圆的认识教学设计

时间:2024-08-30 06:51:14 教学设计 我要投稿

圆的认识教学设计

  作为一名教师,时常需要用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。怎样写教学设计才更能起到其作用呢?下面是小编帮大家整理的圆的认识教学设计,仅供参考,欢迎大家阅读。

圆的认识教学设计

圆的认识教学设计1

  教学目的:

  1、通过折一折、数一数、量一量等活动,观察、体会圆的特征,认识圆的各部分名称,理解在同圆或等圆中直径与半径之间的关系。

  2、了解、掌握多种画圆的方法,并初步学会用圆规画圆。

  3、借助动手操作活动,培养学生运用所学知识解决实际问题的能力。

  4、渗透知识来源于实践、学习的目的在于应用的思想。

  教学重、难点:

  掌握圆各部分的名称及圆的特征。圆的画法的掌握。

  教具准备:

  多媒体课件、圆形纸片、圆规、直尺等。

  学具准备:

  直尺、圆规、圆形纸片等。

  教学主要过程:

  一、创设情景,激发学习兴趣。

  师:孩子们,见过平静的水面吗?生:见过。

  师:丢进一块石头,你发现有什么变化?生:荡起一个个波纹。

  师:这些波纹是什么形状的呢?生:圆形的。

  师:这样的现象在大自然中随处可见。生活中,你在哪些地方见到过这些图圆形呢?

  生:……

  师:对了,生活中的很多地方都能看到圆形,老师这里也收集了一些,请看!(课件播放)盛开的向日葵,被切开的橙子……)师:同学们,在上面你同样找到圆形了吗?生:找到了。

  师:有人说,因为有了圆,我们的生活才变得多姿多彩。这节课就让我们一起走进圆的世界探寻其中的奥秘吧

  二、圆与平面图形的区别。

  师:老师的信封里也有一个圆,想看一看吗?生:想。

  师:可是除了圆还有一些其他的平面图形,也想看一看吗?(老师一一拿出来,生说名称)师:(课件)好样的,如果要从这一些平面图形把它给摸出来,觉得有没有难度?生:没有。

  师:怎么会没有难度呢?

  生:其他的有棱角,直直的,而圆是圆圆的。摸起来很光滑。师:这些图形都是由什么围成的?(课件)生:线段围成的。

  师:而圆的边事弯曲的,所以我们说圆是由一条曲线围成的图形。(课件)师:找到他们的区别后有没有信心把圆从里面摸出来?生:有。

  师:可是事情还是没那么简单,里面除了圆还有其它曲线图形。(拿出)生:(惊讶)

  师:同学们瞧。这个图形它也是由曲线围成的。同学们会不会把它当成圆形摸出来呢?

  生:不会。这个曲线图形表面凹凸不平,而圆是很光滑的。

  师:(拿出椭圆)还有呢。这个够光滑吧?你待会儿该不会把它当成圆形给掏出来吧?

  生:不会,因为椭圆看起来扁扁的。而圆很匀称,怎么看都一样。师:说的好,椭圆这样看矮矮的、胖胖的。这样看呢?生:高高的瘦瘦的。

  师:而圆看起来很匀称,怎么看都一样。

  师:通过我们刚才的比较,谁能从这些平面图形中摸出圆?

  师:好,你来吧。闭上眼睛,把手往前伸着,我把这些图形一个个放在你手中,你只需回答是圆不是圆就可以了。下面同学不能提示,根据他的回答作出判断。(动手感知)

  师:真厉害,最热烈的掌声送给他。

  师:刚才我们已经知道,圆是由一条曲线围成的封闭图形。(课件)围成圆的这一周,我们把它叫做圆上。在圆上的这一点A,我们就说A点在圆上。那外面的呢?我们把它叫做什么?生:圆外。

  师:这里的一点B,外面就说B点在?(圆外)师:里面呢?叫什么?生:圆内。

  三、合作探究认识圆心、半径和直径。这是圆与其他图形的区别,那么圆到底还有哪些特征呢?现在拿出准备的圆形纸片,我们来做个试验。把你的圆对折再对折,多折几次。打开。结合大屏上的三个提示小组内合作探究。看看圆到底还有哪些特征。(课件出示)

  师:相信大家一定会有不少新的发现。(学生合作交流)

  师:你们讨论完了吗?经过数次对折,你发现了什么?生:我发现纸上留下许多折痕。

  生:我还发现这些折痕相交于圆中心一点。师:是这样的吗?一起来看。

  师(课件):经过几次对折打开,纸上留下了这些折痕。你们发现了吗?(板书:长折痕)

  师:(课件)这些折痕相交于圆中心一点,找到这一点了吗?用笔把它点出来。(板书:一点)

  师:我们把相交于圆中心的这一点,叫做圆心,圆心用字母O表示(板书:圆心O)

  师:把你们的也标上字母。

  师:这些折痕,它们有什么共同的特点?生:都通过了圆心。

  师:对了,还有呢?生:两端都在圆上。师:既然两端都在圆上,说明它是一条什么?生:线段

  师:(课件)对了,我们就把通过圆心,并且两端都在圆上的线段叫做直径。直径一般用字母d来表示。

  师:通过刚才的观察,你还发现了什么?

