三角形的面积教学设计

时间:2024-04-29 20:52:37 教学设计 我要投稿

三角形的面积教学设计

  作为一名无私奉献的老师,时常需要准备好教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。怎样写教学设计才更能起到其作用呢?以下是小编为大家整理的三角形的面积教学设计 ,仅供参考,大家一起来看看吧。

三角形的面积教学设计

三角形的面积教学设计 1

  教学目标:

  1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算.

  2.培养学生观察能力、动手操作能力和类推迁移的能力.

  3.培养学生勤于思考,积极探索的学习精神.

  教学重点:理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:理解三角形面积公式的推导过程.

  教学过程:

  一、激发

  1.出示平行四边形

  提问:

  (1)这是什么图形?计算平行四边形的面积我们学过哪些方法?学生总结并回答前面学过的内容。(数表格的方法,割补法,直接测量底和高进行计算等等)

  师总结:平行四边形面积=底×高

  (2)底是2厘米,高是1.5厘米,求它的面积。

  (3)平行四边形面积的计算公式是怎样推导的?

  2.出示三角形。三角形按角可以分为哪几种?

  3.既然平行四边形都可以利用公式计算的方法,求它们的面积,三角形面积可以怎样计算呢?(揭示课题:三角形面积的计算)

  教师:今天我们一起研究“三角形的面积”(板书)

  二、指导探索

  (一)推导三角形面积计算公式。

  1、师出示情境图,提出问题:三角形的面积你会求吗?图中的几位同学它们在讨论什么?你有什么好办法吗?(学生讨论,拿出学具分小组讨论)

  分析:如果我们不数方格,怎样计算三角形的面积,能不能像平行四边形那样,找出一个公式来?

  2、三角形与平行四边形不同,按角可以分为三种,是不是都可以转化成我们学过的图形。我们分别验证一下。(学生自己发现规律,教师出示场景二)

  3、启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  4、用直角三角形推导

  (1)用两个完全一样的直角三角形可以拼成哪些图形?学生自由拼图。

  (2)拼成的.这些图形中,哪几个图形的面积我们不会计算?

  (3)利用拼成的长方形和平行四边形,怎样求三角形面积?

  (4)小结:通过刚才的实验,想一想,每个直角三角形的面积与拼成图形的面积有什么关系?(引导学生得出:每个直角三角形的面积等于拼成的平行四边形面积的的一半。)

  5、用锐角或者钝角三角形推导。

  (1)两个完全一样的锐角三角形能拼成平行四边形吗?学生试拼。引导学生得出:两个完全一样的锐角三角形也可以拼成平行四边形。

  (2)刚才同学们都把两个完全一样的锐角三角形,拼成了平行四边形,(教师边演示边讲述边提问)对照拼成的图形,你发现了什么?(学生自主拼图)引导学生得出:每个锐角三角形的面积等于拼成的平行四边形面积的一半。

  (3)两个完全一样的钝角三角形能用刚才的方法来拼吗?学生实验,教师巡回指导。

  问题:通过刚才的操作,你又发现了什么?

  引导学生得出:每个钝角三角形的面积等于拼成的平行四边形面积的面积的一半

  6、归纳、总结公式。

  (1)通过以上实验,同学们互相讨论一下,你发现了什么规律?

  (2)汇报结果。

  引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的一半。

  ③这个平行四边形的底等于三角形的底。

  ④这个平行四边形的高等于三角形的高。

  7、提问并思考,强化推导过程:三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  三角形面积=底×高÷2

  8、教学字母公式。

  引导学生回答:如果用S表示三角形面积,a和h分别表示三角形的底和高,三角形的面积公式也可以用字母表示为:

  (二)、应用

  1、教学例题:

  红领巾分底是100cm,高33厘米,它的面积是多少平方厘米?

  ①读题。理解题意。

  ②学生试做。指名板演。

  ③订正。提问:计算三角形面积为什么要“除以2”?

  2、完成做一做

  三、质疑调节

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:

  (1)要求三角形面积需要知道哪两个已知条件?

  (2)求三角形面积为什么要除以2?

  四、反馈练习

  (一)填空

  (1)一个三角形的底是4分米,高是30厘米,面积是x平方分米。

  (2)一个三角形的高是7分米,底是8分米,和它等底等高的平行四边形的面积是x平方分米。

  (3)一个三角形的面积是4.8平方米,与它等底等高的平行四边形的面积是x

  (4)一个三角形的面积比它等底等高的平行四边形的面积少12.5平方分米,平行四边形的面积是x平方分米,三角形的面积是x平方分米。

  (5)一个三角形和一个平行四边形的面积相等,底也相等,如果三角形的高是10米,那么平行四边形的高是x米;如果平行四边形的高是10米,那么三角形的高是x米。

  (二)判断

  1、一个三角形的底和高是4厘米,它的面积就是16平方厘米。(×)

  2、等底等高的两个三角形,面积一定相等。(√)

  3、两个三角形一定可以拼成一个平行四边形。(×)

  4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。x

  (5)两个面积相等的三角形可以拼成一个平行四边形。(×)

  (6)等底等高的两个三角形,面积一定相等。(√)

  (7)三角形面积等于平行四边形面积的一半。(×)

  (8)三角形的底越长,面积就越大。(×)

  (9)三角形的底扩大2倍,高扩大3倍,面积就扩大6倍。(√)

  五、作业:85页做一做和练习十六第1、2、3、4题

  板书设计:

  三角形面积的计算

  因为:平行四边形的面积=底×高,例1… …

  三角形面积=拼成的平行四边形的一半,100×33÷2=1650(cm)

  所以三角形面积=底×高÷2

  S=ah÷2

三角形的面积教学设计 2

  一、教学内容:人教版小学五年级上册教科书P91内容及P92内容。

  二、学习目标:

  知识与技能:探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,从而发展学生的空间观念和初步的推理能力。

  情感态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  三、教学重难点:

  教学重点:探究并掌握三角形的面积计算公式,能正确计算三角形的面积。

  教学难点:理解三角形面积计算公式的推导过程。

  四、教学准备:

  课件、三角形纸片、剪刀等。

  五、教学过程:

  一、复习引入

  亲爱的同学们,我们既熟悉,又让我们感到神秘的数学丰富着我们对世界的认识,数学中的数,让我们对生活中的事物的有了量的认识,而形则描绘出了我们美丽世界中物的形状。

  让我们一起回忆一下,我们学过哪些图形的面积?它们是如何计算的?

  其中平行四边形的面积是我们上节课学习的。谁来说说我们是怎样推导出平行四边形面积的计算公式的?

  通过割补等方法把求新学习的平行四边形的面积转化为求已学过的图形的面积?回想一下平行四边形的面积和它的什么有关?它的面积公式是?S=ah

  今天就让我们一起来学习这些平面图形中的三角形的面积。谁来说说我们都学过有关三角形的哪些知识?一起回顾一下三角形的底和高。猜一猜它的面积可能跟什么有关呢?我们能否也通过把它也转化成我们学过的图形来研究呢,让我们一起探究它的面积吧。

  二、新课探究

  请同学们通过操作手中的图形(拼一拼、折一折或者剪拼的方法,看是否把它也转化成我们学过的图形,进而得到三角形的面积公式?)看是否能求出三角形的面积计算公式。

  请先看操作要求。

  操作要求:

  1.前后两排4人小组开展活动,先商讨怎么操作可以求出三角形的面积。

  2.按照商讨的方案,动手操作,验证商讨方案。

  3.根据操作过程,组内说清楚怎么操作的',怎么得到三角形的面积计算方法。

  现在请带着这样几个问题开始操作吧。

  问题:

  1.你们用两个怎样的三角形拼图?能拼出什么图形?

  2.拼出的图形的面积你会算吗?

  3.拼出的图形与原来的三角形有什么联系?

  请各小组选派一名同学来说一说。

  让学生按照问题去说,一边说一边指着图形。

  现在的长方形的长和原来的三角形的底有什么关系?现在的长方形的长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中长和底相等,宽和高相等。

  拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。

  拼成的平行四边形的底和原来的三角形底有什么关系?平行四边形的高和三角形的高又有怎样的关系?引导学生感受平行四边形和三角形是等底等高的。再次让学生感受拼成的平行四边形和三角形底和高之间的关系。

  拼成的正方形的边长和原来的三角形的底有什么关系?现在的正方形的另外一条边长和原来的三角形的高又有怎样的关系?初步给学生建立长方形和三角形中一条边长和底相等,另外一条边长和高相等。

  同学们那你们现在能得出三角形的面积计算公式吗?

  大家有说三角形的面积公式为底×高÷2,也有人说为长×宽÷2,还有人说是边长×边长÷2,同学们你们觉得用哪个更合适呢?

  这里长方形、正方形和平行四边形之间是什么关系?是的,它们是特殊的平行四边形,所以三角形的面积公式应该是底×高÷2,用字母表示为:S=ah÷2。

  同学们现在你们知道三角形的面积该怎么计算了吗?

  那现在老师考考大家。

  三、巩固练习

  请同学们认真审题,仔细计算,这个三角形的底和高分别是几?它的面积应该怎么算?看看谁算得又对又快。

  同学们你们看,这是代表我们是少先队员的红领巾,它是什么形状?那它的面积你会计算吗?大家快速计算。

  同学们真棒,会计算红领巾的面积了。

  看来大家掌握地还不错,那同学们老师再考考大家一点简单的。

  二.我会填

  (1)、一块三角形草地,底边是3.6米,高是5米,它的面积是多少平方米?

