体积教学设计

时间:2024-10-15 01:53:40 教学设计 我要投稿

体积教学设计

  作为一名为他人授业解惑的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。教学设计应该怎么写呢?下面是小编为大家收集的体积教学设计,希望对大家有所帮助。

体积教学设计

体积教学设计1

  教学内容:

  九年义务教育六年制小学数学第十二册P32页。

  教学目标:

  1、通过练习,使学生进一步理解和掌握圆锥体积公式,能运用公式正确迅速地计算圆锥的体积。

  2、通过练习,使学生进一步深刻理解圆柱和圆锥体积之间的关系。

  3、进一步培养学生将所学知识运用和服务于生活的能力。

  教学重点:

  灵活运用圆柱圆锥的有关知识解决实际问题。

  教学难点:

  同教学难点。

  设计理念:

  练习的过程是学生将所学知识内化、升华的过程,练习过程中既有基础知识的合理铺垫,又有不同程度的提高,练习的内容有明显的阶梯性。力求使不同层次的学生都学有收获。

  教学步骤、教师活动、学生活动

  一、复习铺垫、内化知识。1. 圆锥体的体积公式是什么?我们是如何推导的?

  2.圆柱和圆锥体积相互关系填空,加深对圆柱和圆锥相互关系的理解。

  (1)一个圆柱体积是18立方厘米,与它等底等高的圆锥的体积是()立方厘米。

  (2)一个圆锥的体积是18立方厘米,与它等底等高的圆柱的体积是()立方厘米。

  (3)一个圆柱与和它等底等高的圆锥的体积和是144立方厘米。圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

  3.求下列圆锥体的体积。

  (1)底面半径4厘米,高6厘米。

  (2)底面直径6分米,高8厘米。

  (3)底面周长31.4厘米.高12厘米。

  4、教师根据学生练习中存在的问题,集体评讲。同座位的同学先说一说圆锥体积公式的推导过程。

  学生独立练习,互相批改,指出问题。

  学生交流一下这几题在解题时要注意什么?

  二、丰富拓展、延伸练习。1.拓展练习:

  (1)把一个圆柱体木料削成一个最大的圆锥体木料,圆锥的体积占圆柱体的'几分之几?削去的部分占圆柱体的几分之几?

  (2)一个圆柱体比它等底等高的圆锥体积大48立方厘米,圆柱体和圆锥体的体积各是多少?

  2.完成31页第5题。讨论下列问题:

  (1)圆柱和圆锥体积相等、底面积也相等,圆柱的高和圆锥的高有什么关系?

  (2)圆柱和圆锥体积相等、高也相等,圆柱的底面积和圆锥的底面积有什么关系?

  3.分组讨论:圆柱的底面半径是圆锥的2倍,圆锥的高是圆柱的高的2倍,圆柱和圆锥的体积之间有什么倍数关系?

  学生分组讨论,教师参与其中,以有疑问的方式参与讨论。

  三、充分提高,全面升华。

  1.展示一个圆锥形的沙堆,小组讨论一下用什么方法可以测量出它的体积。

  2.教师给每一组一小袋米。让学生在桌子上堆成一个近似的圆锥体,通过合作测量的形式求出它的体积。

  3.讨论练习八蒙古包所占空间的大小的方法。

  (1)蒙古包是由哪几个部分组成的?

  (2)上部的圆锥和下部的圆柱有哪些相同的地方,有哪些不同的地方?

  (3)同学们能独立地求出蒙古包所占的空间的大小吗?请试一试。

  4.交流一下本节课的收获。

  学生分组讨论后动手实践并计算。

  学生先交流。

  四、全课总结,内化知识。

  1.提问:

  (1)同学们掌握了圆锥体的哪些知识?

  (2)你用圆锥体的体积的有关知识解决现实生活中的哪些问题?

  2.学有余力的同学思考38页思考题。

  3.作业:练习八6、7、8

  学生独立练习

体积教学设计2

  教学内容:九年义务教育六年制小学数学第十二册第106-107页

  教学目标:1.进一步理解常见几何体的体积计算公式及其推导过程,体会相关体积公式的内在联系,感受探索几何体体积计算方法的一般策略;

  2.在解决问题的过程中,发展学生灵活地应用相关数学知识和方法的能力;

  3.进一步感受数学与生活的密切联系,体会学习数学的重要性。

  教学重点:理解和掌握几何体的体积计算公式及其推导过程。

  教学难点:正确选用表面积和体积计算公式解决实际问题。

  设计理念:本节课引导学生回忆体积计算公式的推导过程,经历知识的整理过程,完善认知结构,感受数学思想方法的奥妙;创设一系列的.问题情境,引导学生把所学的数学知识应用到生活中去,解决身边的数学问题,让学生了解数学在现实生活中的作用,体会学习数学的重要性。

  教学步骤教师活动学生活动

  一、揭示课题

  这节课我们复习立体图形的体积计算。

  二、回顾与整理

  1.提问:你能说一说各立体图形体积的计算公式吗?

  (板书公式)

  2.请大家回忆一下各立体图形体积公式的推导过程,想一想它们之间的联系,与同学们进行交流。

  3.提问:你认为这些计算公式哪一个是最基础的?为什么?

  能不能用一个公式统一表示长方体、正方体和圆柱体的体积计算方法?你是怎样想的?口答计算公式

  回忆推导过程,

  分组讨论

  汇报交流

  三、练习与实践

  1.求下面各立体图形的体积和表面积。

  (1)棱长是6厘米的正方体

  (2)长方体的长是6分米,宽是5分米,高是1.2米

  (3)底面半径3分米、高5分米的圆柱

  (4)底面周长12.56厘米,高0.3分米

  2.学生解答后提问:

  “第一个正方体的表面积和体积相等”这句话对吗?为什么?

  你能说说表面积和体积的区别吗?(含义、计算方法、计量单位)

  学生独立解答

  判断说理

  进一步比较表面积和体积

  解题以后你还有什么体会?

  (认真审题、正确选择方法、细心计算)

  3.填一填。

  (1)小明用小正方体魔方搭一个大正方体,至少需要()个魔方。这个大正方体的表面积是原来小正方体的()倍。

  (2)将1立方分米的大正方体切成体积是1立方厘米的小块,并将这些小块拼成一排,能摆()米长。

  A、10B、100C、1000D、1

  (3)圆锥体的底面积缩小3倍,高扩大3倍,体积()。

  A、缩小3倍B、不变C、缩小9倍D、无法确定

  (4)等底等高的圆柱和圆锥的体积相差16立方米,这个圆柱的体积是()立方米。

  A、16B、48C、32D、24

  4.解决实际问题.

  (1)一个长方体沙坑,长5米,宽1.8米。要填40厘米厚的沙,每立方米沙重1.5吨。这个沙坑大约要填沙多少吨?

  (2)学校有一个圆柱形状的储水箱,它的侧面由一块边长6.28分米的正方形铁皮围成。这个储水箱最多能储水多少升?(接缝略去不计)

  (3)一种计算机包装箱,标明的尺寸是380×266×530。它的体积是多少立方分米?做这个包装箱至少需要多少平方分米硬纸板?(用计算器计算,得数保留两位小数)

  提问:第1题求需要沙子的重量,先要求出什么?第2题呢?第3题的两个问题有什么不同?

  解决这些问题,你认为要注意什么问题?

  谈谈解题体会

  学生填空后说说想的过程。

  学生独立解答后,

  分组交流解题方法。

  四、课堂总结。

  表面积和体积有什么区别?在复习过程中,你觉得还有哪些困难?