  生:我还发现圆心把这些长折痕平均分成了许多短折痕。

  师:圆心将这些长折痕等分成了很多短折痕。是吗?(板书:短折痕)师:这些短折痕又有什么共同的特点呢?

  生:我发现它们的一端都在圆心,另一端都在圆上。

  师:(课件)像这些连接圆心到圆上任意一点的线段,我们就把它叫做半径。半径用字母r来表示。(板书:半径r)

  师:好,我们来看看,这上面哪些线段是半径呢?(课件)

  师:很好,你能在自己的圆片上画一条半径和直径吗?别忘了表示字母,写上长度。

  师:通过折一折,我们认识了圆心、半径和直径。通过数一数,你又发现了什么呢?

  生:我发现半径有无数条。

  师:半径有无数条,同意的举手。(板书:无数条)光这样说是不够的,你能说出理由吗?生:折无数次

  生:圆上有无数个点。

  师:还有呢?还有理由吗?生(沉默)

  师:不问不知道,一问才知道,原来你们都是懵的啊?你们是懵的吗?生:不是。

  师:哪些不是?(有人举手)有的同学为了捍卫自己的尊严,再次举起了手。好,你怎么想的?

  生:可以自己去画。师:可以去画。现在我们来想象一下,如果给你们足够多的时间,你能画出几条?生:无数条。师:(摇头)前几天唐老师在另一个班上这个内容也探讨了这个问题,最后大家一致认为圆有无数条半径。可是就有一个同学他不相信。回家以后他自己剪了一个圆,在上面密密麻麻画满了半径,一直画的看不到任何空隙了。他数了数一共是三百多条。第二天跑来就问我:唐老师你看!明明才三百多条,你怎么就说有无数条呢?

  生:(举手)换个大点的圆。

  师:他的意思是说:小伙子,你的圆太小了,换个大点的。是吗?

  师:可带来了问题,难道说大圆半径多,小圆半径少吗?或者我们干脆就把结论改为大圆半径有无数条?师:还有不同意见吗?

  生:我认为画半径的笔细一些。

  师:同学们,别小看了刚才同学的想法,他其实一下子就告诉了我们数学最基本的地方。那就是线段它可以无限的细下去。一直细到看不见为止,那这样的话我们就可以说圆有多少条半径?生:无数条。

  师:听听你们的声音,中气都比原来足了。对不对?

  师:圆有无数条半径的特征我们已经探讨的比较清楚了。通过量一量,你还发现了什么呢?

  生:我发现直径是半径的两倍。

  师:你想说的是:直径长度是半径长度的两倍对不对?你的直径长多少?半径呢?

  师:那么你们的直径与半径长度也有这样的关系吗?师:谁能用字母表示直径与半径的关系?生:d=2r

  师:也可以说?生:R=d/2

  (板书:d=2r r=d/2)

  师:除了直径与半径的关系,还有别的发现吗?生:我发现所有的直径长度相等。生:我还发现所有的半径长度相等。

  师:你们呢?所有的`直径长度相等吗?所有的半径长度也相等吗?(板书:长度相等)

  师:通过量一量,大家又发现了所有直径长度相等,所有半径长度也相等。师:(收集大小不同的两个圆)好,我们来看,半径相等吗?生:不相等。

  师:刚才你们不是说所有半径长度相等吗?这是为什么呢?生:因为它们不再同一圆内。师:现在你能得出什么结论?

  生:在同一圆内所有的直径长度相等,所有的半径长度也相等。

  师:看来,要使所有的半径长度相等这一特征成立,它必须得有一个很重要的条件,那就是:在同一圆内。(板书:在同一圆内)

  师:(收集一样的两个圆)现在它们在同一个圆内吗?生:没有。

  师:它们的半径长度相等吗?生:相等。

  师:现在你又能得出什么结论?

  生:在一样大的圆里,所有的半径长度相等,所有的直径长度也相等。

  师:说的好不好?除了在同一个圆内,所有的半径长度相等所有的直径长度也相等。在相等的圆里,也是这样。(板书:等圆)

  师:同学们,通过折一折、数一数、量一量,你们都有了哪些发现呢?生:发现了圆心、半径和直径。

  生:也发现了在同一个圆或等圆里直径与半径的关系。师:它们是什么关系?生:d=2r,r=d/2

  生:还发现了圆有无数条直径和半径。生:以及在同一个圆或等圆里所有的半径长度相等,所有的直径长度也相等的特征。师:(课件)孩子们,其实我们的这些发现早在两千多年前就被我国古代思想家——墨子所发现。在他的著作中这样描述了:圆一中同长也。所谓的一中,指的就是一个?(圆心)同长呢?又指什么?生:半径一样长,直径一样长。