  (2)、一个三角形的面积是16平方厘米,与它等底等高的平行四边形的面积是()平方厘米。

  三.我是小法官。(对的打“?”,错的打“×”)

  (1)两个直角三角形一定可以拼成一个长方形。

  (2)两个三角形的面积相等,形状一定也相同。

  (3)一个三角形的底不变,高扩大到原来的3倍,面积也扩大到原来的3倍。

  同学通过刚才的练习,你认为在求三角形的面积时需要注意什么呢?

  四、课堂小姐

  同学们,通过这节课的学习你有什么收获?

  同学们如果只有一个三角形,你能通过什么方法求出它的面积公式呢?老师这里还有一些方法,你们想知道吗?大家请看。

  同学们你们看一个问题可以用不同的方法去解决,老师希望同学们以后碰到问题,也可以勤思考,用不同的方法去解决。

  今天的课就上到这,同学们再见。

  六、布置作业:数学课本第93页习题。

  七、板书设计:三角形的面积

  学生作品展示

  三角形的面积公式:S=ah÷2

  教学反思:在本节课教学中,刚开始引入回顾平行四边形学生都很积极地参与其中,对于新课内容在讲的过程中,在小组探讨的过程中,学生大部分都积极地参与到讨论中,在结论展示的过程中,因为第一个孩子对分发的图形是什么有点不清楚,所以在讲述中出现了问题,孩子也一下紧张起来,后面的讲述就有点少,对于等底等高的渗透地不够深入,后期练习中需要加强。

三角形的面积教学设计 3

  教学内容:三角形的面积第84-85页

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:

  理解三角形面积计算公式,正确计算三角形的面积.

  教学难点:

  在转化中发现内在联系及推导说理。

  学具准备:

  每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。

  教学过程

  复习导入:

  1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?

  指名说一说,师可再现推导过程。

  2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。

  二、探究三角形的面积公式.

  1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

  2.用两个完全一样的直角三角形拼.

  (1)教师参与学生拼摆,个别加以指导

  (2)演示课件:拼摆图形

  (3)讨论

  ①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?

  ②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?

  3.用两个完全一样的锐角三角形拼.

  (1)组织学生利用手里的学具试拼.(指名演示)

  (2)演示课件:拼摆图形(突出旋转、平移)

  教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

  4.用两个完全一样的钝角三角形来拼.

  (1)由学生独立完成.

  (2)演示课件:拼摆图形

  5.讨论:

  (1)两个完全相同的三角形都可以转化成什么图形?

  (2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

  (3)三角形面积的计算公式是什么?

  6、引导学生明确:

  ①两个完全一样的三角形都可以拼成一个平行四边形。

  ②每个三角形的面积等于拼成的平行四边形面积的.一半。(同时板书)

  ③这个平行四边形的底等于三角形的底。(同时板书)

  ④这个平行四边形的高等于三角形的高。(同时板书)

  (3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)

  板书:三角形面积=底×高÷2

  (4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?

  7.教学例1

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  1.由学生独立解答.

  2.订正答案(教师板书)

  三、总结:

  (一)总结这一节课的收获,并提出自己的问题.

  (二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?

  四、反馈练习

  计算下面每个三角形的面积.

  1.底是4.2米,高是2米;

  2.底是3分米,高是1.3分米;

  (三) 判断

  一个三角形的底和高是4厘米,它的面积就是16平方厘米。( ) 2、等底等高的两个三角形,面积一定相等。 ( )

  3、两个三角形一定可以拼成一个平行四边形。 ( )

  4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

  板书设计

  三角形的面积

  平行四边形的面积=底×高,

  三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)

  三角形面积=底×高÷2

  S=ah÷2

三角形的面积教学设计 4

  教学内容:第75页及练习十八1-4题

  教学要求:

  1、理解三角形面积公式的推导过程,并能正确地运用公式计算三角形的面积。

  2、通过教学培养学生分析、推理能力和实际操作能力,发展学生的空间观念。

  3、在指导操作过程中,引导学生运用转化的方法探索规律。

  教学重点:三角形面积计算公式的推导。

  教学难点:理解公式中除以2的道理。

  教具:准备三种类型的三角形,每种2个完全一样,投影片若干。

  学具:完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形。

  教学过程:

  一、复习铺垫

  1、提问:谁能说说长方形、平行四边形的面积计算公式是怎样的?

  2、(幻灯出示)口答:计算图形面积

  二、导入新课

  幻灯出示一个三角形

  提问:它是一个什么图形?

  它的底和高分别是多少?

  它的面积怎样算呢?板书课题:三角形面积的计算。

  三、讲授新课

  (一)、用数方格的方法计算三角形的`面积。

  幻灯出示课本第75页上面的图,教师说明不够一格的都按半格算。让学生说出它们的底和高各是多少?面积是多少?

  得出用数方格的方法计算三角形的面积不准确,又很麻烦。

  质疑:怎样计算三角形的面积呢?

  (二)、通过操作总结三角形的面积计算公式。

  1、从直角三角形推导。

  我们能不能把三角形转化成已经学过的图形,再进行计算面积呢?

  (1)让学生动手拼,教师将学生拼出的图形一一展示出来。

  (2)这些图形中哪些图形的面积你们会算?

  (3)每个直角三角形的面积与拼成的长方形和平行四边形的面积有什么关系?

  教师重述:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半。

  2、从锐角三角形推导。

  (1)让学生试拼,可以相互讨论。

  (2)教师指导,突出旋转和平移。

  (3)每个锐角三角形的面积与拼成的平行四边形的面积有什么关系?

  教师强调:每个锐角三角形的面积是拼成的平行四边形面积的一半。

  3、从钝角三角形推导。

  (1)学生操作。

  (2)每个钝角三角形的面积与拼成的平行四边形的面积有什么关系?

  4、归纳总结规律。

  通过以上实验可以看出:两个完全一样的三角形,不论是直角三角形、锐角三角形、钝角三角形都可以拼成一个平行四边形。大家想想:

  (1)这个平行四边形的底与三角形的底是什么关系?高又怎么样?

  (2)这个平行四边形的面积和三角形的面积有什么关系?

  得出:三角形的面积=底×高÷2

  (3)如果用S表示三角形面积,用a和h分别表示三角形的底和高,那么三角形的面积计算公式用字母怎么表示呢?

  板书:S=ah÷2

  (三)、运用面积公式计算三角形的面积。

  1、出示数方格求面积图:谁能用公式计算方格图上的三个三角形的面积?三个三角形的面积为什么都相等?

  2、出示例题让学生试做。

  说一说计算三角形面积为什么要除以2?

  3、看书质疑。

  4、做一做书本第77页

  四、课堂小结

  提问:1、这节课我们主要研究什么?

  2、求三角形的面积有几种方法?哪一种求面积的方法更方便,更准确?

  3、要求三角形面积必须知道什么?怎样求?

  五、巩固练习

  练习十八1、3(1)

  六、课堂练习

三角形的面积教学设计 5

  一、教学内容

  《义务教育教科书(五·四学制)·数学(四年级下册)》22~23页。

  二、教学内容

  1、掌握三角形的面积计算公式,并能正确计算三角形的面积。

  2、经历探索三角形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。

  3、能运用三角形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。

  三、教学重点

  探究三角形面积的计算方法。

  四、教学难点

  把三角形转化成平行四边形,探究平行四边形与三角形之间的关系,推导三角形面积的计算公式。

  五、教学准备

  三角形卡片、多媒体课件。

  六、教学过程

  (一)创设情境,提供素材

  师:同学们,这节课,让我们一起走进生产车间,看看工人制作标志牌的场景。

  课件出示图片。(见图1)

  师:你想提出什么数学问题?

  预设:制作这个标志牌需要多少平方分米的铝皮?

  师:标志牌是一个什么图形?

  预设:三角形。

  师:那么求这块标志牌的面积也就是求什么的面积?

  预设:求三角形的面积。

  师:今天我们就来研究三角形的面积。

  教师适时板书:三角形的面积。

  设计意图:

  从学生容易感兴趣的情境问题入手,激发学生的好奇心、求知欲,使学生积极投入到探索性的数学活动中。

  (二)积极思考,引导猜想

  师:三角形的面积是什么?谁来猜猜看?

  预设1:底乘高。

  预设2:三边相乘。

  师:那你们想怎么来研究它?

  预设:把它转化成以前学过的图形。

  师:你怎么想到用转化?

  预设1:因为三角形没学过,转化成以前学过的图形就能研究了。

  预设2:我们上节课学习平行四边形的`时候用的就是转化的思想。

  师:转化后再怎么研究?

