课桌的桌面的长、宽。

  1、两人为一组测量桌面的长、宽。

  2、全班交流。

  3、发现问题,提出问题。(引导学生发现量比较长的物体的长度用厘米、毫米作单位来测量不方便)

  师:看样子,米和厘米用在这里都不合适,怎么办呢?这时就需要一个新的长度单位来帮忙。这节课我们就来共同认识一个新的.长度单位。

  二、探索交流、解决问题。

  1、(出示小棒)这根小棒有多长呢?你能试着估一估它大约有多长吗?(学生汇报)

  2、量一量。

  (1)看来同学们的估测结果各不相同,那么这根小棒究竟有多长呢,你能想出有什么好的办法知道它的长度吗?(用尺子量)

  (2)动手实践。在你的桌子上就有一根和老师一样长的小棒,赶快行动量一量吧。

  3、学生汇报测量结果。

  4、让学生观察尺子,尺子上0刻度到刻度10之间的长度就是1分米,请学生数一数几厘米是1分米。板书:1分米=10厘米

  5、让学生找一找、比一比在我们身边,或在我们身上哪些物体的长度约是1分米。

  6、用手比划1分米有多长。

  7、闭上眼睛想一想1分米有多长。

  8、认识几分米。

  (1)在尺子上认识几分米。

  (2)出示教具让学生认识几分米。

  9、用分米量。

  量绳子的长度(让学生先估测,然后再测量)

  量完后学生汇报交流

  三、巩固应用、内化提高。

  1、练习一的第3题

  2、判断下列的说法是否正确,正确的打“ √ ”,错误的打“×”

  (1)一条裤子长9分米( )

  (2)一张床长5分米( )

  (3)小明高14分米( )

  (4)一支毛笔长2分米也就是20厘米( )

  3、填空:

  5分米=( )厘米=( )毫米30毫米=( )分米

  40毫米=( )厘米=( )分米2米=( )厘米

  四、课堂作业:

  1、口算:

  18÷3= 3400-300= 120+400= 21÷7=6×7= 45÷5=

  2、填空:

  3厘米=( )毫米( )厘米=5分米6分米=( )厘米

  100毫米=( )厘米( )分米=4米60毫米=( )厘米

  3厘米5毫米=( )毫米

  五、回顾整理、反思提升

  说说这节课你有什么收获?

  板书设计:

  分米的认识

  1分米=10厘米1米=10分米

数学教学设计11

  教学内容:

  义务教育新课程标准实验教科书数学第五册第70~71页。

  教学目标:

  1.学生掌握乘法估算的方法,会进行乘法估算。

  2.在解决现实问题的过程中,培养学生估算的意识和习惯;培养学生归纳概括、迁移类推以及应用所学知识灵活解决实际问题的能力。

  3.在估算的过程中,探索解决问题的策略,并能运用数学语言进行表述和交流;感受数学与生活的紧密联系,激发学生热爱数学、学好数学的情感。

  教学过程:

  一、猜数引入

  老师想了一个数,它是个两位数,你们猜它是几?(随着学生的猜测,教师用“大了”和“小了”提示)

  回忆刚才我们猜数的时候,是不是一下子就猜出来了呢?像刚才这种在老师提示下进行有根据的猜测,叫估计。其实,在我们的生活和学习中有很多地方要用到估计。

  [说明:课前的猜数游戏,学生兴趣盎然,为新课的引入做好了铺垫。]

  二、感受估计的需要

  1.今天的课堂上,除了老师和你们外,还来了你们的一些老朋友呢!(课件呈现8只机器猫)来了多少只机器猫?(当数量少的时候,我们一眼就可以看出来了)

  快数一数,这里有多少?(课件呈现满屏幕的机器猫,造成学生数不清的困难)

  2.这么多,一下子数不清,我们可以估一估呀!(学生第一次估的差距比较大,有1000、100、500、200等)

  师:怎样估计能精确些?

  生1:圈出一份估一估,然后再看有这样的几份。

  生2:给这些机器猫排排队。

  ……

  3.课件给机器猫排队,排成8行。(按先估每行大约有几只,然后乘8的方法估一估)

  4.师:机器猫每行有29只,排成8行,大约有多少只?该怎么列式?