  师:这一发现和我们刚才的发现?(完全一致)他的这一发现比西方国家整整早了一千多年。听到这里我想大家都有一个共同的感受,那就是?生:(激动的)自豪!!四、合作探讨圆的画法。

  师:发现了圆那么多的特征,想不想自己动手画一个圆呢?师:那么怎样才能既准确又方便的画出一个圆?生:可以用圆规来画。

  师:对了,古人就曾说过:没有规矩不成方圆。这里的规就是手中的圆规。用来画圆。圆规有两只脚,一只是针尖,用来固定圆心;另一只是画圆用的笔。两只脚可以随意的叉开。你能试着用圆规画一个圆吗?师:(巡视中)老师发现大部分同学都画的比较好,但也有的同学画的不够理想。师:画好了吗?谁来说说画的不够理想的这些同学可能出现了什么问题?生:圆心没固定好。

  生:画的时候没拿手柄,拿到下面了。

  师;你们刚才说到的问题,老师在你们中间找到了证据。一起来看,这张什么问题?(投影展示)

  生:太偏了。应该往中间画。

  师:往中间画?怎样才能画到中间去?生:将圆心固定到纸的中间。

  师:圆心固定在纸的中间,画的圆就在哪里?生:本子中间。

  师:也就是说,圆心觉定了圆的什么?生:圆的位置。

  师:说的非常正确。圆心决定了圆的位置。再来看看这幅有什么问题?生:没连上。师:能连上吗?生:不能。

  师:猜猜看,估计是什么原因导致的?

  生:肯定在画的时候改变了两脚直间的距离。师:同意他的看法吗?生:同意。

  师:圆规两脚之间的距离也就是圆的什么?生:圆的半径。

  师:再接着画下去,是越大还是越小?生:越小。

  师:所以我们说,圆的大小取决于什么?生:半径的长短。

  师:对了,圆的大小是由半径的长短决定的。与圆心的位置无关。师:到底应该怎样使用圆规画圆呢?现在我们一起来看黑板。师:(展示画圆方法)师:孩子们,根据老师刚才的画圆步骤和方法,你能再画一个半径5厘米的圆吗?(学生再次操作画圆)

  师:画好了吗?举起来互相欣赏一下我们的劳动成果吧。五、圆在生活中的运用。

  师:(课件)画好了圆,我们再来看看,这是什么?生:篮球场。

  师:中间是个什么?生:圆。师:中间为什么是个圆而不是个正方形或长方形呢?不知道篮球怎么开赛,回答这个问题还真是有点难。一起来了解一下。(播放开赛录像)

  师:从这段录像我们看见,裁判拿着球在圆心,队员在圆上,比赛一开始,队员就尽量将球传到自己的场地。现在你能解释球场的中间为什么是个圆了吗?生:因为圆心到圆上任意一点的距离都相等。

  师:说的真好。这样大的一个圆,怎么画出来的呢?有这么大的圆规吗?生:没有。

  师:那该怎么画呢?生:……

  师:大家听明白了吗?

  师:不是说,没有规矩不成方圆吗?怎么没有用圆规也能画出一个圆呢?生:规矩不应该特指圆规,而应该指的是画圆的工具。师:看来古人说的没有规矩不成方圆这句话还是对的。六、数学知识解释生活中的现象。师:现在你们能从数学的角度解释平静的水面丢进石子荡起的波纹为什么是一个个圆这一现象了吗?生:……

  师:解释的太棒了。这实际就是在一个圆内,所有的半径长度相等的道理。师:看来简单的自然现象,有时也蕴含了丰富的数学规律。

  师:其实在我们的生活中,除了这些能够用眼看到的圆,还有许多肉眼所看不到的圆。一起来了解一下。

  (课件)太阳美妙的光环、特殊仪器拍摄到的无线电波、说话时声音的传播。师:孩子们,圆在我们的生活中无处不在,因为有了圆,我们的世界才变得如此美妙而神奇。

圆的认识教学设计2

  课前与同学谈话省略

  师:今天上课我们学什么?大声地说“学什么”

  生齐:圆的认识

  师:从哪里看到的?只给我看,

  生指屏幕

  师:屏幕上有,还有呢?

  师:说,哪有?

  师:没错,圆片,还有吗?

  生:圆规

  师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

  生齐:想

  师出示一个信封,摸出一个圆片,师:是圆吗?

  生:是

  师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

  生齐:有

  师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

  师:好,现在看谁的反应最快?

  师从信封里摸出一个长方形

  生:长方形

  师:男孩的反应快,状态也不错。

  师从信封里摸出一个正方形

  生:正方形

  师:还有一个图形

  师从信封里摸出一个三角形

  生:三角形

  师:猜猜还有吗?