  预设1:看转化后的图形和原来三角形之间的关系。

  预设2:根据关系推导出三角形面积计算公式。

  预设3:我们研究平行四边形的时候就是这样研究的。

  师:你们真是很有想法!想到用研究平行四边形面积的方法来研究三角形的面积。老师帮你们把你们提出的这个研究思路梳理一下。

  设计意图

  学生经过大胆地猜测,好奇心被激发起来,自觉运用知识进行迁移,由于之前刚刚学完平行四边形的面积,学生充分经历的推导过程,学生自然会想到“转化”的数学思想方法。

  (三)操作验证,总结公式

  师:在学习材料包里有好多三角形,下面我们来同桌合作,根据这个思路来研究研究看,开始吧。

  学生活动,教师搜集不同素材。

  师:哪个小组愿意先上来汇报一下你们的研究成果?

  小组为单位上台汇报锐角、直角、钝角三角形的研究成果。

  师:老师发现,你们的想法不谋而合,都是把三角形转化成了平行四边形。在操作的时候,我们可以将两个完全一样的三角形重合,其中一个绕顶点旋转180度后平移,就能得到平行四边形。

  课件适时展示旋转过程。

  师:那是不是所有的三角形都有这样一个关系呢?

  预设:按角分,三角形可以分成这三类,经过研究我们发现这三类三角形都是与它等底等高的平行四边形面积的一半。这三类三角形都符合,我们就不需要再验证了。

  师:那我们可以得到结论了吗?

  学生回答,教师适时板书:三角形的面积=底×高÷2

  师:如果三角形的面积用S表示,底用a表示,高用h表示,怎么用字母来表示?

  学生回答,教师适时板书:S=ah÷2

  师:对于三角形的面积公式,你有什么要问的吗?

  预设:为什么要除以2?

  师:哪位同学能帮着回答一下?

  预设:我们是用两个完全一样的三角形拼成的平行四边形,那么一个三角形的面积就要用平行四边形的面积除以2。

  设计意图

  通过学生大胆猜测,选择图形—动手操作—观察、交流、讨论—汇报得出公式的系列过程,可以使学生很自然地产生,一步步向前探索的需要。学生既理解公式的来龙去脉,又实实在在经历探究与发现的全过程,既让学生掌握探索问题的一般方法,又使学生感受到数学方法的内在魅力。

  (四)应用公式,解决问题

  1、回归情境,解决问题。

  师:现在你能解决这个问题了吗?

  学生运用公式进行解答。

  2、求下面的几个三角形的面积。

  3、填空。

  (1)平行四边形的面积是20平方米,与它等底等高的三角形的面积是( )平方米。

  (2)一个三角形花坛底长10米,高是底的一半,花坛的面积是x平方米。

  4、判断改错。

  师:小马虎同学写了一篇数学日记,咱们来看看他写的怎么样?

  课件出示:今天,我学习了新的知识:三角形的面积。我知道了三角形的面积是S=ah÷2,我认为两个三角形一定可以拼成一个平行四边形。这是一种转化的数学思想。我还知道了三角形的面积是平行四边形的面积的一半。瞧!我学习得怎么样!

  学生发现错误。

  5、数学史介绍。

  课件出示20xx年前《九章算术》里面三角形面积的研究方法。

  师:如果只有一个三角形,你还能想办法研究出三角形的面积公式吗?有兴趣的同学我们课下来研究研究。

  设计意图

  练习设计层次清晰,既有基础练习,又有拓展练习。特别增加了数学史的内容,可以开拓学生的视野,也给学有余力的学生留下了继续探索的空间。

三角形的面积教学设计 6

  教学内容:

  人教版义务教育课程标准实验教科书五年级上册第84—86页。

  教材分析:

  三角形面积的计算方法是小学阶段学习几何知识的重要内容,也是学生今后学习的重要基础、《数学课程标准》中明确指出:利用方格纸或割补等方法,探索并掌握三角形,平行四边形和梯形的面积公式、学生在学习三角形面积的计算方法之前,已经亲身经历了平行四边形面积计算公式的推导过程,当学生面临三角形面积计算公式的推导过程时,可以借鉴前面"转化"的思想,且为今后逐渐形成较强的探索能力打下较为扎实的基础、

  教学目标:

  1、知识与技能:使学生在探索活动中深刻体验和感悟三角形面积计算公式的推导过程

  2.过程与方法:使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力。

  3.情感、态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:探索并掌握三角形面积计算公式,能正确计算三角形的面积。

  教学难点:

  三角形面积公式的探索过程。

  教具准备:

  课件、平行四边形纸片、两个完全一样的三角形各三组、剪刀等。

  学具准备:

  每个小组至少准备完全一样的直角三角形、锐角三角形、钝角三角形各两个,一个平行四边形,剪刀。

  教学过程

  一、复习旧知,导入新课。

  1、我们学过求哪些图形的面积,计算公式是什么?

  2、我们学校内有一平行四边形的花坛,底是5米,高是3米,学校领导要把这个花坛平均分成两份,分别种上不同颜色的花,该怎样分?每一块的面积是多少?请同学设计一下。

  3、同学们,学校要为学校开学典礼准备30条红领巾,大队辅导员想请大家帮忙,算一算,需要多少布料?你们愿意吗?该怎样来计算呢?

  师:是的,要先计算一条红领巾的面积,那么红领巾是什么形状的?你会计算它的面积吗?今天我们就来学习计算三角形的面积。板书:三角形的面积。

  二、动手操作,探求新知。

  1、 猜一猜。找关系

  师:1、同学们,长方形的面积跟它的什么有关系?平行四边形的面积跟它的什么有关系?

  生:和它的底和高有关。

  2、那么,猜一猜,三角形的面积可能跟它的什么有关系呢?(学生可能说边、底、高)那么怎样来验证我们的判断呢?

  2、 想一想。找关系

  师:想一想,我们在推导平行四边形的面积时,用的是什么方法?那么,可不可以也用转化法把三角形转化成我们会求面积的图形呢?

  3、 拼一拼,摆一摆,比一比。找关系

  师:请同学们拿出准备好的三角形,按照你的想法,和小组内同学一起拼一拼,摆一摆,折一折看可以把它转化成哪些我们会求面积的图形。

  学生小组合作,拼摆图形。教师巡视,帮助学困生拼摆。

  汇报。可能摆出正方形,长方形,平行四边形,

  思考,这些图形有什么共同点?(都是平行四边形。)现在,你又有什么发现?

  归纳:两个完全相同的三角形,可以拼出一个平行四边形。

  师:那么,我们拼出的平行四边形、跟所用的三角形有没有关系呢?有什么关系呢?

  引导学生答出,平行四边形的面积是三角形面积的2倍。板书:三角形的面积=平行四边形的面积÷2,那么,还有没有其它的关系呢?

  4、 画一画,算一算。找关系,得结论。

  师:请同学们画出平行四边形的一条高,你发现了什么?

  生:平行四边形的高也是三角形的高,底也是三角形的底。

  师:那么,我们刚刚得出的结论还可以怎样写?

  三角形的面积=底×高÷2

  用字母表示三角形的面积。

  5、 应用公式,解决问题。

  现在我们再来解决大队辅导员老师的问题吧。学生可能会束手无措,面面相觑于是,教师趁机疑惑不解地问:你们怎么还不解决问题啊?让学生自己说出,需要红领巾的'底和高。

  教师出示完整题目:一条红领巾的底是100厘米,高是33厘米,做30条这样的红领巾需要多少布料?

  学生独立计算,集体订正。

  三、练习巩固。

  1、 独立完成85页做一做。

  2、 完成86页练习的1、题。

  3、 完成86页练习的3题。

  4、判断下列说法是否正确。

  (1)三角形面积是平行四边形面积的一半。( )

  (2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平方米。( )

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

  (4)等底等高的两个三角形,面积一定相等。( )

  (5)两个三角形一定可以拼成一个平行四边形。( )

  5、求右图三角形面积的正确算式是( )

  ①3×2÷2 ②6×2÷2

  ③6×3÷2 ④6×4÷2

  6、 学校准备在校门出口处两旁各建一块三角形交通警示标志牌,底是8分米,高是7分米,请帮忙计算需要多大面积的材料。(引导学生思考“两旁”的意思)。

  四、拓展提高:

  1、这节课,你有什么收获?还有那些不懂的地方?

  2、如果只用一个三角形,你能通过剪,拼等方法推出三角形公式吗?