  [说明:创设数机器猫只数的情境,分成以下几个层次进行教学:1.直接呈现数量较少的机器猫,学生一眼就可以观察得出;2.呈现很多机器猫,造成数不清的困难,引导学生感受估计的需要;3.由于眼花缭乱,第一次估计不精确;4.通过交流估计的方法,达到比较精确的估算。这样四个层次的教学,让学生主动感受和体验到了估算的必要性与作用。]

  三、交流估算的方法

  1.29×8大约等于多少?把你的想法,在练习本上表示出来。

  2.交流展示学生的估算方法。

  A.29×8≈240,把29看成30。

  (师介绍约等号的含义、写法和读法,并与等号进行比较)

  B.29×8≈160,把29看成20。

  C.29×8≈290,把8看成10。

  D.29×8≈300,把29看成30,把8看成10。

  ……

  [说明:给学生创设一个良好的心理环境,让他们的思考和情感得到完全的放松与充分的尊重,这样他们的想法和意见才得以尽情地流露与表述,不同的看法和结论才可以在一步步的表达中得到完善。学生在此出现了几种不同的方法,虽然有的方法还不恰当,但每个学生的思维和情感得到了发展,并在与他人方法的比较中感受到了不同估算方法的优越性和局限性。]

  3.这几种方法有什么相同的地方吗?

  4.同样是把因数看成整十数,但估出来的结果差距很大,这是什么原因啊?

  5.通过交流明确:应该把因数看成和它最接近的整十数再估算。(去掉29×8≈160)

  6.剩下的三个结果,哪个与准确值最接近?(课件演示每种估算方法)

  (A是多估了1个8,C是多估了2个29,D是多估了2个29和1个8;这里不需要向学生直接说明,只要让学生感受即可)

  小结:这几种方法都可以,同学们可以根据需要选择最合适的方法进行估算。

  7.全班42人,如果送给每人5只机器猫,估一估,这些机器猫够送吗?42×5≈200(只)

  和前面一题进行比较:29×8≈240(估大),42×5≈200(估小)。

  8.试一试。

  21×6≈ 48×5≈ 397×3≈ 510×7≈

  9.小结:我们在估算的时候,都是把这些乘法算式中的某个数看成整十、整百、整千的数,那是不是可以看成任意的'整十、整百、整千的数呢?(要看成接近的整十、整百、整千的数)

  四、拓展提升

  其实,在我们的生活中,有很多地方都和估算有很大的 联系。陆老师今年暑假的北京之游就碰到了很多和估算有关的知识,让我们以数学的眼光去看看吧!

  第一站:长城

  长城离陆老师所住的宾馆有点远,汽车每小时行驶53千米,3小时才到达,长城离宾馆大约有()千米。

  第二站:美丽的北海公园

  告示:每条大游船限乘120人。

  正好有4个旅游团,每个团有31人,估算一下,他们能同时上一条船吗?

  [说明:此题引发了学生的争论:约等于120,却为什么不能上船?出现认知上的矛盾,学生通过争论后,明白把31看成30是估小了,所以结果也比准确值小了。在这个过程中,学生懂得了估算和精确计算之间是有误差的,在运用估算结果来解决实际问题时,还必须考虑现实情况。]

  比较:31×4○120(让学生明白估算的另一个用途)

  第三站:天坛公园

  每张门票8元,陆老师所在的旅游团共有39人,320元钱够买门票吗?

  为什么同样是估算,刚才不能上船,而现在买门票却又够了呢?

  学生通过辨析比较发现,刚才是估小了,而现在是估大了,所以够了。

  比较:39×8○320

  第四站:购买北京特产

  每种特产,老师准备都买8份,请你们帮助我算一算,大约要花多少元钱?