  师从信封里摸出一个平行四边形

  生:平行四边形

  师从信封里摸出一个梯形

  生:梯形

  师:行了行了,小朋友们,都别你们猜到了。

  教师课件演示各种图形,

  师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

  生齐:没有

  师:为什么?

  生:因为圆是由曲线围成。

  师:而其他图形呢?

  生:都是由直线,哎!线段围成。

  师:同意吗?

  师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

  生:角

  师:圆有角吗?

  生:没有。

  师:所以圆特别的?

  生:光滑

  师:说的真好

  师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

  生齐:曲线

  师:给它一个名称。

  生:曲线图形

  师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

  生齐:不难。

  师:谁让你们聪明呢?还有难的。

  师出师一个不规则图形

  师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

  生齐:不会

  师:为什么?

  师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

  生齐:丰满

  师:嘿!瞧,还有一个

  师出示一个椭圆,

  师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

  生:不会,

  师:为什么?

  师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

  生:瘦瘦的

  师:瘦瘦的。圆呢?

  教师出示圆形教具,转动。

  师:怎么样?

  生:一样

  师:怎么看到的一样?

  师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

  行,就你吧,近水楼台

  师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

  生:看不见了

  师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

  生:不是

  师:可以吗?

  生齐:可以

  师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

  生:不能

  师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

  生齐:ok!

  师:好,伸出你最拿手的一只手,右边,准备好了吗?

  生:准备好了

  生1:不是.

  师:对不对?

  生:对.

  生1:不是.

  师:对不对?

  生:对.

  生1:更不是.

  师:瞧,这更字用的多好.

  生1:更不是.

  师:小家伙厉害.

  生1:不是.

  生:对.

  生1:是.

  生:对.

  师:掌声鼓励一下.

  圆是曲线图形

  可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

  画圆

  张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

  生2:我认为是圆的半径变了.

  师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

  生:不能.

  师:除了这个地方改变以外,还有那些地方不能动?

  生3:圆心改变了.

  师:在画圆的过程中,针不能改变.

  画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

  生:能.

  师:先别动笔,边画边考虑.

  圆和什么有关系?

  生:圆心和半径.

  师:我知道你们说的半径是什么意思?

  谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

  生4(到黑板前画出远的半径)

  师:对不对?

  生:对.

  师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

  生:圆心.

  师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

  生:O.

  师:请在你刚才画的圆上,标出圆心,写出字母O.

  继续看这条线段,圆心的另一端在哪里?

  生;圆上.

  师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

  生:不是.

  师:那有多少个?

  生:无数个.

  师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

  生;不知道.

  师:不知道不怕,怕的是他人说这三个字:为什么?

  我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

  生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

  师:因为平滑,所以有无数条.

  生6:因为圆心到圆上的距离全部相等

  生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

  师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

  生:随便

  师:请问,在圆上有多少个这样随便的点?

  生:无数.

  师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

  生:为什么?

  师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

  生:相等.

  师:同意的请举手,我的三个字又来了.

  生:为什么.

  师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

  生:圆规.

  师:还有尺寸,尺寸让你们用来干什么的?

  生:量.

  师:现在就动手量一量.

  虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

  生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

  师:既然两角的距离没有变,那么两角的距离其实就是半径的`距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

  生:半径有无数条,长度都相等,都一样.

  师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

  生:得出来了.

  师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

  生:错.

  师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

  生:也有无数条,直径都相等.

  师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

  除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

  生9:因为我们知道所有的半径都相等.

  师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

  生:有.直径是半径的二倍.

  师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

  生:半径和直径都相等.

  师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

  生:四条.

  师:正五边形,有几条?

  生:五条.

  师:正六边形?

  生:六条.

  师:正八边形?

  生:八条.

  师:圆形?

  生:无数条.

  师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

  现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

  生:不一样.

  师:半径几厘米的圆比较大?

  生:5厘米.

  半径几厘米的圆比较小?

  生:3厘米.

  师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

  生:半径.

  师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

  生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

  师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

  生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

  师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

  生:不是.

  师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

  生12:用一个碗扣在白纸上,描一下.

  师:有可能,但不是.

  生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

  师:人造圆规.

  生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

  师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

  生15:少了宽度.

  师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

  生:不是.

  师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

  生:5厘米.

  师:4厘米呢?

  生:4厘米.

  师:假如半径是3厘米,那么直径呢?

  生:6厘米.

  师:是不是我把圆扯开6厘米,就可以画圆了/

  生;不是.要扯开3厘米.

  师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

  生:没有.

  师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

  生:近似一个圆,

  师:想一想,刚才我们旋转的是什么呀?

  生:中心.

  师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

  生:圆.

  师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

  课前与同学谈话省略

  师:今天上课我们学什么?大声地说“学什么”

  生齐:圆的认识

  师:从哪里看到的?只给我看,

  生指屏幕

  师:屏幕上有,还有呢?