  五、板书设计:

  三角形的面积

  三角形的面积=平行四边形的面积÷2

  三角形的面积=底×高÷2

  S=ah÷2

三角形的面积教学设计 7

  教学目标:

  1、知识与技能:

  (1)探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题、

  (2)培养学生应用已有知识解决新问题的能力、

  2、过程与方法:使学生经历操作,观察,讨论,归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观念和初步的推理能力、

  3、情感,态度与价值观:让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣、

  教学重点:

  探索并掌握三角形面积计算公式,能正确计算三角形的面积、

  教学难点:

  三角形面积公式的探索过程、

  教学关键:

  让学生经历操作,合作交流,归纳发现和抽象公式的过程、

  教具准备:

  课件,平行四边形纸片,两个完全一样的三角形各三组,剪刀等、

  学具准备:

  每个小组至少准备完全一样的直角三角形,锐角三角形,钝角三角形各两个,一个平行四边形,剪刀、

  教学过程:

  创设情境,揭示课题

  师:我们学校一年级有一批小朋友加入少先队组织,学校做一批红领巾,要我们帮忙算算要用多少布,同学们有没有信心帮学校解决这个问题

  (屏幕出示红领巾图)

  师:同学们,红领巾是什么形状的(三角形)你会算三角形的面积吗这节课我们一起研究,探索这个问题、(板书:三角形面积的计算)

  [设计意图:利用学生熟悉的红领巾实物,以及帮学校计算要用多少布这样的事例,激起了学生想知道怎样去求三角形面积的欲望,从而将"教"的目标转化为学生"学"的目标、]

  二,探索交流,归纳新知

  1、寻找思路:(出示一个平行四边形)

  师:(1)平行四边形面积怎样计算(板书:平行四边形面积=底×高)

  (2)观察:沿平行四边形对角线剪开成两个三角形、

  师:两个三角形的形状,大小有什么关系(完全一样)

  三角形面积与原平行四边形的面积有什么关系

  [设计意图:这一剪多问,学生在观察的基础上通过与平行四边形及面积的比较,直觉感知三角形面积计算规律,增强了整体意识,同时为下面的进一步探究,诱发了心理动机]

  师:你想用什么办法探索三角形面积的计算方法

  (指名回答,学生可能提供许多思路,只要说的合理,教师都应给予肯定,评价鼓励、)

  师:上节课,我们把平行四边形转化成长方形来探索平行四边形面积的计算公式的大家猜一猜:能不能把三角形也转化成已学过的图形来求面积呢

  (屏幕出示课本84页主题图让学生观察,引发思考)

  接着出示思考题:

  将三角形转化成学过的什么图形

  每个三角形与转化后的图形有什么关系

  [设计意图:学生由于有平行四边形面积公式

  的推导经验,必然会产生:能不能把三角形也转化

  成已学过的图形来求它的面积呢从而让学生自己

  找到新旧知识间的联系,使旧知识成为新知识的铺垫、]

  2、分组实验,合作学习(音乐)

  (1)提出操作和探究要求、

  让学生拿出课前准备的三种类型三角形(各两个)小组合作动手拼一拼,摆一摆或剪拼、

  屏幕出示讨论提纲:①用两个完全一样的三角形摆拼,能拼出什么图形

  ②拼出的图形与原来三角形有什么联系

  (2)学生以小组为单位进行操作和讨论、

  [设计意图:这里,根据学生"学"的需要设计了一个合作学习的程序,让学生分组实验,合作学习,为学生创设了一个自己解疑释惑的机会、]

  教师巡视,及时了解学生在操作和讨论中存在的问题,并针对性地进行指导学困生:你是怎样拼的能说一说你的拼法吗(若学困生含糊的,动画显示一个作好高的三角形,移出一个与它同样大小的三角形,再把这个三角形旋转,移动,和下一个三角形拼成一个平行四边形、如图,让学困生模仿练习)

  [设计意图:不仅使学生找到了新旧知识的连接点与转化方式,而且使学生正确掌握操作方法,形成操作技能]

  (3)展示学生的剪拼过程,交流汇报、(音乐停)

  ①各小组汇报实验情况、(让学生将转化后的图形贴在黑板上,再选择有代表性的情况汇报)

  可能出现以下情况:(用两个完全一样的三角形摆拼)

  (两锐角三角形)(两钝角三角形)(两直角三角形)(两等腰直角三角形)

  ②课件演示:用旋转平移的方法将三角形转化成各种已学过的图形、

  师:通过实验,你们发现了什么

  引导学生得出:只要是两个完全一样的三角形都能拼成一个平行四边形)

  师:谁能说说,每个三角形的面积与拼成的平行四边形的面积有什么关系

  生:拼成的平行四边形是三角形面积的二倍、

  生:每个三角形的面积是拼成的平行四边形的面积的一半、(评价,肯定)

  [设计意图:在大量感知的基础上,通过自主学习,再通过课件的演示使同学们更具体,清晰地弄清了将两个完全一样的三角形转化成平行四边形后,它们间到底有什么关系、同时又渗透了转化的数学思想方法,突破了教学难点,提高了课堂教学效率、]

  3、归纳公式

  (1)讨论:(屏幕显示提纲)

  a,三角形的底和高与平行四边形的底和高有什么关系

  b,怎样求三角形的面积

  c,你能根据实验结果,写出三角形的面积计算公式吗

  [由图形直观应用,进行观察,推理,加深对三角形的面积计算公式的理解、]

  (2)归纳交流推导过程,说出字母公式、

  根据学生讨论,汇报,教师进行如下板书:

  因为:三角形面积=拼成的平行四边形面积÷2

  所以:三角形面积=底×高÷2

  师:为什么要除以2

  生:……

  师:如果用s表示三角形面积,用α和h分别表示三角形的底和高,那么你能用字母写出三角形的面积公式吗

  结合学生回答,教师板书s=ah÷2

  [设计意图:当将三角形转化成已学过的平行四边形,找出它们间的关系,使学生感知了三角形面积的计算后,讨论:"三角形面积的计算公式是怎样的"从而启发学生依靠自己的思维去抽象出事物的本质属性,得出计算公式,培养学生的抽象概括能力、]

  4、看书质疑、指名讲述课本中是怎样得出三角形面积公式的

  (养成看书的良好习惯)

  师:我们刚才是从两个完全一样的直角三角形,锐角三角形和钝角三角形与拼成的平行四边形关系中得出求三角形面积的公式的你们还能用别的方法去推导三角形的面积公式吗

  如果有学生想到别的方法,如剪拼的方法可以让学生边讲边演示,只要合理的老师都要给予肯定、

  老师课前做好下面课件帮助学生理解

  方法一:期量子论方法二:方法三:

  得出:三角形的'面积=底×(高÷2)=底×高÷2(方法一)

  三角形的面积=底×(高÷2)=底×高÷2(方法二)

  三角形的面积=(底÷2)×高=底×高÷2(方法三)

  师:同学们真了不起,想到那么多的方法推导出三角形的面积公式、得到了这个公式,我们就可以求出任何三角形的面积、用这个公式计算三角形的面积(指板书),需要知道什么条件(反扣公式,加深理解)

  4,进行爱国教育

  师:其实早在20xx年前,我国伟大的劳动人民就开始会用这个公式来计算三角形土地的面积了、请同学们课后把85页的"你知道吗"看一看、

  三,应用新知,解决问题

  师:有了公式,下面我们可以帮学校解决问题了、(回应引入问题)

  1,(屏幕显示)出示85页例1:

  学生独立完成(一生板演),集体订正、

  师:你认为计算三角形的面积,什么地方容易出错(强调"÷2"这一关键环节)

  2,独立完成p85做一做、

  完成后交流,讲评、

  四,深化理解,应用拓展

  1、课本86页的练习第1题、课件出示下图:

  师:你认识这些道路交通警示标志吗一块标志牌的面积大约是多少平方分米

  (教育学生要遵守交通规则,注意交通安全,接着让学生口头列算式,不用计算、)

  2,课本86页第2题:你能想办法计算出每个三角形的面积吗、

  师:要计算出每个三角形的面积,需要什么数据要怎么做

  先让学生想,小组交流,再汇报,最后学生动手操作计算,评讲、

  3,课本86页第3题:已知一个三角形的面积和底

  (如右图),求高、

  师:求三角形的面积我们会算了,如果已知三角形的面积求三角形的高你会算吗

  (生讨论汇报,再计算,反馈、)

  4、想一想,下面说法对不对为什么

  (1)三角形面积是平行四边形面积的一半、( )

  (2)一个三角形面积为20平方米,与它等底等高平行四边形面积是40平

  方米、( )

  (3)一个三角形的底和高是4厘米,它的面积就是16平方厘米、( )

  (4)等底等高的两个三角形,面积一定相等、 ( )

  (5)两个三角形一定可以拼成一个平行四边形、 ( )

  5,求右图三角形面积的正确算式是( )

  ①3×2÷2 ②6×2÷2

  ③6×3÷2 ④6×4÷2

  6、做课本86页第4题(然后汇报,评讲、)

  要在公路中间的一块三角形空地(见下图)上种草坪、1㎡草坪的价格是12元、种这片草坪需要多少元

  [设计意图:练习分三个层次设计,第一层基本练习,旨在巩固,熟练公式;第二层设计判断练习,学生在思考中,从正,反两方面强化对求积公式的理解;第三个层次,主要通过实际问题的解决,让学生感知生活化的数学,增强学生用数学的意识,并通过变题练习,训练学生思维的灵活性与逆向思维能力,同时深化对三角形求积公式的认识、]

  五,回顾总结,深化提高:

  1,师:这节课探究了什么是怎样探究的呢(渗透数学方法)

  (屏幕显示)让学生说一说图意:

  师:对!今天我们分小组通过动手操作,相互讨论,交流,用摆拼(还可以用折叠,割补)等方法将三角形转化成学过的图形推导出了三角形面积的计算公式,这种"转化"的数学思想方法能帮助我们找到探究问题的方向,相信同学们今后能应用这一数学方法探究和解决更多的数学问题、

  [设计意图:这两问引导学生从学习内容及学习方法对本课作出总结,引导学生回顾和反思自己获取知识的思路和过程,归纳提炼学习方法,让学生在今后的学习中能应用这些方法去探究问题,自己解决更多的数学问题,培养学生勇于探究,善于探究的精神、]

  六,课外作业:p87—5,6,7

  板书设计

  因为:平行四边形的面积=底×高,例1… …

  三角形面积=拼成的平行四边形面积÷2 s=ah÷2

  所以三角形面积=底×高÷2 =100×33÷2

  s=ah÷2 =1650(cm )

  旧知

  求平行四边形面积

  平移

  旋转180°

  平行四边形面积=底×高

  三角形面积=底×高÷2

  求三角形面积

  转化

  还原

  解决

三角形的面积教学设计 8

  教学内容:

  人教版五年级上册第五单元第84~87页内容

  教学目标:

  1、探索并掌握三角形的面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题。

  2、使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化思想的价值,发展学生的空间观念和初步的推理能力。

  3、让学生在探索活动中获得积极的情感体验,进一步培养学生学习数学的兴趣。

  教学重点:

  探索并掌握三角形的面积公式,能正确计算三角形的面积。

  教学难点:

  理解三角形面积公式的推导过程。

  教学准备:

  多媒体课件、三角形学具。

  教学过程:

  一、创设情境,引出课题

  课件出示一个平行四边形。

  师:这是什么图形,你会计算它的面积吗?说一说怎么算。

  根据学生的回答,板书:平行四边形的面积=底×高

  师:你能把这个平行四边形分成两个完全一样的三角形吗?该怎么分?