  五、布置作业。

  P.106—107第9、11题学生独立解答,

  反馈思路及方法

体积教学设计3

  【教材依据】

  本节课是北师大版小学数学第八册第四单元“长方体(二)”中的一个内容。是在学夕了长方体、正方体的特征及表面积和体积、容积的概念及其进率的基础上来开展学夕的。长方体、正方体体积的计算,是学生形成体积概念、掌握体积的计量单位和计算各种几何形体体积的基础,学生在探究和操作活动中学会长方体和正方体的体积计算方法。教科书重视引导学生经历知识的探究过程,引导学生探索长方体体积的计算方法。

  一、设计思路

  1、指导思想

  根据新课标设计理念“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。遵循不同学生获得不同发展理念,给学生提供个性化的学夕机会。本节课我首先安排了长方体体积与长方形面积的类比,由此启发学生猜测长方体的体积可能与长、宽、高有关;然后变化长方体的长、宽、高中的一个量,比较体积的变化,使学生分别体会到“宽、高不变,长变短了,体积变小了”“长、高不变,宽变短了,体积变小了“长、宽不变,高变短了,体积变小了”,对体积的计算产生猜想,让学生经历猜想、操作的思考过程。第二个环节是通过猜想与验证,得出长方体体积的计算公式;第三个环节是探索正方体体积计算公式。

  2、学夕目标

  知识与技能:通过猜想验证的方法探索并掌握长方体,正方体体积的计算方法,能正确计算长方体、正方体的体积。

  过程与方法:通过返回认知原点,打通知识间本质联系,将繁杂的数学知识变得更为简单。

  情感态度与价值观:通过传递科学的研究方法,获取数学思想,提升解决问题的实践能力。

  3、教学重点与难点

  重点:探索并掌握长方体和正方体的计算方法,能正确计算体积。

  难点:理解体积单位的个数与体积之间的关系

  教学准备

  PPT课件、1立方厘米的正方体若干、1立方分米的正方体1块。

  教学过程

  一、创设情境,导入新课

  1.出事情景图。师:今天学夕什么?(长方体的体积)你们怎么知道的?对,这就是观察,生活中遇到很多事情都是通过观察获取信息。

  2.看到这个内容,你有什么想知道的?

  师:什么是长方体的体积?长方体的体积怎么求?学夕了长方体的体积有什么用?

  (师:我们学夕的时候就带着这些问题,有目的的去学夕。)

  3.现在,请问什么是长方体的体积?(板书:长方体的体积)

  长方体所占空间的大小就是长方体的体积。

  有的同学看到这个内容后就在思考

  4.插入语音:体积,体积,怎么就叫体积呢?怎么不叫体和,体差,体商呢?(配合着老师的手势)

  师:真的,你们想过没有?(预设:体积都是通过相乘才得到的

  。嗯~好像很有道理。)

  二、探究新知

  师:老师前两天收了一个快递,看看,是什么形状?这个快递占多大空间?我想请同学们帮忙来解决这个问题。我已经把它画了下来。

  师:求快递所占空间的大小,其实求得就是?(体积)

  1.通过观察你知道了什么信息?

  生:知道了这个长方体的长是5cm,宽3cm,高4cm。

  师:嗯,他知道了长方体的长、宽、高。

  长方体的体积可能是谁x谁呢?大家大胆的猜想一下。(板书:猜想)

  (3+4+5)x4或(5×3+5×4+3×4)或5x3x4个可能吗?这个是什么的计算方法?)(若只有一人回答,师:你们只猜到这个一个啊)

  师:这几个猜想可能都正确吗?最多对几个?(1个)

  师:也有可能?(1个都不对)

  2.师:这些只是大家的猜想,猜想在数学学夕中是必要的,但我们仅靠猜测就能得到结论吗?(不能)我们需要(预设学生答::验证)(板书:验证)

  师:怎么验证呢?我们一起回顾一下。

  师:我想知道这只铅笔的长度,我们会用尺子量?

  用1cm长度单位来量,有几个1cm就有几个长度单位。

  我想知道一个长方形的面积是多少,可以怎么办?

  预设:量出长和宽的长度,用长x宽。

  师:我们知道长方形的面积公式后可以用长x宽,最开始不知道是用长x宽时,我们是怎么得到它的面积?

  (预设:用数格子的方法。)

  师:多大的格子?要有一个标准,我们一般用面积是1平方厘米,1平方分米,1平方米这样的正方形作为面积单位。有几个面积单位,面积就是多少。

  预设:铺不满怎么办?用小一点的面积单位)

  师:如果用面积是1cm的面积单位来量,这个长方形的面积是多少?

  师:求面积的的时候,用面积单位来量,有几个面积单位,面积就是多少?

  如果我们想知道长方体的体积,怎么办呢?

  预设:用体积单位来量。

  3.师:那我们用多大的体积单位合适呢?

  预设:1立方分米,因为这个长方体的单位是dm

  师:(出示ppt)这是一个体积为1dm3

  的体积单位,怎么量这个长方体的体积呢?

  学生思考,并同桌交流。

  请一组同学展示:1人摆1人讲解,互相配合。

  预设:先沿着长摆5个,挨着一共摆3排,然后摆4层。(板书:一排5个,摆3排,摆4层)

  师:沿着长摆5个,沿着宽摆3排,沿着高摆4层。

  师:快速告诉老师,一共用了多少个体积单位?

  预设:60个

  师:怎么计算的`?

  预设:一排5个x3排x4层=60个

  师:这个长方体的体积就是多少?

  预设:60立方分米。

  师:那我们来看一个哪个猜想可能是正确的?

  预设:5×3×4(把其他的擦掉。(配合手势)那你们讲一讲他们之间有什么关系?

  预设1:长是5dm,所以要摆5个。宽是3dm,所以需要3排。高是4dm,所以需要摆4层。

  预设2:生说不出来,

  师:这两个5分别表示什么?5个和5排有没有关系?有什么关系?

  预设:长是5dm,所以要摆5个。

  师:长是5dm,为什么要摆5个?

  生:这个体积单位的棱长是1dm,5个1dm才是5dm

  师:(借助手势)接下来,你们讲讲3和4之间的关系。(生交流讨论)

  师:所以共包含60个体积单位,体积就是60立方分米。

  师:回顾一下是怎么得到这个长方体体积的?

  预设:5dm,3dm,4dm可以知道一排摆几个,摆几排,摆几层,一共需要60个体积单位,体积就是60dm3

  看来这个猜想是正确的。

  4.师:下次如果遇到另一个长方体,你觉得还需要摆吗?(预设:不需要。)

  师:(出示ppt)老师这还有一个长方体,怎样可以得到它的体积?

  预设:14×10×5

  师:为什么用14×10×5就得到它的体积了?(你是怎么想的?)

  生:我是根据上面的长方体的计算方法得到的,前一个长方体的体积=长x宽x高,所以这个长方体体积也可以这样计算。

  师:前一个长方体5指的是5个,这个14呢?

  预设:14个

  师:也就是说长14cm,可以知道摆14个

  预设2:长是14cm,就可以沿着长摆14个

  师:虽然看着我们没有摆,其实摆了没有?在哪摆的?(预设:在心里摆的)

  师:物体包含几个体积单位,它的体积就是多少。

  师:这还有一个长方体,它的体积怎样计算?

  预设:25×10×10

  这个长方体呢(没有长度)要求体积需要知道什么信息?

  预设:要知道长、宽、高。

  师:告诉你之后怎样求体积?

  师:也就是说长方体的体积=长x宽x高

  用字母表示:(大写字母V):V=abh

  师:提到长方体就一定会想到正方体。正方体的体积怎样计算?

  同学们可以用今天学夕的知识探究正方体的体积如何计算?

  预设:棱长x棱长x棱长

  师:为什么?

  预设:正方体是特殊的长方体,长方体的长x宽x高,其实就是正方体的棱长x棱长x棱长。

  预设:如果用体积单位来量的话,边长是几,一排就要摆几个,摆几排,摆几层,棱长x棱长x棱长是所需体积单位的个数,所以正方体体积就是棱长×棱长x棱长。

  师:你们太聪明了。我还以为你们之前学过呢!

  师:用字母表示?

  预设:V=

  axaxa

  V=

  a3

  师:读作:a的立方,表示:三个a相乘

  V=a3,表示:正方体的体积=棱长x棱长x棱长

  三、课堂练夕、巩固新知

  2、用体积是1的小

  cm3

  正方体摆成如下的图形,它们的体积各是多少?

  3、一个长方体水池,底面长1.2m,宽6dm。如果要向这个池子里注入2dm高的水,需要多少升水?

  四、回顾总结、反思评价

  1.通过本节课的学夕你有什么收获?你想提醒大家注意什么?

  2.这些知识可以帮助我们解决哪些问题?