  师:说,哪有?

  师:没错,圆片,还有吗?

  生:圆规

  师:没错,还有圆规。小朋友们都很善于观察、善于联想。老师的信封里还有一个圆,想看看吗?

  生齐:想

  师出示一个信封,摸出一个圆片,师:是圆吗?

  生:是

  师:听说咱们班的同学特别的聪明,所以,一会儿老师要把这个圆片放进信封了,让同学们把他摸出来,有没有信心?

  生齐:有

  师:我不会轻易的给你们这样一个简单的问题的,这里面不只仅有着一个圆,还有其他的图形,想看看吗?

  师:好,现在看谁的反应最快?

  师从信封里摸出一个长方形

  生:长方形

  师:男孩的反应快,状态也不错。

  师从信封里摸出一个正方形

  生:正方形

  师:还有一个图形

  师从信封里摸出一个三角形

  生:三角形

  师:猜猜还有吗?

  师从信封里摸出一个平行四边形

  生:平行四边形

  师从信封里摸出一个梯形

  生:梯形

  师:行了行了,小朋友们,都别你们猜到了。

  教师课件演示各种图形,

  师;同学们能不能从各种图形中把圆摸出来?你觉得有难度吗?

  生齐:没有

  师:为什么?

  生:因为圆是由曲线围成。

  师:而其他图形呢?

  生:都是由直线,哎!线段围成。

  师:同意吗?

  师:再仔细看看,正因为这些图形都是由线段围成的,所以他们都有什么?

  生:角

  师:圆有角吗?

  生:没有。

  师:所以圆特别的?

  生:光滑

  师:说的真好

  师:数学上,我们把左面的这些由线段围成的图形给它个名称:直线图形。(课件演示)小朋友们,圆是由什么围成的?

  生齐:曲线

  师:给它一个名称。

  生:曲线图形

  师:曲线图形,行了,现在让你们再直线图形中将圆这个唯一的曲线图形摸出来,难不难?

  生齐:不难。

  师:谁让你们聪明呢?还有难的。

  师出师一个不规则图形

  师:它也是有曲线围成的吧?弯弯曲曲的。那么你们会不会把它也摸出来?

  生齐:不会

  师:为什么?

  师:有的同学说,因为它有的地方凹,有的地方凸。而圆怎么样?显得特别的饱……,说出来,特别的……

  生齐:丰满

  师:嘿!瞧,还有一个

  师出示一个椭圆,

  师:看,没有凹进去的地方了吧?看上去有光滑,有丰满,你们待会儿会不会也把它也当作圆给摸出来?

  生:不会,

  师:为什么?

  师利用学具演示,师:因为它这样看上去扁扁的,这样看上去……

  生:瘦瘦的

  师:瘦瘦的。圆呢?

  教师出示圆形教具,转动。

  师:怎么样?

  生:一样

  师:怎么看到的一样?

  师:好了小朋友们,现在从这些图形里把圆摸出来难不难?口说无凭,谁愿意上来试试?

  行,就你吧,近水楼台

  师:咱们协商一下,这些图形我就不放进信封里去了,要是放进去咱们同学还看得见吗?

  生:看不见了

  师:看不见,就让他一个人在里面摸多没意思呀。所以我请你闭上眼睛,我把图形一个一个往你手上放。你要是感觉是就大声地喊一声“是”,要是觉得不是……

  生:不是

  师:可以吗?

  生齐:可以

  师:你闭上眼睛,你能做到吗?其他同学你们能出声吗?

  生:不能

  师:对,不能提醒。但是可以做一件事情,当你认为他的判断正确的时候,可以大声的喊一声“对”,给它鼓励一下,ok?

  生齐:ok!

  师:好,伸出你最拿手的一只手,右边,准备好了吗?

  生:准备好了

  生1:不是.

  师:对不对?

  生:对.

  生1:不是.

  师:对不对?

  生:对.

  生1:更不是.

  师:瞧,这更字用的多好.

  生1:更不是.

  师:小家伙厉害.

  生1:不是.

  生:对.

  生1:是.

  生:对.

  师:掌声鼓励一下.

  圆是曲线图形

  可是和下面这些凹凸的或者椭圆这样的曲线图形相比,圆看起来又是那样的丰满,那样的光滑,那样匀称.20xx多年前,伟大的数学家毕达哥拉斯赞美”在一切平面图形中圆最美”,

  画圆

  张老师发现绝大多数的同学画的都非常的好,不过也不排除有个别同学到现在也没画完,有个别同学画完了,可似乎还有缺口,明明是这样画的,可是怎么就绕不回去了呢?聪明的小朋友猜一猜,他们之所以没有胜利的画一个圆,你们觉得可能是哪里的问题,

  生2:我认为是圆的半径变了.

  师:半径是个新词,我们用圆规来说,院的半径变了,也就是画圆的时候,量角的距离变了.在画圆的过程中能不能改变?