  学情预设:学生一般有以下两种分法:

  师:现在请你拿出自己准备好的平行四边形,我们来验证一下。用刚才的方法画一画、剪一剪、比一比,看看这两个三角形是否完全一样?

  学情预设:学生动手操作,教师巡视指导,发现:剪下来的两个三角形是完全一样的。

  师:假如这个平行四边形的面积为40平方厘米,那么其中一个三角形的面积是多少?(20平方厘米)

  师:为什么?(剪下的两个三角形完全一样,就说明三角形的面积是平行四边形的一半)

  师:刚才我们借助已知的平行四边形的面积,知道了三角形的面积。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。

  【设计意图】:

  从不会计算面积的图形中揭示课题,激发学生的探究兴趣。

  板书课题:三角形的面积

  二、自主探索,得出公式

  1、动手实验。

  师:同学们,老师已经给每组同学的学具袋中准备了三角形学具,请你们选择合适的三角形摆一摆,推导三角形的面积计算公式,比一比,哪一组想到的方法最多。

  学情预设:学生动手实验,教师巡视指导,有前面的例子做铺垫,学生自然而然会想到用两个完全一样的三角形来拼。拼出的图形有三角形、长方形和平行四边形。选出拼成长方形和平行四边形,这两种是已经会计算面积的图形。把三角形转化成已学过的平行四边形、长方形或正方形来推导三角形的面积计算公式。

  【设计意图】:

  给学生留出足够的空间,发挥学生的主观能动性和合作精神,自主探索三角形的面积的公式。

  2、学生代表上台演示汇报

  师:你是如何推导出三角形的面积公式的?谁来给我们演示?

  演示一:把两个完全一样的'三角形拼成平行四边形。(如下图)

  师:观察这些平行四边形,它们有什么共同特点?我们把拼成的平行四边形和原来的三角形作比较,你能发现平行四边形的底和高与三角形的底和高有什么关系吗?那么三角形的面积可以怎么计算呢?

  根据学生的回答,教师板书如下:

  三角形的面积=平行四边形的面积÷2=底×高÷2

  展示二:把两个完全一样的直角三角形拼成长方形或正方形。(如下图)

  师:观察图形,我们把拼成的长方形或正方形与原来的三角形作比较,你能发现它们之间的关系吗?请你根据你拼成的图形,推导出三角形的面积计算公式。

  根据学生的回答,教师板书如下:

  三角形的面积=长方形的面积÷2=长×宽÷2=底×高÷2

  师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的字母公式是什么?

  三、学以致用,解决问题。

  师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)

  1、计算生活中的三角形的面积

  (1)计算红领巾的面积

  师:老师这里有一条红领巾,(展示实物)如果想求它的面积有多少?需要知道什么条件?(需要知道三角形的底和高)

  (课件出示例2)

  红领巾的底是100cm,高33cm,它的面积是多少平方厘米?

  师:请同学们算一算。

  (学生练习后讲评订正)

  (2)计算三角形标志牌的面积

  师:我们经常见到类似以下标志的标志牌(课件出示如下图),你知道这个标志牌的面积吗?谁口算一下。(4×3÷2=6(平方分米))

  师:都是这样做的吗?为什么不用3.2×3÷2呢?

  (因为3.2分米不是3分米对应的底。)

  师:如果与3.2分米对应的高是3.75分米(课件出示)还可以怎样列式?

  (3.2×3.75÷2)

  师:通过这道题的解答,你明白了什么?

  师:对啊,我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。

  (3)认识道路交通警示标志。

  师:请看屏幕。(多媒体出示)

  师:你们认识这些交通警告标志吗?

  (学生回答后,老师边小结,课件边出示各标志的含义)

  师:同学们,我们示范小学校门口到邮政局这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)

  (学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)

  (4)画面积相等的三角形。

  师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)

  师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?

  (学生打开书87页,在书中画一画,完成第6题)

  师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?(无数个)

  师:通过画这样的三角形,你发现了什么?

  生:三角形的面积与底和高有关,与形状无关。

  【设计意图】:

  通过分层次的解决实际问题的练习,既巩固了学生对三角形面积计算公式的理解应用,又使学生感受到三角形面积公式的变形应用,同时对学生进行交通安全教育。〕

  四、课堂小结

  师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?

  (学生汇报:1、三角形的底和高必须是相对应的一组。2、别忘了除以2.)

  五、布置作业:

  课本P86--87页第2、4、5题

三角形的面积教学设计 9

  教学内容:

  人教版五年级上册84----85页

  教材分析:

  三角形的面积是本单元教学内容的第二课时,是在学生掌握了三角形的特征以及长方形、正方形、平行四边形面积计算的基础上学习的,是进一步学习梯形面积和组合图形面积的基础,教材首先由怎样计算红领巾的面积这样一个实际问题引入三角形面积计算的问题,接着根据平行四边形面积公式推导的方法提出解决问题的思路,把三角形也转化成学过的图形,通过学生动手操作和探索,推导出三角形面积计算公式,最后用字母表示出面积计算公式,这样一方面使学生初步体会到几何图形的位置变换和转化是有规律的,另一方面有助于发展学生的空间观念。

  学情分析:

  学生在以前的学习中,初步认识了各种平面图形的特征,掌握了长方形、正方形、平行四边形的面积计算,学生学习时并不陌生,在前面的图形教学中,学生学会了运用折、剪、拼、量、算等方法探究有关图形的知识,在学习方法上也有一定的基础,教学时从学生的现实生活与日常经验出发,设置贴近生活现实的情境,通过多姿多彩的图形,把学习过程变成有趣的、充满想象和富有推理的活动。

  教学目标:

  1、引导学生用多种方法推导三角形面积的计算公式,理解长方形、平行四边形和三角形之间的内在联系。

  2、通过操作使学生进一步学习用转化的思想方法解决新问题。

  3、理解三角形的面积与形状无关,与底和高有关,会运用面积公式求三角形面积。

  4、引导学生积极探索解决问题的策略,发展动手操作、观察、分析、推理、概括等多种能力,并培养学生的创新意识。

  教学重点:

  理解并掌握三角形面积的计算公式。

  教学难点:

  理解三角形面积的推导过程。

  教法与学法:教法:

  演示讲解、指导实践。

  学法:小组合作、动手操作。

  教学准备:

  三角形卡片、多媒体课件

  教学过程:

  一、情境引入

  师:同学们,我们每天都佩戴着鲜艳的红领巾,高高兴兴地来到学校学习新的知识,那你知道做一条红领巾需要多少布料呢?(不知道)我们佩戴的红领巾是什么形状的?(三角形),怎样计算三角形的面积呢?这节课我们就一起来研究三角形的计算方法(板书课题)

  [设计意图]通过情境的创设,给学生提供现实的问题情境,使学生产生解决问题的欲望,积极主动地参与到学习活动之中。

  二、探究新知

  1、复师:回忆一下,平行四边形面积计算公式是什么?是怎么推导的.?

  师:我们是先把平行四边形转化成长方形,运用学过的长方形面积的计算公式,找到平行四边形与长方形之间的联系,推导出了平行四边形面积的计算公式,今天这节课,我们继续用转化的数学思想来探索三角形的面积怎样计算。

  [设计意图]抓住新旧知识的生长点进行复习,检验学生对已有知识的掌握情况和转化思想的理解情况,建立起新旧知识的联系,为学习新知做好铺垫。

  2、第一次操作实践

  师:好,那怎样把三角形转化成我们所学过的图形呢?请同学们拿出学具袋里的各种三角形,两人一组想一想,拼一拼。(教师巡回指导)

  3、交流反馈

  师:同学们都拼好了,谁来说说你是怎样拼的?