  作业设计:1.完成教材第43页“练一练”第4、5题。

  2.预夕下一节。

  板书设计:

  长方体的体积

  长方体的体积=长x宽x高

  V=abh

  正方体的体积公=棱长x棱长x棱长

  V=

  axaxa

  V=

  a3

  教学反思

  成功之处:

  本节课,我最满意的是长方体和正方体体积的探索过程及结果。由于在前几节课拼搭立体图形中,学生曾用8个小正方体既搭出了长方体又搭出了正方体,因此在本节课中,有好几个小组的学生通过同次的操作活动,就能同时得出长方体和正方体的体积计算公式,并且正确地阐述了原因,同时学生能根据长方体与正方体的关系——正方体是长、宽、高都相等的长方体,进一步揭示了正方体的体积=棱长×棱长×棱长与长方体的体积=长×宽×高之间的联系与区别。在这一环节的操作探索活动中,学生通过数据的记录与分析,发现长方体体积与长、宽、高(正方体体积与棱长)之间的关系,知道了求长(正)方体体积。所具备的条件,并根据数据抽象归纳出体积公式,这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。同时在整个的观察、操作、探索的过程中,更进一步地理解与掌握长方体与正方体之间的联系与区别,有助于知识体系的重组与构建,学生的空间观念也得到了进一步发展,这也是本节课的意图之一。

  不足之处:部分学生汇报的语言不准确。在本节课的学生汇报环节中,学生在汇报时语言表述有些不清楚,且汇报夕惯不是很好,这跟学生平时在这个方面得到的训练机会不多有关系,也跟老师当时的心态—稍显急躁有着一定的关系。

  再教设计:再教学时,教师要给足学生说的时间,让学生养成良好的汇报夕惯。教师不要怕占用时间过多,完不成教学任务,教学一定要以学生的学为主体。只有学生学会了,本节课才是成功的。

体积教学设计4

  教学目标:

  1、使学生熟练掌握圆柱的体积公式,能正确计算圆柱体积或圆柱形容器的容积。

  2、使学生体验解决问题策略的多样化,不断激发学生以数学的好奇心和求知欲。

  3、培养学生分析问题,解决问题及实践应用能力。

  教学重点:

  掌握有关圆柱的表面积和体积的计算,会综合运用

  教学难点:

  运用所学的知识解决生活中的实际问题。

  学习过程:

  一、复习回顾

  1、下列图形的面积公式是什么?

  长方形的面积=

  正方形的面积=

  平行四边形的面积=

  梯形的面积=

  圆的`面积=

  2、长方体的表面积=

  圆柱的表面积=

  二、探究圆柱的体积公式:

  圆柱的体积= 。

  如果圆柱的体积用V表示,底面积用S表示,高用h表示,则圆柱的体积公式用字母表示为。

  如果圆柱的底面半径为r,高用h表示,则圆柱的体积公式为。

  三、例题学习:

  把一个棱长6分米的正方体木块切削成一个体积最大的圆柱体,这个圆柱的体积是多少立方分米?

  例2、一个底面半径为3分米,高为8分米圆柱形水槽,把一块石块完全浸入这个水槽,水面上升了2分米,这块石块的体积是多少?

  四、课堂练习

  1、求下面圆柱的体积

  1)底面积0.6平方米,高0.5米2)底面半径4厘米,高12厘米

  3)底面直径5分米,高6分米

  2、一个圆柱形量桶,底面半径是5厘米,把一块铁块从这个量桶里取出后,水面下降3厘米,这块铁块的体积是多少?

体积教学设计5

  基本信息

  课题圆锥的体积

  作者及工作单位殷兴均达州市宣汉县南坝镇第二中心小学

  教材分析

  《圆锥的体积》是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。

  学情分析

  六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习《圆锥体积》之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的.学习有一定的难度。

  教学目标

  1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

  2、运用实验法在合作探究中体会等底等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。

  3、体会数学与生活的密切联系,感受探究成功的快乐。

  教学重点和难点

  重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。

  难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。

  教学过程

  教学环节

  教师活动 预设学生行为 设计意图

  一、复习准备

  1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?

  2、圆锥有什么特点?(同时出示幻灯)

  3、在这个圆锥体中,几号线段是圆锥体的高。

  4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。

  2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条高,从顶点到底面圆心的垂直距离。

  3.学生手势出示

  4.想

  复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。

  二、创设情境

  出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)

  引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。 联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。

  三、学习新课

  1、猜想体积大小

  实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。

  圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。

  2、理解等底等高

  我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?

  底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础

  3、猜想关系、实验验证

  同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。

  谁来汇报一下,你们组是怎样做实验的?

  你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验。

  学生汇报

  用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。

  4、总结公式

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  V锥=V柱×1/3=sh×1/3

  “sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。

  5、全面验证

  是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?

  (课件演示)等底不等高、等高不等底

  为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?

  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)

  在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。

  6、圆锥体积公式的实际应用

  (1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米.它的体积是多少立方厘米?

  (2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)

  (3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?

  (4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?

体积教学设计6

  教学内容:

  九年义务教育六年制小学数学第十二册第48-50页。

  教学目的:

  1.使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2.培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3.向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  教学重点:

  圆锥的体积计算。

  教学难点:

  圆锥的体积公式推导。

  教学关键:

  圆锥的体积是与它等底等高的圆柱体积的二分之一。

  教具准备:

  投影仪、小黑板、等底等高的圆柱和圆锥空心实物各一个。圆台、棱台实物各一个。

  学具准备:

  等底等高的圆柱和圆锥空心实物各一个

  教学过程:

  一、复习

  1.圆柱的体积公式是什么?

  2.底面积是19平方厘米,高是20厘米,求圆柱的体积是多少立方厘米?

  [说明:圆锥的体积,是与它等底等高的圆柱体积的1/3。因此,先复习圆柱的体积计算方法,抓住所学知识间的内在联系,为学习圆锥的体积计算方法作了很好的铺垫。]

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

  板书:圆锥的体积

  [说明:设疑激趣,激发学生探求新知识的欲望。l

  二、新课教学

  师:请大家把书翻到第48页,想一想:圆锥的底面是什么形状的?什么是圆锥的高?(生看书)

  投影出示下图:

  师:圆锥的底面是什么形状?

  生:圆锥的底面是圆形的。

  师:对。什么是圆锥的高呢?

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师演示:将刚才出示的圆锥图上的高往外移,标上字母h,如图所示:

  师:有人认为,(指母线)这条就是圆锥的高,你们说对吗?为什么?

  生:我认为不对,因为高是指从圆锥的顶点到底面圆心的距离,它不在圆心上,所以不是圆锥的高。

  师:说得很好。在我们日常生活中,你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。(出示实物图)如:沙堆、粮堆、铅锤,还有圆柱型铅笔用卷刀卷过的部分等等。谁上来指一指这支铅笔圆锥型部分?(略)

  师:对圆锥我们已经有了一个初步的认识。现在,我们一起来看一组圈,请你判断这些图中哪些是圆锥?哪些不是?为什么?

  投影出示下列图形:

  生:我认为②、③、④三个图是圆锥,①、⑤两个图不是。

  师:第②、③两个图与第④个图并不一样,为什么说它们也是圆锥呢?

  生:我想第②个图是倒放的圆锥,第③个图是斜放的圆锥。

  师:说得有道理。你能不能将这个圆锥摆正。

  (一名学生到前面旋转投影片,将圆锥图形一一摆正)

  师:拿出实物模型(圆台、棱台)。说:大家看,①、⑤两个图其实就是这两个物体,它们究竟叫什么呢?等你们以后学了更多的知识就知道了。

  [说明:圆锥的认识,教师是让学生通过看书自学去获得的。教师通过不断设疑,层层深入,帮助学生对书上内容逐步深化;然后,以生活中的圆锥形物体,进一步帮助学生加深认识;最后,用一组判断题要学生鉴别哪些是圆锥,哪些不是圆锥,符合学生的认知规律,从而达到知识的强化目的。]

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积(出示教具)。这是一个空心圆锥,这是一个空心圆柱。它们之间有什么关系呢?我们先来比较它们的底面。(师演示:将圆锥和圆柱的底面合在一起,完全重合。)

  生:它们的底面是相等的。

  师:我们再来比较它们的高。(师演示:用一把直尺架在两者之间,然后分别量一量它们的高。)

  生:它们的高也是相等的。

  师:那也就是说,这两个圆柱和圆锥是等底等高的。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,注意大拇指不要伸进去,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1.实验器材中,圆锥的底面和圆柱的底面有什么关系?官们的高有什么关系?

  2.圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  3.圆锥的体积怎么算?体职公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的

  器材中,圆锥的底面和圆柱的底面有什么关系?它们的高有什么关系?