  生:不能.

  师:除了这个地方改变以外,还有那些地方不能动?

  生3:圆心改变了.

  师:在画圆的过程中,针不能改变.

  画圆看起来简单,大家琢磨一下,里面还是有学问的.下面我们把刚才大家提出的建议综合起来,手握柄,中间扎的地方固定,两角的距离不能变,三个要素综合起来,轻轻的绕一圈,圆就画出来了.小朋友们,掌握了这三要素,有没有信心,比刚才画的又快又好?

  生:能.

  师:先别动笔,边画边考虑.

  圆和什么有关系?

  生:圆心和半径.

  师:我知道你们说的半径是什么意思?

  谁能到前面来,说说哪个距离是不变的?其他的小朋友要注意观察

  生4(到黑板前画出远的半径)

  师:对不对?

  生:对.

  师:同学们,可千万不要小看这条线段,在圆中,这条线段有着特殊并且很重要的地位,我发清闲,刚才这位同学画完圆以后,还擦了擦,对这两条线段似乎有特殊的要求,大家来看一下,一端在哪里?

  生:圆心.

  师:这点是圆心,也就是针尖留下的,那圆心可用用哪个字母表示?

  生:O.

  师:请在你刚才画的圆上,标出圆心,写出字母O.

  继续看这条线段,圆心的另一端在哪里?

  生;圆上.

  师:象这样,连接圆和圆上两个点的线段,叫做半径.半径可以用小写字母r来表示,现在画出一条半径,写出字母r.刚才我发现哟个同学,上次画的非常快.刻画司这次画的非常慢,你们知道是什么原因吗?不知道是他没有听清楚,还是自身在想方法,在琢磨.因为我们画的是一条圆的半径,他画的是四条,我们想一想:一个圆里只有一条半径吗?

  生:不是.

  师:那有多少个?

  生:无数个.

  师:数学重要的不是结论,最怕的是哪三个字,你们知道吗?

  生;不知道.

  师:不知道不怕,怕的是他人说这三个字:为什么?

  我一旦问为什么有无数条,敢举手的人就不多了.所以仅仅依靠感觉,看起来似乎是无数条,是不够的.可为什么说无数条呢?先听听这位同学的意见,别的同学继续考虑.

  生5:因为圆是一种曲线图形,它的外表非常平滑,所以半径有无数条.

  师:因为平滑,所以有无数条.

  生6:因为圆心到圆上的距离全部相等

  生7:因为半径是圆上任意一点的,圆上有无数个点,所以有无数条半径.

  师;我最喜欢刚才她说的一个词,任意一点.什么叫任意一点?

  生:随便

  师:请问,在圆上有多少个这样随便的点?

  生:无数.

  师:有无数个点,就对应无数个半径.所以小朋友们,在学习数学时,不能只图于外表,要问自身三个字?

  生:为什么?

  师:现在边看我的板书,边考虑问题,既然圆有无数条半径,那么它的长度怎么半呢?

  生:相等.

  师:同意的请举手,我的三个字又来了.

  生:为什么.

  师:为什么在一个圆里半径都相等?回想一下,张老师让你们准备了什么工具?

  生:圆规.

  师:还有尺寸,尺寸让你们用来干什么的?

  生:量.

  师:现在就动手量一量.

  虽然是有无数条,但是我们不必全都量,找几条代表一下就可以了.同学们,刚才我们画一画,量一量,在你们的圆中,半径都相等的请举手.有没有同学说,老师我不用画,不用量也知道,有吗?

  生8:从画圆的时候,我就注意到,画圆的时候,两角的距离没有发生变化.

  师:既然两角的距离没有变,那么两角的距离其实就是半径的距离.两角的距离不变,也就以为着半径的距离不变.小朋友们,画一画量一量是研究问题的方法,看一看想一想,对画圆的方法进行推理,同样是一种方法.我们现在简单回忆一下刚才的学习过程,认识了是很么是圆心,什么是半径,大家知道半径很有特点.

  生:半径有无数条,长度都相等,都一样.

  师:其实早在20xx多年前,中国古时候的哲人也对这个问题进行了研究,你们猜他们的出结论了吗?

  生:得出来了.

  师:而且他们得出的结论和同学们得出的几乎相同.不过表述不一样,就是六个字,圆,一中同长也.我们的古人很聪明,但是我觉得你们更聪明,因为你们只用了几分钟就总结出来了.不过现代人在研究这句话的时候,他们说古人说的不完全准确,因为这个同长,不只是半径同长,还有直径.因此又提出了另外一个概念:直径.连接圆心和圆上某一点的线段叫做半径.那怎样的线段叫直径呢?说不出没有关系,你能在这个圆上比画比画吗?现在我来画一画,尽管我是老师,假如画错的话,也不要客气,大声喊错.看看谁的胆子最大.

  生:错.