三角形的面积教学设计 10

  教学内容:人教版义务教育课程标准实验教材小学数学五年级上册第84~85页。

  教学目标:

  1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。

  2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。

  3、培养学生的创新意识和合作精神。

  教学重点:三角形面积计算公式的推导过程

  教学难点:在转化中发现内在联系及推导说理。

  教、学具准备:多媒体课件,红领巾,学具(两个完全相同的锐角三角形、直角三角形、钝角三角形、任意三角形若干个)。工具(直尺、剪刀)。

  设计思路:

  本节课有以下几个特点:

  1、利用远程教育资源,通过多媒体课件复习旧知,激发学生的学习兴趣。在复习旧知时,单凭教师枯燥的提问,很难调动学生的兴趣。教学一开始,我利用远程教育资源,恰当地运用多媒体课件,直观动态地将旧知识展示在学生面前,以感染学生,为学习新知识作好铺垫。

  2、利用远程教育资源,通过多媒体课件突出重点,化解难点。本节课的重点是探索三角形面积计算公式的推导,如果只有教师的讲解、演示,很难使学生真正理解、掌握新知。因此,在教学中,我力求打破传统教学以传授知识为中心的弊端,精心设计以学生为主体的实践活动,充分利用远程教育资源,发挥多媒体的功能,通过“变色”、“闪烁”、“声音”等手段突出重点,解决难点,加深学生对新知识的理解,激活学生的创造思维,掌握学习方法,培养学生的学习能力。真正发挥学生的主体作用,体现新课程的理念。

  教学过程

  一、创境引新

  1、同学们,你们还记得怎样计算平行四边形的面积吗?(点击课件)

  这个公式是怎样推导出来的呢?

  电脑动态演示割拼的转化过程。

  形成板书:

  转化找关系推导

  学生看大屏幕,口答:s=ah

  学生口述平行四边形面积公式的.推导过程。

  2、老师这里有一样东西,你想知道吗?(出示红领巾)红领巾是什么形状的?要知道做这条红领巾需要用多大的布,该怎么办?

  三角形的面积该怎样计算呢?这节课老师和大家一起研究、探索这个问题。(板书课题)

  生可能会说:求出它的面积。

  二、自主探索

  合作交流1、谈话启思。

  我们能不能利用前面学过的方法来探究三角形的面积呢?想一想,用任意两个三角形可以拼成什么图形,下面同学们利用桌上的学具拼一拼、摆一摆,看一看,能拼成什么图形?

  2、操作探索。

  (1)四人小组合作进行操作、探索。

  (2)小组汇报、交流、展示。

  学生可能会拼出以下图形:

  (3)课件演示拼出的各种图形。

  (4)设疑:

  这些图形中哪些图形的面积你会计算?

  通过操作,谁能告诉老师,什么样的两个三角形能拼成平行四边形?

  你能不能很快的把两个完全相同的三角形拼成平行四边形。

  老师有一种方法,能很快的将两个完全相同的三角形拼成平行四边形,想学吗?

  电脑演示转化的动态过程。

  (5)找关系。

  师:拼成的平行四边形与原三角形有什么关系?

  课件出示:

  a.拼得的平行四边形的底与原三角形的底有什么关系?

  b.拼得的平行四边形的高与原三角形的高有什么关系?

  c.其中一个三角形的面积与拼得的平行四边形的面积有什么关系?

  (6)汇报

  在学生回答的基础上师用电脑演示。

  (7)尝试推导说理。

  师:根据你们的发现,你能推导出三角形的面积计算公式吗?

  在学生的汇报中形成板书:

  三角形的面积=平行四边形的面积÷2

  底×高

  =底×高÷2

  师:如果用s表示面积,a、h分别表示三角形的底和高,用字母怎样表示公式?

  完善板书:s=ah÷2

  学生口答:长方形、平行四边形。

  生:两个完全一样的三角形能拼成平行四边形。

  学生操作,感到不是很容易。

  学生观看转化过程。

  尝试旋转、平移的方法。

  小组讨论交流。

  小组派代表发言。

  学生讨论后回答,并说说自己是怎样推导的?

  学生发言。

  学生齐说:s=ah÷2

  3、探究用一个三角形进行割补转化推导。

  师:我们在推导平行四边形的面积公式时,运用了割补法,你能不能运用割补法将一个三角形转化成平行四边形?

  师:下面我们来观察电脑上是怎样操作的?(点击课件)

  师:同学们若有兴趣,课后可以继续探索不同的割补方法。

  小组合作探究,汇报交流。

  学生观看运用割补法将一个三角形转化成平行四边形过程。

  三、实践应用

  拓展提高

  1、(出示红领巾)这下你会计算这条红领巾的面积吗?计算它的面积要知道什么条件?

  你能估计一下它的底有多长吗?(课件出示红领巾)

  一条红领巾的面积是多少平方厘米?

  2、看图计算面积。

  3、你认识这些道路交通标志吗?谁来说说。

  (课件出示)

  师:我们学校处在交通繁忙的三*路口,车辆较多。为了同学们的安全,交警叔叔想用铁皮做这样两个标志牌,(点击课件)

  你来帮他们算算需要多少铁皮?

  4、判断。

  (1)、一个三角形的底和高是4厘米,它的面积就是16平方厘米。x

  (2)、等底等高的两个三角形,面积一定相等。x

  (3)、两个三角形一定可以拼成一个平行四边形。x

  (4)、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。x

  5、课下请同学们找一个三角形的实物进行测量,计算出它的面积。

  学生估计底的长度。

  学生独立完成,一人板演。做完后集体订正。

  学生口述列式。

  通过图3知道要用对应的底和高计算面积。

  学生说说自己认识交通标志。

  学生独立完成,然后交流。可能出现下面两种方法。

  方法一:s=ah÷2

  =7.8×9÷2

  =35.1

  35.1×2=70.2(平方分米)

  方法二:s=ah

  =7.8×9

  =70.2(平方分米)

  学生判断,并说明理由。

  四、评价体验

  通过这节课的学习,你一定有话想对同学们说,你最想说什么?(点击课件)

  学生之间互相评价。

  教学反思:

  1、利用远程教育资源,创设教学情景。

  利用远程教育资源,创设情景,能生动直观地将教学信息再现于学生的感官。教学情景创设的好,能调动学生的好奇心,又能为学生提供生动逼真、丰富多彩的教学资源,为学生营造一个色彩缤纷,声像同步,能动能静的教学情景,提高学生的学习兴趣,能做到事半功倍的效果。三角形的面积计算是在完全认识了三角形的特征及掌握了长方形、正方形、平行四边形面积计算的基础上学习的,其推导方法与平行四边形面积计算公式的推导方法有相似之处。因此,我利用远程教育资源网搜索并下载有关平行四边形面积公式的课件,通过多媒体展示给学生。这样即吸引了学生的注意力,又激发了学生探索新知识的欲望,同时又使学生明确了探索目标与方向。

  2、利用远程教育资源,引导学生自主探索,参与知识的形成过程。

  数学知识只有通过学生亲身主动的参与,自主探索,才能转化为学生自己的知识。本节课,在探索新知的过程中,我让学生利用学具,以小组合作的形式,通过拼一拼、一摆、移一移等方法将两个三角形拼成各种图形。在此基础上,让学生发现只有两个完全相同的三角形才能拼成平行四边形,但学生不会用旋转、拼移的方法。这时,我恰当的运用多媒体课件动画演示,将两个完全相同三角形通过旋转、平移,能很快的拼成一个平行四边形,这样非常直观形象的展示转化过程,学生在好奇的氛围中掌握旋转、平移的方法。渗透了转化的数学思想。并再次观看多媒体课件,发现拼成的平行四边形与原三角形的内在联系,从而推导出三角形的面积计算公式。有效的突破教学难点,帮助学生深刻理解新知识,达到了事半功倍的效果提高教学效率。

  割补法是学习几何知识很重要的方法。在推导平行四边行面积计算公式时,学生已初步掌握了割补法。本节课中,当学生用旋转、平移的方法推导出三角形的面积公式后,我又设计让学生运用割补法,将一个三角形转化成平行四边形,来推导三角形的面积公式。这一环节由于学生的能力和知识水平有限,对于割补法有一定的困难,因此,我充分运用多媒体课件动画,直观地展现几种割补方法,以拓展学生的思维能力,提高学生的推理能力。

  3、利用远程教育资源,提高学生应用新知识的能力。

  练习的设计除了注重趣味性和层次性外,更注重现实性。本节课的练习除了围绕重点设计基本练习巩固新知识外,还设计了培养学生创新意识及实践能力的练习题。为了节约教学时间,调动学生学习的积极性,运用多媒体课件展示练习题是必不可少的。因此我设计了让学生认识道路交通警示标志,并计算两块相同标志牌面积的课件,学生在练习过程中,既发散了学生的思维,又对学生进行了交通安全教育。

  总之,利用远程教育资源,,对学生主体性发展、思维能力的培养具有独特的优势,教学中教师适时运用多媒体辅助教学,创设丰富的情景,调动学生多种感官参与教学过程,发挥了最佳的教学效应,从而激励学生去探索、去发现、去创造。

三角形的面积教学设计 11

  教学内容:

  《现代小学数学》第九册第31~35页,三角形面积的计算。

  教学目标:

  一、了解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。

  二、能运用三角形面积计算公式进行有关的计算。

  三、渗透对立统一的辩证思想。

  教学过程:

  一、复习引入。

  1.准备练习:你会计算这些图形的面积吗?这些图形的面积在计算时,同哪些因素有关?

  出示:

  2.提问:图(4)是一个什么图形?你会计算它的面积吗?猜一猜,三角形的面积同哪些因素有关?