  反馈:1.(58+11+33)×82.58×8+11×8+33×8

  ≈(60+10+30)×8 ≈60×8+10×8+30×8

  =800(元) =800(元)

  比较两种方法,哪种简单?想一想,老师大约带多少钱就够了?(让学生明白估算还可以为我们的生活提供帮助)

  说明:

  《数学课程标准》指出,“估算在日常生活与数学学习中有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值”。而学生估算习惯的培养与能力的提高,很大程度上取决于教师的估算意识。在平时的教学中,我充分挖掘估算题材,重视进行估算示范,使学生认识到估算的必要性和优越性,并关注估算在培养学生逻辑思辨、辩证看待问题能力上的作用。

  1.大胆改变教材内容,使学生产生估算的需要,体验估算的现实性。

  乘法的估算,学生以前并没有接触过。在这节课上,我根据学生的实际情况,把教材的内容做了一些调整,将学生已有的经验和所学习的新内容自然地融合到一起,并通过现实问题,让学生明白估算的必要性。与此同时,课中所设计的一系列练习,都是学生在实际生活中会碰到的现实问题,并具备用估算解决的现实需要,因而整节课都能让学生感受到浓厚的生活味。

  2.深入挖掘教材内涵,让学生体验数学课堂的思辨性。

  成功的数学课,既能将复杂的问题简单化,也能将简单的问题深化。“乘法估算”一课,教师们都会想到要让学生体验估算的“必要性”,设计的学习素材要富含现实气息,但仅仅停留在这个层面上是不够的。如果深入研究教材我们就可以发现,在现实运用估算的过程中,分为两种情形:一是根据估的结果就可以解决相关问题;二是因为估的结果有时估大有时估小,单凭估出来的数据并不能直接准确地回答所要解决的问题,即还需结合现实情况进行考量。我在教学中充分考虑了这些情况,精心设计情境,让学生在情境中体验到“估大”、“估小”的情况及如何运用这样的结果解决问题,同时穿插比大小的训练,从而将现实性、思辨性较好地统一起来。

数学教学设计12

  一、学习目标

  1了解相反数的概念。

  2给一个数,能求出它的相反数。

  3根据a的相反数是-a,能把多重符号化成单一符号。

  二、教学过程

  师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。

  生:人人动用手画数轴,独立思考后,在小组内进行交流。

  师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。

  师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。

  生:阅读课本第59页,并完成练习一第(1)~(4)题。

  师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的一部分。

  师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。

  师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的.学生,要重点对待。

  生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。

  师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)

  生:小结。完成习题1.3 中的有关练习。

  练习

  1在下列各式中分别填上适当的符号,使等号左右两端的数相等;

  -(+19)=____________19;

  ____________10.2=+(+10.2);

  ____________(+12)=-12;

  ____________(-25)=+25。

  2把下面的多重符号化成单一符号:

  -[-(-0.3)]= ____________;

  -[-(+4)]= ____________;

  +[+(+5)]= ____________;

  -[+(-50)]= ____________。

  3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。

  4下面的说法对不对?请举列说明。

  (1)一个有理数的相反数的相反数就是这个有理数本身。

  (2)一个有理数的相反数一定比原来的有理数小。

  (3)-a是一个负数。

  作业

  在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。

数学教学设计13

  教学对象:小学高年级学生。

  教学活动目标:

  1、通过活动培养学生学习数学的兴趣;

  2、提高学生的文学能力,加强数学与文学的联系,体现学科间的互通性与相联性;

  3、培养学生的联想、迁移能力,发展学生智力。

  教学准备:诗词、谜语、题卡。

  教学过程:

  (一)引入:数学是一门重要的'工具学科,日常生活中处处都涉及到数学知识。从平时的观察中,我发现同学们有偏科现象,有些同学偏爱语文,有些同学偏爱数学。其实,数学与文学有着非常密切的联系,这节课我们一起来研究数学知识在文学中的妙用。

  (二)数学知识在诗词文学中的妙用:

  出示诗二首:

  ①一去三四里,烟村四五家;

  门前六七树,八九十枝花。(乡村景色)

  ②一片两片三四片,五片六片七八片;

  九片十片无数片,飞入梨花都不见。(形容雪花纷飞)

  (1)问:诗中共有几个数字,从诗中我们可想象出什么?诗中的十个数字体现了怎样的意境?