  师:我还没有画呢,聪明的小朋友不看结果,看过程就知道了,画直径要通过圆心,概括一下,通过圆心,并且两端都在圆上,这样的饿线段才叫直径.可以用小写字母d来表示,现在请画出圆的直径,并用小写字母d来表示.小朋友们,数学学习,除了问刚才的三个字为什么以外,还要善于联想,不要一切都从头在来,.刚才我们已经证实了半径,知道它的特点:半径有无数条,而且都相等.那直径呢?

  生:也有无数条,直径都相等.

  师:直径有无数条,我们就不检验了,那直径都相等,这是为什么呢?

  除了六个举手的同学以外,其他同学可不恩能够丧失一次考虑的机会呀.带工具了吗,一起来画一画.通过画一画,量一量,我们发现圆里的直径的长度都是一样的.有没有同学说我不量也知道这个结果?

  生9:因为我们知道所有的半径都相等.

  师:聪明的眼睛看出的不一样,我们看这条线段,看出的是一条直径,他除了看出一条直径以外,还看到了两条半径,一条直径包括两条半径,而所有半径的长度相等,所以直径也相等.我们又一次借助推理,完成了直径的发现.刚才这个男同学,不只告诉我们为什么直径相等,还给我们带出了一个新的结论,在同一个圆里,直径和半径有关心吗?

  生:有.直径是半径的二倍.

  师:这样描述太复杂了,用简洁的数学语言来描述好吗?也就是d=2r,,就这样.两个字母加一个数字,我们刚才的结果就出来了.我们刚才学习了圆心,半径,直径,而且半径和直径有无数条,长度相等.我们试想一下,在同一个圆里,假如它们的半径不是都相等的,而是有的长,有的短,那你觉得最后连起来的还是一个圆吗?还可能光华丰满匀称光华丰满匀称吗?想一想是什么原因,使圆看起来那样光华丰满匀称?

  生:半径和直径都相等.

  师:很准确.是半径的长度都相等.在一个圆里有无数条半径,长度都相等,所以才使圆看起来光华丰满匀称,圆的美通过研究终于在这里找到了.有人会说在同一个图形中,具有等长线段的又不是只有圆一个,,你们相信吗?我们来看一下,这是一个正三角形,从中心动身,连接三个顶点,这三条线段一样长,这样的线段有三条.正方形有几条?

  生:四条.

  师:正五边形,有几条?

  生:五条.

  师:正六边形?

  生:六条.

  师:正八边形?

  生:八条.

  师:圆形?

  生:无数条.

  师:难怪有人说圆是一个正无数边形.我们会发现随着三角形,正四边形,正五边形,正六边形,正八边形,更多边形的边数越来越多的时候,这个图形越来越接近圆形.有的同学说还不是很接近,给同学们两分钟考虑的时间,假如边数在增加,你猜猜看会怎么样?是否会更接近圆.我们借助一个小实验一起来验证一下我们的猜测,看一看这个正十六边形,和刚才的正八边形相比,更接近圆,但不是圆.现在看看32边形,更接近圆.但还不是圆.有时思维需要跳跃一下,现在看看100边形,更接近了,才正100边形,想象一下,假如正1000边形,正10000边形,1亿,10亿,直到无穷无尽,直线图形居然在它最 的地方和曲线图形圆交融在一起.

  现在把张老师给你们准备的圆拿出来,哪个女小朋友一直在观察,看这个圆是否有圆心,肯定有,只是我没有标,请看大屏幕,这是一个半径( )厘米的圆,聪明的你们能量出它的半径吗?看看谁能想到好方法?同伴合作,开始.这边的同学量得的半径是5厘米.这边也是5厘米,这边是4厘米,这边是3厘米,大家请考虑,张老师画的圆很奇怪,居然有的是半径3厘米,有的是4厘米,有的是5厘米,那半径不同,你就想象一下,圆的大小一样吗?

  生:不一样.

  师:半径几厘米的圆比较大?

  生:5厘米.

  半径几厘米的圆比较小?

  生:3厘米.

  师:现在把所有的圆举起来,看看,考虑一个问题,圆的大小和谁有关?

  生:半径.

  师:虽然量出来了,可是我要看看是怎样能够量出来的?谁愿意给大家交流一下,你是怎样量出半径的?

  生10:先把圆对折一下,就是一个半圆,然后再把它对折一下,这个点就是它的圆心,知道了圆心,半径也就知道了.

  师:在三年级的时候,我们也学过对折,这就说明圆是一个轴对称图形,折线就是它的对称轴.圆有无数条对称轴,这名同学是对折两次,那么对折一次是否可以量出?

  生11:先对折一次,然后折痕就是圆的直径,除以2就是半径.

  师:有的同学是通过量得出的结果,虽然比我们刚才说的方法都在混却,但是在数学学习过程中,要先尝试,在调整,其实也是一种可行的方法.嘎嘎年菜有个女小朋友悄悄的问我,张老师,你这个圆怎么就没有针眼呢?那没有针眼,想一想,我这个圆是用圆规画出来的吗?