  生:在实验器材中,圆锥的底面和圆柱的底面是相等的,它们的高也是相等的。

  师:我们再来讨论第2个问题。圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的.1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满水,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是V=1/3Sh。

  师:请大家把书翻到第49页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积V等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和离不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。这两个是等底不等高的圆锥和圆柱,边两个是等高不等底的圆锥和圆柱,我请两个同学上来用刚才做实验的方法试试看。

  (请两名学生上讲台示范实验)

  师:现在大家看清楚了吗?等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。

  生齐答:不是。

  [说明:变教具为学具,让学生亲自动手实验,使听党、视觉、触觉等各种感官一起参与活动,通过自己亲自动手操作,努力去探索圆锥体积的计算方法,这样的学习,学得活,记得牢,既发挥了教师的主导作用,又充分体现了学生的主体地位。]

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系,口答三道题目。师:出示小黑板,口算。

  求与下面圆柱等底等高的圆锥体的体积。

  1.圆柱体的体积是3立方厘米;

  2.圆柱体的体积是2.4立方分米;

  3.圆柱体的体积是1/2立方米;"

  生答略。

  师:大家回答得很好。接下来,请大家用圆锥的体积计算公式来解答一道应用题。师出示第50页例1。

  例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一-样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验4知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即V=1/3Sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

  三、巩固练习

  师:现在我们一起来做填表练习。

  出示小黑板:

  1. 填表:

  底面积S (平方米) 高h(米) 圆锥的体积(立方米)

  15 9 ()

  16 0.6 ()

  师:两题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

  2.求下面各圆锥的体积。

  (1)半径是3米,高是2米。

  (2)直径是4分米,高是6分米。

  (3)周长是6,28厘米,高是3厘米。

  3.有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

  [说明:练习有层次,形式多样。最后一个层次的练习,又回到动手实验上,而且强化的仍然是本节课最基本、最关键的内容。]

  师:这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用V=1/3Sh这个公式算圆锥体积时,要特别注意什么。

体积教学设计7

  [教学目标]

  1、在具体的情境中自主探索并掌握长方体体积公式,能应用公式正确计算长方体体积,并解决一些简单的实际问题。

  2、通过操作、观察、猜想和归纳等数学活动,经历体积公式的探索过程,不断积累立体图形的学习经验,增强空间观念,发展数学思维。

  3、进一步体会数学与实际生活的联系,获得学习成功体验,激发数学学习兴趣。

  [教学准备]

  教师准备用1cm3小正方体拼摆成的长方体模型,长方体包装盒,多媒体课件;各小组准备1cm3的正方体和实验记录单。

  [教学过程]

  一、创设情境,导入新课

  谈话:上节课,我们已经认识了体积和体积单位。今天,老师带来了一个用1cm3的小正方体摆成的长方体(出示长4cm、宽3cm、高2cm的长方体模型),你有办法知道这个长方体的体积是多少立方厘米吗?

  明确:要知道一个物体的体积,就要看这个物体中包含多少个体积单位。

  演示:按长方体模型的长、宽、高各含有的小正方体个数,算出长方体的体积)

  揭题:刚才,老师的这个长方体模型是用1立方厘米的小正方体摆成的,但生活中有很多长方体或正方体的物体是不能分割的。譬如,这个长方体的包装盒(出示),它的体积又有什么办法知道呢?这节课,我们一起来研究长方体和正方体体积的计算方法。(板书课题)

  [设计意图:通过数一个长方体中含有的1cm3小正方体的个数,使学生进一步理解求一个物体的体积,就是求这个物体包含的体积单位的个数。同时也为后面有序地数出小正方体的个数作一些孕伏。]

  二、操作探究,发现规律

  启发:在三年级,我们学过长方形面积,还记得是怎样推导长方形面积公式的吗?

  学生回忆后,电脑演示推导长方形面积公式的过程。

  出示长方体直观图,讨论:你认为,长方体的体积可能与它的什么有关?我们可以用怎样的方法研究长方体的体积?

  学生可能想到长方体的体积与它的长、宽、高有关;可以把长方体分割成若干个棱长1厘米、1分米或1米的正方体,长方体中含有体积单位的个数就是它的体积。

  谈话:同学们的想法有没有道理呢?我们来看大屏幕,(多媒体演示)我们来想象一下:如果一个长方体的长增加或缩短,它的体积会怎样?如果改变它的宽或者高,体积会发生怎样的变化?

  谈话:看来,同学们的猜想确实有道理。要研究长方体的体积与它的长、宽、高到底有什么关系,我们需要一些长方体作为研究对象。下面,我们一起来摆出一些长方体。

  明确活动要求:

  (1)同桌合作,用若干个1cm3的正方体任意摆出4个不同的长方体并编上序号。

  (2)观察摆出的长方体的长、宽、高,所用小正方体的个数,以及它们的体积各是多少,完成记录表。

  (3)填完表格后,同桌核对数据,并交流自己的发现。

  学生按要求操作、交流,教师巡视。

  组织反馈。(指名汇报收集到的数据,并以其中的一个长方体为例,说说怎样看出它的长、宽、高的厘米数的。正方体的个数又是怎样数的,摆出的长方体的体积是多少,根据表中数据,自己有什么发现。)

  板书:长方体的体积=长×宽×高。

  启发:同学们通过用1cm3的小正方体摆长方体的活动,发现了长方体体积等于它长、宽、高的乘积。是不是所有的长方体的体积都是它长、宽、高的乘积呢?这就需要我们进一步验证。

  [设计意图:引导学生由探索长方形面积的经验,通过类比把探索平面图形面积的方法迁移到立体图形中来,既有利于培养学生初步的推理能力,也是具体的学习方法的指导;用1cm3的小正方体摆长方体的`操作,旨在引导学生通过操作和交流,初步发现长方体体积与它的长、宽、高的关系,并在这一过程中,培养动手操作能力,发展数学思考,感悟归纳的思想方法。]

  三、再次探索,验证规律

  出示4×1×1的长方体图,谈话:这是一个长4cm、宽1cm、高1cm的长方体,你知道它的体积是多少吗?

  学生可能想到用4个1cm3的小正方体摆成一排正好可以得到这个长方体,它的体积是4cm3;也可能用“4×1×1”算出它的体积。

  根据学生的回答在长方体上画出相应的分割线,确认这个长方体的体积是4cm3。(见图1)

  出示4×3×1的长方体图,谈话:这个长方体的长、宽、高分别是几cm?如果不用1cm3的小正方体,你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先在长方体上画一画,再和同学交流。

  提问:这个长方体的体积是多少?你是怎样想的?(根据学生的回答出示图2)

  明确:在这个长方体中,沿着长一排可以摆4个1cm3的小正方体,沿着宽可以摆3排,所以,这个长方体的体积可以用“4×3×1”来计算。

  出示4×3×2的长方体图,谈话:我们再来看这个长方体,它的长、宽、高分别是几cm?你能想象出这个长方体中含有多少个1cm3的小正方体吗?自己先试一试。

  反馈:这个长方体的体积是多少cm3?你是怎样想的?(学生的回答后,出示图3)

  提问:如果用的小正方体来摆第3个长方体,沿着长一排可以摆几个?沿着宽可以摆几排?沿着高可以摆几层?它的体积可以怎样计算?

  再问:如果有一个长方体,长5cm,宽4cm,高3cm,摆出这个长方体一共要用多少个1cm3的正方体?它的体积是多少cm3?

  引导学生用示意图表示出思考过程。

  [设计意图:对三个长方体的探究,引导学生经历了“想象—画图—说理”的过程,使学生随着排数、层数的递增,清晰地体会到长方体的体积与它的长、宽、高的关系。第4个长方体只给出了长、宽、高的数据,意在促使让学生依托已经获得的直观经验,将摆的过程内化为有序地算(数)的过程。至止,长方体体积计算方法已呼之欲出。]

  四、引导概括,得出公式

  提问:通过刚才的活动,你认为长方体的体积与它的长、宽、高有什么关系?我们前面提出的猜想正确吗?

  揭示长方体的体积公式,指出:以后我们可以直接用公式计算长方体的体积。

  讲解:如果用V表示长方体的体积,a、b、h分别表示长方体的长、宽、高,你能用字母表示出长方体的体积公式吗?

  板书:V=abh。

  和同桌说一说你还知道了什么?

  让学生口算各题的得数,并交流计算时的思考过程。

  五、巩固练习,应用拓展

  1、完成“试一试”。

  出示长方体的包装盒,谈话:刚开始上课,我们还不能求这个包装盒的体积是多少,现在你能解决了吗?要求这个长方体包装盒的体积,需要知道哪些条件?有办法知道这些数据吗?