  (2)指出:两首诗都用了1~10这十个数字,巧妙入诗,成为千古佳句。

  (三)数字成语:

  我国文化源远流长,四字成语之多,当居世界第一。尤其值得指出的是,许多成语、口语中都镶嵌了数目字,所占比例非常大。看来,数字与中国人特别投缘。下面我们利用成语、常用语中涉及的数字,做一做巧妙的计算游戏。

  1、在( )里填数字,组成数,按规定进行计算。

  如:(十)拿(九)稳-(七)上(八)下=(三)位(一)体

  算式:109-78=31

  分组竞赛:(在规定时间内全体同学操作,看哪一组组员做对的总题数最多。)

  ①( )光( )色×铁价不( )=( )货公司

  算式:

  ②( )年青÷( )合花=( )花齐放

  算式:

  ③( )刀( )断×( )字经=( )头( )臂

  算式:

  ④( )嘴( )舌×( )视同仁=( )上( )下

  算式:

  ⑤( )万火急×( )指连心=( )万富翁

  算式:

  ⑥( )( )生肖×连升( )级=( )( )( )计

  算式:

  ⑦( )年树木×( )年树人=各有( )秋

  算式:

  ⑧( )面威风×( )窍生烟=( )颜( )色

  算式:

  ⑨( )霄云外-( )见如故=( )面玲珑

  算式:

  ⑩( )令( )申+( )波( )折=( )通( )达

  算式:

  2、根据等式填成语或口语。

  如:算式:78+23=101

  成语:(七)上(八)下+(两)面(三)刀=(百)无(一)失

  (1)分组竞赛:(比一比哪组做得又对又快。结束后小组间互相交换,评价答案是否可行。)

  ①算式:48-36=12

  成语:

  参考答案:(四)平(八)稳-(三)头(六)臂=(一)刀(两)断

  ②算式:9+1001=1010

  成语:

  参考答案:(九)霄云外+(千)钧(一)发=(十)全(十)美

  (2)每个小组出一道类似的题目(必须先拟定参考答案),指名考一考另一小组。

  (答对的加1分,答不上的扣1分:由出题的小组出示答案,并加1分。)

  3、分别用“一”至“十”10个数字为头,写出十个成语。

  一( );二(两)( );

  三( );四( );

  五( );六( );

  七( );八( );

  九( );十( )。

  (每对一个,计一分)

  (四)数学谜语:

  导入:数学与文学之间还有一些很有趣的联系,如数学谜语,既可以由数字想象出文字,又可以根据文字的意思联想到数学名词。

  抢答:

  (1)7/8(猜一成语)七上八下

  (2)并肩前进(猜一数学名词)平行

  (3)0.30元(猜一数学名词)三角

  (4)七天七夜(猜一图形长度)周长

  (5)两牛相斗(猜一几何名词)对角

  (6)2~9999(猜一成语)万无一失

  (7)7分钟+8分钟=1000元(猜一成语)一刻千金

  (8)10002=100×100×100(猜一成语)千方百计

  (五)小结评价:数学在生活、学习和其它学科领域中的应用广泛,起着其它学科不可替代的作用。善于应用数学知识,才能使人类智慧得以提升。在今天的活动中,同学们思维敏捷,拓宽了视野,开阔了眼界,相信在今后的学习中会更投入,取得更好的成绩,能做到吗?(激起学生学习的热情!)

  (六)课外拓展作业:寻找生活中除文学外,数学知识在其它方面的应用。

数学教学设计14

  活动目标:

  1、看图片和模仿动作等不同方式来感知四项循环的规律性。

  2、学习推测事物排列规律并补排或续排,培养幼儿观察力和初步的推理能力。

  活动准备:

  蜈蚣、小白兔的图片

  活动过程:

  一、复习三项循环。

  1、观察袜子的规律。

  教师:瞧,刘老师今天带来什么?你们认识吗?(蜈蚣)仔细看看有什么特征?(有好多脚,每只脚上穿的袜子颜色都不一样)蜈蚣阿姨穿袜子特别的讲究,它穿的袜子都是有规律穿的,我们一起来看看它的袜子有什么规律?