  3.揭题:大家猜得究竟对不对,下面我们就一起来探求“三角形面积的计算”方法。(出示课题)

  【设计意图:通过“猜”,引导学生从新旧知识的联系中,大胆地提出假设,为新课展开做好铺垫,同时激发学生急于想验证假设的认知欲望。】

  二、新课展开。

  (一)实践活动。

  1.让学生拿出已准备好的如下一套图形。(同桌合作)

  (1)测量各平行四边形(含长方形)的底和高,算出面积,并填入表格内。

  (2)找出与平行四边形等底等高的三角形,将相应的编号填入表格内。

  (3)分组讨论:

  ①各三角形的面积是多少?请填入表格内。

  ②三角形的面积怎样计算?

  (4)汇报、交流,初步得出三角形面积计算方法。

  【设计意图:通过实践活动,让学生自己研究问题、分析问题,初步得出三角形面积的计算方法,从而突出了学生的主体地位,既让学生主动参与知识的获取过程,又从找对应关系中,渗透了对应关系的教学。】

  2.验证。

  (1)拿出如右图的三角形,要求剪一刀或两刀,拼成一个与原三角形面积相等的.平行四边形。

  数学课堂教学参谋

  (2)汇报、交流:学生有几种剪拼法,就交流几种。如:

  ①

  6×4÷2 6×(4÷2)

  =12(平方厘米) =12(平方厘米)

  ②

  6×4÷2 6÷2×4

  =12(平方厘米) =12(平方厘米)

  【设计意图:通过验证,培养学生科学的态度,同时从启发学生应用不同的剪拼法中,培养学生的发散思维。】

  (二)归纳、小结。

  1.从上面的实践活动中,你能说出求三角形面积的计算公式吗?三角形的面积同哪些因素有关?证明“三角形面积=底×高÷2”。(板书:三角形面积=底×高÷2)

  2.如果用s表示三角形的面积,a和h分别表示三角形的底和高,那么三角形的面积公式可以怎么写?(板书: s= ah÷2)

  (三)应用。

  例 一块三角形钢板,底是8米,高是2.5米,它的面积是多少?

  学生试做后,反馈、评讲。

  【设计意图:通过试做例题,让学生及时把发现的三角形面积计算方法应用于实践,同时起到及时巩固作用。】

  三、巩固练习。

  (一)基本练习。

  1.口算出每个三角形的面积。

  ①底8米,高7米 ②底5分米,高12分米③a:4厘米,h:2.5厘米 ④a:20分米,h:5.4分米

  2.课本35页第②题,看图填写答案。(每一格代表1平方厘米)

  这些三角形的高都是____厘米,底都是____厘米。

  这些三角形的面积都是:□×□÷2=□(平方厘米)。

  3.先量一量,标出图形的长度后,再计算各三角形的面积。

  【设计意图:通过三道基本练习,进一步促进全体学生掌握三角形面积的计算方法,尤其是第3道题,使学生进一步明确要求三角形面积,需要知道三角形的底和高。】

  (二)分层练习。

  a组学生:做选择题。

  ①求右图面积的算式是( )。

  a.9×4÷2 b.15×4÷2

  c.15×9÷2 d.15×4

  ②求右图面积的算式是( )。

  a.5.2×3.5÷2

  b.5.2×4.1÷2

  c.4.1×3.5 d.4.1×3.5÷2

  ③求下图面积的算式是( )。

  a.25×20 b.18×25

  c.18×20 d.18×20÷2

  b组学生:做课本第15页第

  ②题:在格子图上画面积都是12平方厘米的三角形(每一小格表示1平方厘米),并在表中分别填上所有三角形的底和高。(图、表见课本。略)

  c组学生:先求出下面三个三角形abc、bcd、bce的面积。再比较一下,它们的面积相等吗?为什么?

  【设计意图:通过分层练习,使 a、b、c三层的学生在数学思维、数学能力方面均有提高,以体现因材施教的原则。】

  四、课堂小结。

  这节课研究了哪些内容?三角形面积计算方法是什么,你是怎么研究出来的?

  【设计意图:通过提问,不仅回顾了所学知识,而且总结了所研究的方法,真正体现出不仅要授之以“鱼”,更要导之以“渔”。】

  五、布置作业。(略)

  (此文获“第二届全国小学课堂教学征文大赛”一等奖)

三角形的面积教学设计 12

  【教学内容】

  探索活动(二)《三角形的面积》教材第25页——26页

  【教学目标】

  知识目标:①使学生经历、理解三角形面积公式的推导过程。

  ②能正确运用公式进行三角形面积计算,初步学会用转化的数学方法解决实际问题。

  能力目标:①通过动手操作、认真观察、比较、思考等方式,培养学生的空间想象能力、思维能力和较强的动手能力;②通过讨论及小组合作学习的方式,培养学生的分析综合、抽象概括能力和相互协作学习的能力。

  德育目标:①利用教材上的德育资料对学生进行爱国主义教育。②通过练习中的德育因素对学生进行交通安全教育。

  【教学重点】

  理解三角形面积计算公式,正确计算三角形的面积 理

  【教学难点】

  理解三角形面积公式的推导过程。

  【课前准备】

  三个学习小组分别准备两个完全一样的三角形(一组准备直角三角形,二组准备锐角三角形,三组准备钝角三角形,四组任意)、直尺、剪刀。

  教师准备多媒体课件一份、演示教具一套

  【教学进程】

  一 复习引入

  1、出示课件

  师:比一比,下面两个图形哪个面积大?

  生:观察 比较 说说你是怎么比较的

  师小结,比较两个图形的大小,可以用数格子、旋转、平移的方法。

  2、回顾平形四边形面积公式的推导

  师:谁能告诉老师平形四边形面积公式推导过程

  生答后,师课件演示

  师:在这个过程,我们运用了一个什么数学思想。

  生:转化

  师板书:转化

  师:现在,我们已经掌握了几种图形的面积公式了呢?

  生答后,师简要小结

  3、设疑,引入新课

  小明有一张彩纸(课件出示),他想知道这张纸 面积,前面我们已经掌握了长方形、正方形、平行四边形的面积计算方法,可这却是个三角形,怎么计算三角形的面积呢?大家想不想来探究一下这个问题?(生答)好,那今天,我们就来学习这个知识

  师板书:三角形的面积

  二、探究新知

  1、知识猜想

  师:学习之前,大家先猜一猜,三角形的面积可能跟什么有关?

  生讨论、作答(可能和底、高有关)

  2、动手实践

  一组学生拿出直角三角形学具

  二组拿出锐角三角形学具

  三组拿出钝角三角形学具

  四组拿出任意三角形学具

  剪一剪、拼一拼,你能发现什么?

  师巡回检查、指导

  3、实践汇报

  各组汇报实践结果

  一组:我们是拿两个完全一样的三角形通过旋转、平移拼成了一个平形四边形或长方形(长方形也是特殊的平行四边形),这个平行四边形的面积是原三角形面积的2倍,可以通过平行四边形面积算出三角形的面积。

  二组:两个完全一样的锐角三角形也可拼成一个平行四边形。

  三组:两个完全一样的钝角三角形也可拼成一个平行四边形。

  四组:用一个三角形,从他的高的中点处画一条底边的平行线,沿着平行线剪开成一个三角形和一个梯形,再旋转,也可以拼成一个平行四边形,而且这个平行四边形的面积就等于原三角形的面积。

  各组就实践汇报展开讨论。

  4、演示总结

  师:同学们非常聪明,发现了这么多的方法,教师也想了几种方法,大家看一看和你们想的'一样不一样?

  出示课件(演示1两个完全一样的三角形拼成平行四边形)

  师引导生观察

  (1)、拼成的平行四边形和原三角形面积有什么关系?

  生:平行四边形面积是三角形面积的2倍。

  (2)、平行四边形的底和高与三角形的哪些部分有关?

  生:平行四边形的高等于三角形的高;

  平行四边形的底等于三角形的底

  师小结并板书

  平等四边形的面积= 底 × 高

  三角形的面积= 底 × 高 ÷ 2

  出示课件(演示2一个三角形剪拼成平行四边形)

  师:观察平行四边形面积与原三角形面积有何关系?

  生:相等

  师:平行四边形的底和高与三角形底、高有什么关系?

  生:平行四边形的底等于三角形的底

  平行四边形的高等于三角形的高的一半

  师小结并板书

  平行四边形面积= 底 × 高

  三角形面积= 底 × 高 ÷ 2

  三角形的面积=底×高÷2

  字母表示: S=ah÷2

  5、师生一起回顾三角形面积公式的推导过程

  6、基本练习

  师:现在大家可以帮帮小明,算算哪张彩纸的面积了吗?

  生:能

  师:好那大家帮他算一算

  生解答,师巡回检查

  强调:1、注意运用公式 2、注意面积单位

  三、巩固检测

  1、出示课件

  师:每天上学回家,教师、家长都要叮咛同学们注意交通安全,大家认识下列交通标志吗?

  生答、师订正

  师:大家观察,这些交通标志都是什么形状?我们能不能算算他们的面积呢?

  生独立完成

  师统一订正

  2、出示课件

  师:红领巾中是我们少先队员的标志,我们每个少先队员都要佩戴并热爱他,下面就是一面红领巾图,你能算一算做100面红领巾需要多少布料吗?