  指导测量、记录数据后独立解答。

  出示正方体的包装盒,这是一个棱长12cm的正方体纸盒,它的体积是多少cm3?

  学生独立完成后,组织反馈。

  2、完成第26页“练一练”第1题。

  先让学生看图说一说每个长方体或正方体的长、宽、高(或棱长)各是多少cm,再口算出它们的体积,并数一数每个立体图形是由多少个1cm3的小正方体摆成的。

  3、完成练习六第2题。

  出示题目,让学生自由读题。

  提问:计算冷藏车的容积,为什么要从里面量?

  学生独立完成计算,并组织反馈。

  六、全课小结,梳理学法

  提问:今天,我们一起学习了什么?通过这节课的学习,你有哪些收获?回顾这堂课的学习过程,我们是怎样探索出长方体的体积公式的?

  七、课堂作业

  练习六第1题。

体积教学设计8

  【教学过程】

  一、复习

  1、圆柱的体积公式是什么?用字母怎样表示?

  2、求下列各圆柱的体积。(口答)

  (1)底面积是5平方厘米,高是6厘米。

  (2)底面半径4分米,高是10分米。

  (3)底面直径2米,高是3米。

  师:刚才我们复习了圆柱的体积公式并应用这个公式计算出了圆柱的体积,那么圆柱和圆锥有什么关系呢?这节课我们就来研究圆锥的体积。

  师:圆锥的底面是什么形状的?什么是圆锥的高?请拿出一个同学们自己做的圆锥讲一讲。

  生:圆锥的底面是圆形的。

  生:从圆锥的顶点到底面圆心的距离是圆锥的高。

  师:你能上来指出这个圆锥的高吗?

  师:很好,因为圆锥的高我们一般无法到里面去测量,所以常常这样量出它的高。

  师:你们看到过哪些物体是圆锥形状的?(略)

  师:对。在生活中有很多圆锥形的物体。

  师:刚才我们已经认识了圆锥。现在我们再来研究圆锥的体积。请同学们拿出一对等底等高圆锥和圆柱。想一想用什么办法能研究出等地等高的圆锥和圆柱的体积之间存在什么关系,然后把你的想法放在小组中交流,再分工进行实验。下面我们采用实验的方法来推导圆锥体的体积公式(边说边演示),先在圆锥内装满水,然后把水倒入圆柱内,看看几次可将圆柱倒满。现在我们分小组做实验,大家边做边讨论实验要求,如有困难可以看书第23页。

  出示小黑板:

  1、圆锥的体积和同它等底等高的圆柱的`体积有什么关系?

  2、圆锥的体积怎么算?体积公式是怎样的?

  学生分组做实验,老师巡回指导。

  师:我们先来回答第一个问题。在你们做实验用的圆锥的体积和同它等底等高的圆柱的体积有什么关系?

  生:圆柱的体积是圆锥体积的3倍。

  生:圆锥的体积是同它等底等高的圆柱体权的1/3。

  板书:圆锥的体积等于同它等底等高的圆柱体积的1/3。

  师:得出这个结论的同学请举手。(略)你们是怎么得出这个结论的呢?

  生:我们先在圆锥内装满沙,然后倒人圆柱内。这样倒了三次,正好将圆柱装满。所以,圆锥的体积是同它等底等高的圆柱体积的1/3。

  师:说得很好。那么圆锥的体积怎么算呢?

  生:可以先算出与它等底等高的圆柱的体积,用底面积乘以高,再除以3,就是圆锥的体积。

  师:谁能说说圆锥的体积公式。

  生:圆锥的体积公式是v=1/3sh。

  师:老师也做了一个同样实验请同学认真看一看。想一想有什么话对老师说吗?请看电视。

  师:请大家把书翻到第42页,将你认为重要的字、词、句圈圈划划,并说说理由。

  生:我认为"圆锥的体积v等于和它等底等高的圆柱体积的三分之一。"这句话很重要。

  生:我认为这句话中"等底等高"和"三分之一"这几个字特别重要。

  师:大家说得很对,那么为什么这几个字特别重要?如果底和高不相等的圆锥和圆柱有没有三分之一这个关系呢?我们也来做个实验。大家还有两个是等底不等高的圆锥和圆柱,请同学们用刚才做实验的方法试试看。

  师:等底不等高或者等高不等底的圆锥体积不是圆柱体积的1/3。师:可见圆锥的体积等于圆柱体积的三分之一的关键条件是等地等高。

  师:下面我们就根据"等底等高的圆锥体积是圆柱体积的1/3"这个关系来解决下列问题。

  例l :一个圆锥形零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  (两名学生板演,老师巡视)

  师:这位同学做的对不对?

  生:对!

  师:和他做的一-样的同学请举手。(绝大多数同学举手)

  师:那么这位同学做错在哪里呢?(指那位做错的同学做的)

  生:他漏写了1/3。用底面积乘以高算出来的是圆柱的体积,圆锥的体积还要再乘以1/3。

  师:对了。刚才我们通过实验知道了圆锥的体积等于同它等底等高的圆柱体积的三分之一,从而推导出圆锥的体积计算公式,即v=1/3sh。我们在用这个公式计算圆锥的体积时,要特别注意,1/3不能漏掉。

  三、巩固练习

  (1)、一个圆锥的底面积是25平方分米,高是9分米,它体积是多少?

  (2)、求圆锥的体积(看图)

  (3)、一个圆锥的底面直径是20厘米,高是8厘米,它体积是多少?(图)师:三题都填对了。接下来我要考考你们,看是不是掌握了今天的知识。

  2、填空。

  (1) 一个圆锥的体积是8立方分米,底面积是2平方分米,高( )分米、。(2)圆锥形的容器高12厘米,容器中盛满水,如将水全部倒入等底的圆柱形的器中,水面高是( )厘米。

  3、选择

  (1) 两个体积相等的等底的圆柱和圆锥,圆锥的高一定是圆柱高的( ) 。

  (2) 把一段圆柱形的木棒削成一个最大的圆锥,削去部分的体积是圆锥体积的( )。

  四、课堂总结

  师:今天,我们学习了什么内容?怎样计算圆锥的体积?

  对,这节课我们认识了圆锥,并推导出了圆锥的体积计算公式。回去以后,先回忆一下今天学过的内容,想一想,在运用v=1/3sh这个公式算圆锥体积时,要特别注意什么。

  五、布置作业

  课外作业:有一个高9厘米,底面积是20平方厘米的圆柱内装满水,用一个与它等底等高的圆锥挤压,最多能挤出多少水?圆柱内还剩多少水?(边做实验边讨论)

  【教学目的】

  1、使学生理解和掌握求圆锥体积的计算公式,并能正确求出圆锥的体积。

  2、培养学生初步的空间观念、逻辑思维能力、动手操作能力。

  3、向学生渗透知识间"相互转化"的辩证唯物主义思想,在联系实际中对学生进行学习目的方面的思想教育。

  【教学重点】

  圆锥的体积计算。

  【教学难点】

  圆锥的体积公式推导。

  【教学关键】

  圆锥的体积是与它等底等高的圆柱体积的三分之一。

  【教具准备】

  多媒体、等底等高的圆柱和圆锥空心实物各一个,水若干。

  【学具准备】

  空心圆锥和圆柱实物各一个,沙土若干。

体积教学设计9

  【学习目标】

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  【学习过程】

  一、板书课题

  师:同学们,今天我们来学习“圆柱的体积”(板书课题)。

  二、出示目标

  本节课我们的目标是:(出示)

  1、探索并掌握圆柱的体积计算公式。

  2、能运用公式计算圆柱的体积,并解决实际问题。

  了达到目标,下面请大家认真地看书。

  三、出示自学指导

  认真看课本第19页到第20页的例5和例6的内容,重点看圆柱体积公式的推导过程和例6解题过程,想:

  1、圆柱的体积公式是如何推导出来的?

  2、圆柱的体积计算公式是什么?用字母如何表示?

  5分钟后,比谁能做对检测题!