  教师小结:原来蜈蚣阿姨的`袜子都是按红黄蓝的规律穿的。

  2、找出穿错的袜子。

  教师:有一天啊,蜈蚣阿姨生病了,小白兔帮忙照顾,小白兔帮蜈蚣妈妈穿袜子,我们看看小白兔为蜈蚣妈妈穿的袜子怎么样?(教师出示蜈蚣妈妈的袜子,请个别幼儿回答并操作)

  二、模仿小白兔跳舞的动作,在动的过程中逐步感知动作的四项循环规律。

  1、教师示范动作,引导幼儿发现动作的规律。

  教师:小白兔帮助蜈蚣妈妈感觉特别的开心就跳起了舞蹈,我们看看小兔的舞蹈是怎么跳的?(三种动作的交替循环规律)

  教师小结:小兔原来是拍手、打开、上举、拍手、打开、上举。

  2、发现四项规律。

  教师:老师还可以加一个动作来跳这个舞,瞧,拍手、打开、上举、上举……老师多加了哪个动作?现在老师的跳的舞变成了什么规律?你们发现是什么规律了吗?我们一起来跳跳。

  3、请你们想一想,我们还可以做什么样的动作来表示这个循环规律呢?(引导幼儿用拍手或跺脚等方式创编动作表示四项循环的规律:前面两个动作不与后面两个动作相同,鼓励幼儿大胆创编符合这个规律的动作)

  教师小结:我们可以按照规律变不同的动作。

  三、观察项链的规律。

  教师:小白兔的舞蹈跳的可真好,所以呢,刘老师想设计一条项链送给它,可是项链还没有设计完,请小朋友来帮忙完成,先来说说项链是怎么排列的?遮挡住的部分要怎么排列?

  教师小结:项链是按照一定的规律排列的,所以我们在完成的时候,先找出规律,再来完成。

  活动延伸:孩子们在生活中找找还有什么是有规律的,下次课请孩子们告诉老师。

数学教学设计15

  教学目标

  1、使学生借助直观图,利用集合的思想方法解决简单的实际问题。

  2、让学生进一步感知集合图的价值,培养学生用不同的方法解决问题的意识。

  3、培养学生善于观察、善于思考、养成良好的学习习惯。

  4、使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。

  教学重点

  进一步感知集合图的价值,培养学生用不同的方法解决问题的意识。

  教学难点

  培养学生善于观察、善于思考,养成良好的学习习惯。

  教具

  准备课件。

  教学过程

  教学设计个性化调整或反思

  一、创设情境,激趣导入。

  师:上节课学习的借助集合图分析问题的方法你学会了吗?有什么感想?

  生:用画图的方法解决问题更容易理解。

  师:今天我们就一起来看看大家掌握的情况怎么样。

  二、探究体验,经历过程。

  师:阅读下面的文字,说说你知道了什么》(出示第107页第6题)

  生:知道了3个小朋友比赛写出带“春”字的成语的个数分别是多少。

  师:读完题,你觉得怎么样呢?

  生:这道题的信息很多,有点乱。

  师:对于这样的问题,你想怎样分析解答呢?

  生:也许画图可以帮助我们分析题意吧。

  师:用你喜欢的方法分析理解之后尝试解答。

  学生尝试独立解答问题,教师巡视了解情况。

  组织学生交流。

  求小刚和小佳一共写出多少个成语,首先要找出与这两个人所写成语有关的条件:“小刚写出了15个,小佳写出了8个”,且“小佳写出的8个成语小刚都写出来了”,可以画图表示为......

  所以小刚和小佳一共写出的成语个数是15个。

  要求小刚和小红一共写出了多少个成语,同样首先要找出与这两个人所写成语有关的条件:“小刚写出了15个成语”,“小红写出了10个”,且“小红写出的成语中有5个小刚也写出来了”。也就是说他们两人写出的成语中有5个是重复的',可以画图表示为......

  所以说小刚和小红一共写出的成语个数是15+10-5=20(个)。

  ……

  对于解答正确的学生给予表扬鼓励。

  师:通过练习题的解答,你受到了什么启发?

  生:面对很多信息时要思考清楚了再列式计算。

  三、总结提升。

  师:在今天的学习中,你有什么收获?

  四、课堂作业。

  1、同学们排队做操,小明排在从前数第9个,从后数第7个,小明这一排一共有多少个同学?

  2、三年级一班的50个同学中,每人至少喜欢一门课程,喜欢数学的有37人,喜欢语文的有35人,那么这个班级喜欢语文又喜欢数学的有多少人?

【数学教学设计】相关文章:

数学的教学设计12-27

数学教学设计03-29

数学面积的教学设计06-05

小学数学教学设计06-13

《时间与数学》教学设计07-06

数学教学设计模板07-24

数学教学设计及反思07-27

初中数学教学设计03-08

初中数学教学设计03-24

小学数学教学设计06-14