  生板演 师讲解订正

  四、回顾总结

  师:学完这节课,你都有些什么收获呢?

  生讨论、作答

  师小结:这节课,我们运用能比的数学思想,通过旋转、平移、剪拼的方法把三角形能化成了已经学过的平行四边形,发现其中的联系,然后通过平行四边形面积公式推导出了三角形的面积公式。通过几道练习,同学们已基本掌握了面积公式的应用,收获了不少新知识,希望以后每节课同学们都能象今天这样满载而归。

  附:【板书设计】

  三角形的面积

  平行四边形面积 = 底 × 高

  转化

  三角形面积= 底 × 高 ÷ 2

  S= a×h÷2

三角形的面积教学设计 13

  教学内容:三角形面积计算的练习(练习十八5~10题)

  教学要求:

  1.是学生比较熟练地应用三角形面积计算公式计算三角形的面积。

  2.能运用公式解答有关的实际问题。

  3.养成良好的审题、检验的习惯,提供正确率。

  教学重点:运用所学知识,正确解答有关三角形面积的应用题。

  教具准备:展示台

  教学过程:

  一、基本练习

  1.填空。

  (1)三角形的面积=,用字母表示是。

  为什么公式中有一个“÷2”?

  (2)一个三角形与一个平行四边形等底等高,平行四边形的底是2.8米,高是1.5米。三角形的面积是x平方米,平行四边形的面积是x平方米。

  2、练习十六2题

  二、指导练习

  1.练习十六第6题:下图中哪两个三角形的面积相等?(两条虚线互相平行。)你还能画出和它们面积相等的三角形吗?

  ⑴生用尺量一量这两条虚线间的距离,搞清这两条虚线是什么关系?

  ⑵看看图中哪两个三角形的面积相等?为什么?

  ⑶分组讨论如何在图中画出一个与它们面积相等的三角形,并试着画出来

  2.练习十六第7题

  (1)让学生尝试分。

  (2)展示学生的作业

  可能有:a、根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积就必然相等。而要找这4个等底等高的小三角形,只需把原三角形的`某一边4等份,再将各分点与这边相对的顶点连接起来即可。

  b、也可把原三角形先二等分,再把每一份分别二等分。

  3、练习十六9*

  让学生抓住涂色的三角形的底只有平行四边形底的一半,它的高和平行四边形的高相等,平行四边形的面积=底×高,三角形的面积=(底÷2)×高÷2,所以三角形的面积等于48÷4

  4.练习十六第3题:已知一个三角形的面积和底,求高?

  让学生列方程解和算术方法解,算术方法176×2÷22,要让学生明确176×2是把三角形的面积转化成了平行四边形的面积。

  三、课堂练习

  练习十六第8*题。

  四、作业

  练习十六第4、5题。

  课后记:

三角形的面积教学设计 14

  一、教材分析

  三角形面积的计算是在学生掌握了平行四边形面积的计算方法的基础上进行教学的。由于在前面的学习中,学生对转化的数学思想有了初步的了解和认识,因此可以通过知识的迁移,放手让学生探究三角形面积的计算方法。本节课的重点在于让学生理解、掌握平行四边形面积的计算公式,而通过学生自主探究、发现三角形面积计算公式的推导过程则是本节课的难点。

  二、设计思路

  本节课的设计力求体现“以学生发展为本”的教学理念,让学生在学习小组内,通过折一折、剪一剪、拼一拼的操作,亲身经历新知的形成过程,体验“转化”思想在几何体知识中的作用。同时在获取新知的过程中大胆放手,让学生充分运用旧知进行迁移,自主探索,培养学生的创新知识和创新能力。

  采取小组学习的教学形式,为学生营造一种宽松、自由的探索氛围。

  三、教学准备

  1、每人准备一个学具袋,内有两个完全一样的直角三角形、锐角三角形、钝角三角形,一个长方形,一个平行四边形,大小各异的任意三角形3个;

  2、量具一张,铅笔一支,剪刀一把;

  3、视频展示台、电脑、实物投影仪。

  四、教学过程

  (一)揭示课题

  师:上一节课我们研究了平行四边形面积的计算方法,怎样计算平行四边形的面积?

  我们是怎样发现这一计算公式的?

  ①学生回忆公式推导过程。

  ②电脑动画演示。

  小结:将图形转化成我们会求面积的图形,是一种重要的数学研究方法。今天我们用同样的办法研究三角形面积的'计算。

  揭示课题——三角形面积的计算

  (二)探究新知

  1、学生操作

  每位同学都一袋学具,看看谁能利用这些图形发现三角形面积的计算方法。

  a、学生动手操作;

  b、老师巡视。

  学生把自己的发现用教具贴在黑板上。

  2、汇报、交流

  师:观察这些图形,你发现了什么?

  a、学生在小组内互相说。

  b、指名说。

  3、推导公式

  师:根据你们的发现,你能推导出三角形面积的计算公式吗?

  学生小组讨论,说说自己是怎样推导的。

  教师根据学生的回答动态演示课件,帮助学生直观建立转化思想,清楚地理解公式推导的由来。

  4、小结

  刚才我们通过剪、拼、割、补等方法,推导出三角形面积计算公式。

  说一说:三角形面积计算公式是什么呢?如果用s表示面积,a、h分别表示底和高,用字母怎样表示公式?

  板书:三角形的面积=底×高÷2=a h÷2

  附板书设计:(略)

三角形的面积教学设计 15

  教材分析三角形的面积计算直接要求学生将三角形转化为已学过的图形推导出面积计算公式。

  学情分析是在学生掌握图形的特征和长方形、正方形、平行四边形面积的计算的基础上学习的。

  教学目标

  1、在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

  2、通过操作、观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。

  3、培养学生的分析、综合、抽象、概括能力和运用转化的方法解决实际问题的能力。

  教学重点

  在理解的基础上掌握三角形的面积计算公式,能正确计算三角形的面积。

  教学难点

  培养学生分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学准备教师:红领巾,直角三角形、锐角三角形和钝角三角形硬纸片各一对。

  学生:直角三角形、锐角三角形和钝角三角形硬纸片各一对,尺子,练习本。

  教学过程

  一、复习准备:

  1、教师:同学们,前面我们已经学了哪些平面图形的面积计算公式?

  谁能说说长方形和平行四边形的面积计算公式是怎样的?随着学生的回答板书:

  长方形的面积=长×宽。

  平行四边形的面积=底×高。

  2、出示红领巾。

  (1)教师:这条红领巾是什么图形,它的面积是多少?你能猜一猜吗?

  (2)教师:同学们猜了那么多答案,哪个是正确的呢?我们需要计算后才能作出正确的判断。今天这节课,我们就一起来研究三角形面积的计算。板书课题:三角形面积的计算。

  二、合作探究:

  1、出示直角三角形、锐角三角形和钝角三角形纸片,提问:这3个三角形分别是什么三角形?

  2、探究三角形面积计算公式。

  教师:我们学习过哪些求面积的方法?(数方格和转化的方法)

  教师:同学们,那就用你喜欢的方法推导三角形面积公式。引导学生运用所学的方法探究三角形面积计算公式,并组织学生分组合作。

  ①如果是用数方格的方法,那就在方格纸上进行计算。(教师巡视,对个别学生进行指导)

  ②如果是用拼摆转化的'方法,那请同学们拿出老师为你们准备的三角形进行计算。组织学生开展操作活动。(教师巡视,对个别学生进行指导)

  三、探讨交流。

  1、组织全班学生进行交流,说明推导公式的过程。

  2、让数方格小组说明推导的公式及过程。(我们先计算出三个图形的面积,再分别量出它们的底和高,发现它们的面积都可以用底×高÷2表示。所以我们小组觉得三角形的面积公式应该是:底×高÷2。

  3、让转化小组说明推导的公式和过程。(我们将两个完全一样的锐角三角形拼成一个平行四边形,其中三角形的底和高分别是平行四边形的底和高,因为平行四边形的面积公式是底×高,而这个平行四边形是由两个相同的三角形拼成,所以三角形的面积公式是:底×高÷2。钝角三角形和直角三角形的面积公式也一样。

  4、在讲台上演示用两个相同三角形推导的过程,让学生进一步理解上述同学和推导思路,看清楚转化的过程。

  5、引导转化小组学生总结三角形面积的计算公式,同步板书:

  两个相同的三角形=一个平行四边形。

  平行四边形的面积公式=底×高。

  三角形的面积公式=底×高÷2。

  用字母表示公式:s=ah÷2。

  6、教学例题2。

  四、巩固练习。

  (1)解答练习题"做一做"。之后教师指定学生回答,并集体订正。

  (2)回顾:这节课我们共同研究了什么?怎样求三角形的面积?三角形的面积计算公式是怎样推导出来的?

【三角形的面积教学设计 】相关文章:

三角形的面积教学设计08-25

《三角形的面积》教学设计优秀11-01

《三角形面积》的教学设计优秀10-23

《三角形的面积》教学设计15篇03-17

三角形的面积教学设计必备15篇08-26

三角形的面积教学设计(精华15篇)10-23

圆的面积的教学设计09-29

梯形的面积教学设计08-15

《圆的面积》教学设计07-11