  师:认真看书自学,比谁自学的最认真,自学效果最好。下面自学竞赛开始。

  四、先学

  (一)看书

  学生认真看书,教师巡视,督促人人都在认真地看书。

  (二)检测(找两名学生板演,其余生写在练习本上)

  第20页“做一做”和第21页第5题。

  要求:1、认真观察,正确书写,每一步都要写出来。

  2、写完的同学认真检查。

  五、后教

  (一)更正

  师:写完的同学请举手。下面,请大家一起看黑板上这些题,发现问题的同学请举手。(由差-中-好)

  (二)讨论

  1、看第1题:认为算式列对的请举手?

  【圆柱的体积=底面积×高】

  2、看第2题:认为算式列对的举手?你是怎么思考的?

  3、看计算过程和结果,认为对的举手?

  4、评正确率、板书,并让学生同桌对改。

  今天你们表现实在是太好了,老师真为你们感到高兴。老师这里有几道练习题,敢不敢来试一试?(出示)

  六、补充练习:

  1、一个圆柱形钢材,底面积是30立方厘米,高是60厘米,体积是多少立方厘米?

  2、一个圆柱体和一个长方形的体积相等,高也相等,那么它们的底面积()。

  3、把一个圆柱的侧面展开,得到一个正方形,圆柱的底面半径是5厘米,这个圆柱的高是()厘米,体积是()立方厘米。.

  下面,我们就来运用今天所学的知识来做作业,比谁的.课堂作业能做得又对又快,字体还又端正。

  七、当堂训练(课本练习三,第21页)

  作业:第3、4、7、8题写作业本上

  练习:第1题写书上,第2、6、9、10题写练习本上

  八、板书设计

  课题三:圆柱的体积

  圆柱的体积=底面积×高

  课后反思:

  本节课的教学内容是九年义务教育六年级下册的《圆柱的体积》,我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

体积教学设计10

  教学过程:

  一、复习导入。

  1、怎样计算圆柱的体积?(板书公式)

  2、一个圆柱的底面积是60平方米,高15米,它的体积是多少立方米?

  3、出示一个圆锥,请学生说说圆锥的特征。

  4、导入:前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积应怎样计算呢?今天这节课我们就来研究这个问题。(板书课题)

  二、动手测量,大胆猜想。

  1、动手测量,找圆锥和圆柱的底和高的关系。

  师:为了我们研究圆锥体积的方便,每个小组都准备了一个圆柱和一个圆锥。下面请同学们以小组为单位,动手测量一下,你们手中的圆柱和圆锥,看看你能发现什么?

  2、学生动手测量,教师巡视。给予指导。

  3、交流得出结论:圆柱和圆锥等底等高。

  4、猜想等底等高的圆柱和圆锥的体积之间有什么关系?

  三、实验操作,推导出圆锥体积计算公式。

  1、实验操作。

  师:圆锥的体积到底与等底等高的圆柱的体积之间有什么关系呢?我们就用实验来验证我们的猜想。每个小组都准备了米或沙,打算怎么实验,商量好办法后再操作。

  2、学生分组实验,教师巡视。

  3、汇报交流,你们组是怎么做实验的?通过实验你发现了什么?

  4、强调等底等高。

  5小结:不是任何一个圆锥的体积都是任何一个圆柱体积的1/3,必须有前提条件。(板书结论)

  6、练习(出示)

  (1)一个圆柱的体积是1.8立方分米,与它等底等高的圆锥的体积是()立方分米。

  (2)一个圆锥的体积是1.8立方分米,与它等底等高的圆柱的体积是()立方分米。

  7、得出圆锥的体积计算公式。

  8、用字母表示圆锥的体积计算公式。

  三、巩固练习。

  1、计算下面圆锥的体积。(只列式不计算)

  底面积是6.28平方分米,高是9分米。

  底面半径是6厘米,高是4.5厘米。

  底面直径是4厘米,高是4.8厘米。

  底面周长是12.56厘米,高是6厘米。

  2、填空。

  a圆锥的.体积=(),用字母表示是()。

  b圆柱体积的与和它()的圆锥的体积相等。

  c一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分米,圆锥的体积是()立方分米。

  d一个圆锥的底面积是12平方厘米,高是6厘米,体积是()立方厘米。

  3、判断。(用手势表示)

  a圆柱体的体积一定比圆锥体的体积大()

  b圆锥的体积等于和它等底等高的圆柱体的()

  c正方体、长方体、圆锥体的体积都等于底面积×高。()

  d等底等高的圆柱和圆锥,如果圆柱体的体积是27立方米,那么圆锥的体积是9立方米。()

  四、全课小结。

  师:今天这结课学习了什么?通过今天的学习研究你有什么收获?

  五、解决实际问题。

  在建筑工地上,有一个近似圆锥形状的沙堆,测得底面直径是4米,高1.5米。每立方米沙大约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)

体积教学设计11

  教学目标:

  知识目标:

  结合实践活动,认识体积、容积单位之间的进率,会进行体积、容积单位之间的换算。

  能力目标:在观察、操作中,发展空间观念。

  情感目标:

  学生想探究问题,愿意和同伴进行合作交流;乐于用学过的知识解决生活中的相关的实际问题。

  教学重点、难点:

  观察、操作中会进行体积、容积单位之间的换算。

  教学策略:教师引导学生进行自主探究。

  教学准备:图表课件

  教学过程:

  一、导入新课:同学们上节课我们学习了长方体的体积,哪个同学起来说一下体积单位有哪些?引出体积单位。

  二、教学新知:

  1、让学生利用手中的教具摆出正方体。

  1排摆10个,每层正好摆10排,也就是说,每层可以摆100个。高是1分米=10厘米,盒子里正好摆10层。即1分米3 = 1000厘米3, 1升 = 1000毫升。

  2、用以上方式教学立方米与立方分米之间的进率,即体积为1米3的正方体,它的.棱长为1米;也可看成是棱长为10分米的正方体,它的体积是10×10×10=1000分米3,1米3 =1000分米3,1 m3 = 1000 dm3。

  3、填一填表格,比一比了解长度、面积、体积单位之间的联系和区别。

  单位

  相邻两个单位之间的进率

  长度

  米、()、厘米

  10

  面积

  米2、()、厘米2

  体积

  米3、()厘米3

  4、课堂练习

  (1)先让学生独立填一填,再选几道让学生说说思考的方法与过程。

  (2)可以让学生通过计算来分析、比较从而解决问题。

  通过计算第三种包装比较合算。如果学生有其他的比较方式,只要合理,教师应给予肯定和鼓励。

  (3)先让学生联系生活经验,对电视机包装箱上“60×50×40”这个数据信息进行解释,然后再让学生说说自己的想法并计算。体积是60×50×40=120000(立方厘米)

  (4)先让学生独立计算,再说说是怎么想的,实际上就是求1.5米高的水的体积。50×20×1.5=1500(立方米)

  四、课堂小结:

  学习了这节课,同学们有什么感受和体会?

  板书设计:

  1分米3 = 1000厘米3

  1升 = 1000毫升

  1米3 = 1000 分米3

  1m3 = 1000 dm3

体积教学设计12

  教学目的与要求:

  (1)掌握锥体的等积定值,锥体的体积公式。

  (2) 理解"割补法"求体积的思想,培养学生发现问题,解决问题的能力。

  教学重点与难点:

  公式的推导过程,即"割补法"求体积。

  教学方法:

  发现式教学 教具:

  三棱柱模型、多媒体

  1、复习祖暅 原理及柱体的体积公式。

  2、等底面积等高的任意两个锥体的体积。

  (类比于柱体体积公式的得出)。首先研究等底面积等高的任意两个锥体体积之间的关系。

  取任意两个锥体,设它们的底面积都是S,高都是h。

  (创造祖暅 原理的条件)把这两个锥体放在同一个平面α上。这时它们的`顶点都在和平面α的任意平面去截它们,截面分别与底面相似,设截面和底面顶点的距离是h,截面面积分别是S1、S2,那么:

  ∵S1/S=h12/h2,,S2/S=h12/h2,

  ∴S1/S=S2/S,S1=S2。

  根据祖日恒 原理,这两个锥体的体积相等,由此得到下面的定理:

  定理,等底面积等高的两个锥体的体积相等。

  3、三棱锥的体积公式

  为研究三棱锥的体积,可类比于初中三角形面积的求法。

  在初中,学习三角形的面积公式之前,已知有平行四边形的面积公式,为此,将ΔABC"补"成和它同底等高的平行四边形ABDC,然后沿其对角线BC,将平行四边形"分"成两个三角形,由对称性,得到的ΔABC的面积为平行四边形面积的一半,即为:SΔABC=1/2ah,(a其底边长,h为高)

  而今,欲求三棱锥的体积,亦可类比地借助于已知的柱体体积公式。

  能否将三棱锥"补"成一个底面积为S,高为h的三棱柱呢?

  [可以]以AA'为侧棱,以ΔABC为底面补成一个三棱柱。

  也采用"分"的方法,这个三棱柱可分成怎样的三棱锥呢?

  (图形没有打印)

  [引导学生观察分析]将三棱柱分割成三个三棱锥,如图就是三棱锥1,和另两个三棱锥2、3。

  三棱锥1、2的底ΔABA'、ΔB'A'B的面积相等,高也相等(顶点都是C)。三棱锥2、3的底ΔB'CB'、ΔC'B'C的面积相等,高也相等。(顶点都是A')。

  ∴V1=V2=V3=1/3V三棱柱 ∵V棱柱=Sh ∴V三棱柱=1/3Sh

  最后,因为和一个三棱锥等底面积等高的任何锥体都和这个三棱锥的体积相等,所以得到下面的定理。

  定理:如果一个锥体(棱锥、圆锥)的底面积是S,高是h,那么它的体积是:V锥体=1/3Sh。

  推论:如果圆锥的底面半径是r,高是h,那么它的体积是: V圆锥=1/3πr2h

  4、锥体体积公式的应用。

  练习1:正四棱锥底面积是S,侧面积为Q,则其体积为: 。

  练习2:圆锥的全面积为14πcm2,侧面展开图的中心角为60°,则其体积为 。

  练习3:边长为a的正方形,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这个扇形围成一个圆锥筒,求它的体积。

  5、课堂小结:1°割补法求三棱锥的思想。

  2°锥体的体积公式。

体积教学设计13

  教学内容:教材第25、26页例4、“试一试”、“练一练”和练习七的1、2题

  教学目标:

  1、进一步深入地引导学生去了解圆柱,让学生掌握圆柱的体积计算公式,并能解决实际问题。

  2、培养学生自学能力,动手能力,观察分析和归纳知识的能力,让学生理解“转化”的方法。

  教学重点:理解和掌握圆柱体积的计算公式。

  教学难点:圆柱体积计算公式的推导。

  教学准备:圆柱体模具。

  教学过程:

  预习作业检测

  学习计算圆的`面积时,是怎样得出圆面积的计算公式的?

  求下面各圆的面积

  R=1厘米求Sd=4分米求Sc=6.28米求S

  长方体与正方体的体积都可以用什么公式来表示?

  圆柱底面积/平方米高/米体积/立方米

  0.61.2

  0.253

  合作探究

  你们是怎么知道圆柱的体积=底面积×高的呢?生答预习得知。

  课本上是怎么把圆柱体和长方体联系在一起的呢?

  生答,同时师相机用课件展示圆柱体和长方体相互转化的画面。

  用切拼法把圆柱体切成16等份、32等份、64等份,由此得出结论:

  ○1等份越多,拼成的物体越接近于长方体。

  ○2长方体与圆柱体等底等高。

  ○3长方体体积=圆柱体体积

  ○4圆柱的体积=底面积×高(V=sh)。

  根据刚才的结论完成下面的题目:

  ○1一根圆柱形钢材,底面积是20平方厘米,高是1.5米,

  它的体积是多少?生独立完成后,师有选择的找几位学生

  的作业进行投影展示,全班交流评价。

  ○2一个圆柱形状的零件,底面半径5厘米,高8厘米,这

  个圆柱的体积是多少立方厘米?

  引导学生读题,思考。指名说出自己想的过程。生独立解

  答,展示、交流、评价。

  当堂达标检测

  1、“练一练”第1题。

  2、练习七第2题。

  3、“练一练”第2题。

  教学反思:

体积教学设计14

  教学内容:

  北师大版五年级下册第四单元《长方体二》第一课时(体积和容积),课本41-42页。

  教学目标:

  1、通过具体的实验活动,了解体积和容积的实际含义,初步了解体积和容积的概念。以及它们之间的区别。

  2、在操作、交流中,感受物体体积的的大小,发展空间观念。

  3、在学习中感受到数学的魅力,体验学习数学的乐趣,有成功的体验。

  教学重难点:

  1、重点:通过具体的实验活动,初步了解体积和容积的概念。体积和容积的概念。

  2、难点:理解体积和容积的联系和区别。

  教学准备:

  课件、两个相同的量杯、大小不同的瓶子、水、土豆、红薯、水杯、量杯(放入百宝箱以备用)。

  教学流程:

  课前准备

  同学们,今天我们的课堂来了很多客人,让我们用最热烈的掌声欢迎他们的到来。希望在今天的课堂上,大家能把更棒的自己展现给他们,好吗?

  一、故事导入

  同学们《乌鸦喝水》的故事大家听说过吗?今天老师把它带来了,请看!

  (媒体播放乌鸦喝水视频)

  1、你知道乌鸦是怎样喝到水的吗?谁来说说。(引导学生明白石头占有一定的空间)

  2、那么往瓶子里放石子水面为什么会升高呢?(石子占据了一定的空间,把水挤上来了。)

  石子占据一定的空间,其实我们身边的物体都占有一定的空间。你们看,黑板占据一定的空间,小小的黑板檫也占有一定的空间,黑板占据的空间大一些,黑板檫占据的空间小一些。

  3、现在请同学们找一找身边哪些物体所占有占空间大些,那些物体所占有的空间小些?(引导说明有的物体占的.空间大,有的物体占的空间小。)

  4、同学们说的这些物体很容易比较出谁所占有的空间大,老师带来的这两样物体单凭眼睛看是很难分辨谁所占有的空间大。

  二、教学新授

  活动一:【认识体积】

  1、师出示红薯和土豆,你来猜一猜吧?

  (学生大胆猜测,意见不一)

  你有什么好办法可以证明你的猜测呢?讲台上摆好量杯若干、水若干不同形状的容器若干盛水器皿一个。(时钟倒计时学生分组合作讨论探究)小组代表汇报讨论结果。

  师生验证方法的合理性。生做实验说明实验结果和结论。

  师:通过实验我们知道土豆所占的空间比红薯大一些,土豆和红薯各自所占空间的大小就是它们的体积,那么什么是物体的体积呢?点明体积的概念,(黑板出示),点明本节课所学内容之一——体积板书课题:体积

  2、

  大家看一看身边的同学有体积吗?你身边同学的体积指的是什么?你还能举例说一说什么是物体的体积吗?

  3、笑笑和淘气用大小一样的小正方体分别搭出两个不同的长方体,谁搭的体积大呢?

  课件出示:课本42页淘气和笑笑摆立方体情境图,比较谁的体积大?你是怎么

  比较出来的?

  笑笑搭的长方体所占的空间大,所以笑笑搭的长方体体积大。

  4、有些物体用数数的办法是不能比较出体积大小的,大家看---课件出示:课本42页淘气玩橡皮泥由长方体捏成球,体积变了吗?为什么?师总结:物体的体积和所占空间的大小有关,物体的形状无关。

  现在同学们认识物体的体积,接下来老师给同学们带了一些事物图片。

  活动二:【认识容积】

  1、师出示课件(冰箱、茶叶盒、土豆----)同学们分一分,那些能装东西,那些不能装物体?明确:能装其他东西的物品叫做容器。即时练习:举例说明生活中还有那些容器?

  2、师:同学们看这两个容器,谁装的水多一些呢?(出示不同形状的容器),你有什么好办法比一比呢?(小组合作讨论方法,组内交流并汇报)师生验证方法的合理性。生做实验说明实验结果和结论。

  通过实验我们知道这个容器装的水比另一容器多一些。这两个容器所能容纳水的体积就是它们的容积,那么什么叫容器的容积呢?(点明本节课学习的第二个概念:容积)

  板书:容器所能容纳物体的体积叫做容器的容积。

  3、出示课件装有半杯水的烧杯,提问:这杯水的体积就是烧杯的容积吗?

  (讨论理解“所能容纳”的真正含义)

  4、随机:装有铅笔的笔筒,把它装满铅笔,那么,铅笔的体积就是笔筒的容积吗?

  (有空隙,没有完全装满)

  5、课件出示:通过冰箱以及装有东西的冰箱来区别体积和容积。(体会同一个容器的体积一定比容积大)强调为什么?

  6、课件出示:两箱装有实验器材的箱子,通过箱子的厚薄,体会容积的大小(同一个容器的体积相等,容积不一定相等)

  三、课堂小结

  通过以上的学习,你都知道了什么?(那么你们敢接受老师的挑战吗?)

  四、巩固练习

  1、判断题

  (1).冰箱的容积就是冰箱的体积。()

  (2).游泳池注入半池水,水的体积就是游泳池的容积。()

  (3).两个体积一样大的盒子,它们的容积一样大。()

  (4).汽车上的油箱,油箱里装满汽油,汽油的体积就是油箱的容积。()

  2、选择题

  (1)盛满一杯牛奶,()的体积就是()的容积。

  ①杯子

  ②牛奶

  (2)装满沙子的沙坑,()的体积就是()的容积。

  ①沙子

  ②沙坑

  (3)做一个长方体油桶,需要多少铁皮,是求长方体的()。

  ①表面积

  ②体积

  ③容积

  (4)求一个长方体木块占空间的大小,是求长方体的()。

  ①表面积

  ②体积

  ③容积

  (5)求一个油桶能装油多少升,是求油桶的()。

  ①表面积

  ②体积

  ③容积

  (6)一个棱长4厘米的正方体木块,从正中挖去一个棱长1厘米的小正方体后,体积()。

  ①不变

  ②变大

  ③变小

  3、课本42页练一练的第三题:小红和小明有一瓶同样多的饮料,小明倒3杯,小红倒2杯,你认为有可能吗?为什么?

  4、搭积木:用12个大小相同的正方体分别按要求搭一搭:

  (1)搭出的两个物体,使他们的体积一样大;

  (2)搭出的两个物体,使其中一个物体的体积是另一个物体的2倍;

  5、数学日记

  笑笑的一天(填一填)

  星期天,我找了一些铁丝,做了一个长方体的铁丝笼子并在它的外面贴上彩纸,妈妈问我用了多少铁丝,我得求这个长方体的();妈妈又问我用了多少彩纸,我得求这个长方体的()。真是一个漂亮的笼子!它有多大啊?我得求求它的(),可()我不会算呀,没有关系,我自学一下书本上的内容。这么漂亮的笼子,我用它来装我淘回来的小饰物,能装多少呢?我得算一算它的()。哇!一个小小的笼子竟能装这么多东西,真不错!

  五、全课小结

  回顾本节课所学内容,谈收获

  六、写数学日记。

  七、板书设计:

  体积和容积

  物体所占空间的大小叫做物体的体积。

  容器所能容纳物体的体积叫做容器的容积。

体积教学设计15

  活动内容:

  利用可行性的操作方法测量较小的不规则物体体积。

  适用学段:

  高年级

  活动目标:

  通过让学生动脑想象和探索思考、讨论、实践等,开发学生智力,训练他们的思维能力、表达能力、创新能力,动手能力;增强合作意识;提高运用掌握的数学知识解决实际问题的能力;激励学生积极探索、勇于创新的良好意识并激发数学学习的兴趣。

  活动准备:

  1.六个长方体透明容器,深底托盘、水,沙,适当大小的不规则物体若干个(红薯、橡皮泥、石块等),不规则塑料泡沫一块。

  2.笔、纸、直尺、计算器。

  活动过程:

  一、温故知新,揭示课题

  师:同学们认识这些几何形体吗?谁能说说它们的名字?

  师:还学过那些几何形体?

  师:像长方体、正方体这些面和棱有明显特征的物体我们都称之为“规则物体”。

  (板书:规则物体)

  师:你会测量计算那些几何形体的体积呢?怎样算?

  (板书:公式)

  师:今天老师带来一些物体,

  师出示出不规则物体(红薯、橡皮泥,石块等)

  师:像红薯、橡皮泥、石块属于什么形体呢?

  师:象这样的物体用数学语言来形容就叫做不规则物体。(板书:不规则物体)

  师:它们的体积该怎样进行测量与计算呢?

  (板书:体积?)

  今天我们就来研究“不规则物体的体积测量”

  出示课题:巧测体积

  二、开动脑筋,展开联想

  师:这些物体的体积是多少?该怎样进行测量呢?(独立思考,举手汇报)

  1.把橡皮泥摔成长方体,量出它的长、宽、高各是多少,就能计算出它的体积。

  2.把橡皮泥摔成正方体,量出它的棱长,同样能计算出它的体积。

  3.把红薯煮熟后,放在模子里压成长方体。

  4.把红薯煮熟后,放在模子里压成正方体。

  ………

  师:大家说的方法都很好,不仅合理而且易行,具有很强的可操作性。

  针对可以改变形状的物体,确实可以把它变成规则的物体再进行测量和计算得到他们的体积.

  (动画显示可改变形状的物体体积测量与计算)

  师:像石块这样不能改变自身形状的物体体积该怎样进行测量呢?

  师:请小组展开讨论,看看那个小组的成员最棒最聪明最先找到可行的测量方法。

  (小组讨论,师巡视指导)

  (讨论完毕,分别汇报)

  师带领小结,肯定可行性方法,并注意探讨要注意的事项(如水面要平,物体要沉没于水中,精细减少误差等,注意卫生等),然后指导实践。

  三、动手操作,体验实践

  师:老师为大家准备了一些测量和计算的工具,今天我们就亲自动手利用这些工具来测量并计算石块的体积。

  师:为了确保实验成功,在操作之前老师提醒一些需要注意的事项和要求,请看屏幕。

  投影显示要求:

  1、每组1名组长,1名记录员,2名测量员,2名计算员。组长负责分工,大家听从安排。

  2、测量员负责所有数据的测量,为确保数据的准确每个测量员都要对所需数据进行测量,最后取用平均值。

  3、计算员负责实验中数据的计算,每个计算员都要进行计算并共同核对结果。

  4、记录员负责整个实验过程中的步骤记录。

  5、组长负责全面工作,并协助记录员对步骤进行整理记录。

  师提醒注意:

  每个组内成员都要尽心尽责、团结协作。

  领会完毕,分组试验,教师巡视指导。

  四、总结方法

  1.分组汇报

  (所测石块的体积是多少?是怎样得来的?重点汇报操作步骤。)

  例如:

  小组A

  (1)测出长方体容器的底面长和宽,注入适量的水并测出水的高,用“长×宽×高”计算出水的体积。

  (2)放入不规则物体(没入水面以下),测出这时水的高度,再利用长方体体积公式计算出这时水的体积。

  (3)用后来水的体积减去原来水的体积,得出的'结果就是所测量的不规则物体体积。

  小组B

  (1)测量长方体透明容器底面的长宽各是多少厘米。

  (2)将鹅卵石放入长方体透明容器里,然后加水至水而高出鹅卵石为止,然后测出这时水的高度,算出含有不规则物体时水的体积。

  (3)拿出鹅卵石,再测出容器内水的高度,算出这时水的体积。

  (4)用含有物体时水的体积减去不含物体时水的体积,得出的体积差就是不规则物体的体积。

  小组C

  (1)测出长方体容器的底面长和宽。

  (2)放入不规则物体并注水至淹没物体,测出水面高度。

  (3)拿出不规则物体,测出水面高度。

  (4)用“长×宽×(高①―高②)”算出下降的那段水的体积。

  小组D:

  (1)把容器内放在托盘内,注满水,测量并计算出水的体积。

  (2)把不规则物体放进容器内,使溢出的水流到托盘内,把托盘内的水再倒进清空的容器内。

  (3)测量并计算容器内托盘收集的水的体积,就是不规则物体的体积。

  ……

  如果用流沙,道理相同。

  2、教师根据大家的汇报,小结操作步骤。

  (显示动画)

  师:大家的实验方法与步骤都很科学,其实无论先测还是后测含物体时水的体积,再测不含物体时水的体积都属于一种方法、一个道理,即:用含物体时水的体积减去不含物体时水的体积得到这部分水的体积,也就是不规则物体的体积。另一种方法是直接测量并求出与不规则物体相等的那部分水的体积即所求的不规则物体体积。

【体积教学设计】相关文章:

体积的教学设计12-18

圆柱的体积教学设计09-17

体积与容积教学设计12-05

《圆柱的体积》教学设计08-01

《圆柱的体积》教学设计优秀06-24

《圆锥的体积》教学设计优秀05-12

长方体的体积教学设计07-27

长方体的体积教学设计15篇02-02

《体积和体积单位》的教学反思05-17