  生:不是.

  师:那就奇怪了,张老师不用圆规,是哟功能什么方法画的圆呢?

  生12:用一个碗扣在白纸上,描一下.

  师:有可能,但不是.

  生13:可能是一端是线,另一端是笔,把线一绕,圆就出来了.

  师:人造圆规.

  生4:先把纸对折,然后想要画多少直径,有了半圆,就可以得到一个圆了.

  师:这个方法至少给我们开拓了思路,他用的是三年集学的轴对称图形的知识,也可以,很善于考虑.可是你们都猜错了,

  正确的答案是用电脑画的.但是我们发现用电脑画圆的的大小太随意了,怎么能更好的画出半径是3厘米,4厘米或者5厘米呢?看,双击一下,对于圆来说,高度就是直径.假如我要画一个半径3厘米,那高度就是6厘米,不对呀,怎么变成椭圆了?

  生15:少了宽度.

  师:多精明的小朋友呀!所以光有高度还不行.还要有宽度,宽度也要是6厘米,我再按一下回车,就出来一个半径是3厘米,直径是6厘米的圆.我们来看一下是不是这样的.概括一下,画圆的方法,只有圆规一种吗?

  生:不是.

  师:可以是多种多样的,在所有画圆的方法中,有一种是最最基本的,是圆规.假如张老师非要用圆规画一个半径是5厘米的圆,你觉得我的两角应该张开有多大?

  生:5厘米.

  师:4厘米呢?

  生:4厘米.

  师:假如半径是3厘米,那么直径呢?

  生:6厘米.

  师:是不是我把圆扯开6厘米,就可以画圆了/

  生;不是.要扯开3厘米.

  师:所以圆规两角张开的距离是半径,回顾一下,今天我们一起认识了圆,又近一步感受了圆的特别,其实圆、还有一个更特别的地方,我们一起来看大屏幕:这是一个正三角形,现在我们把它的中心点稍微选中一下,结果发现和原来的三角形没有完全吻合.现在来看看圆,饶着中心旋转,随便怎样转,都能吻合.数学上我们把圆的这个特点叫做旋转不变性.那三角形有旋转不变性吗?

  生:没有.

  师:假如我们照这样的角度继续望下转,你会发现什么奇怪的现象?

  生:近似一个圆,

  师:想一想,刚才我们旋转的是什么呀?

  生:中心.

  师:假如不用中心旋转,就不行.这里有一个正方形,饶这个顶点来旋转,不知道行还是不行?一边观察,一边考虑,能转成一个近似的圆吗?所以可以知道正方形,三角形,绕着一边,随便旋转,都可以得出一个近似的圆.一条线段绕中点旋转,请同学们仔细盯着线段的两个端点,看它的运动结束以后,成了一个什么?

  生:圆.

  师:其实就是特定的点运动的轨迹.今天我们还接触了什么平行四边形,梯形,甚至是任意的区别行等等,那么它们绕某一点旋转,能出现圆吗?回家去试试,也许一幅一幅美伦美幻的图形就在你们的手下诞生了,到时别忘了带给咱班的数学老师和其他同学一起去交流和欣赏

圆的认识教学设计3

  教学目的:

  1.认识圆,知道圆各部分的名称,知道同一圆内半径和直径的特征。

  2.掌握圆的特征,理解在同圆内直径和半径的相互关系,能根据这种关系求圆的直径和半径。

  3.初步学会用圆规画圆。

  4.培养观察、分析、抽象、概括等思维能力和初步的空间观念;学会用数学知识解释生活中的实际问题。

  教学重点:圆的各部分名称及各部分之间的关系

  教学难点:圆的特征

  教学圆规

  学具准备:圆规、纸片、剪刀、彩笔、直尺

  教学过程:

  一、 生活中找圆,导入新课

  师:对于圆,同学们一定不会感到陌生吧?生活中,你们在哪见过圆形。

  师:其实,在生活中随处可见圆状物体。中秋圆月、硬币等都是圆形

  师:有人说,因为有了圆,我们的世界才变得如此美妙而神奇。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?

  二、 操作、探究,自主认识圆的特征

  1. 师:刚才我们看了这么多的圆,你们想不想把它画下来啊?

  师:平时,你们是怎么画圆的啊?

  师:比较一下,你觉得哪种方法更好啊?为什么?

  师:大家都觉得用圆规画方便,那么,怎么利用圆规来画圆啊?请大家自己试试,遇到问题时,再请教无声的老师,看看它能给你什么提示。

  让一位同学边示范边说步骤。(显示画圆的步骤)指出在画圆时的注意点。

  再让同学们多画几个圆。

  2. 把自认为画的最好的圆剪下来。

  师:拿出你的圆,对折一下,打开;再对折,再打开;反复几次。你发现了什么?

  师在学生回答的基础上总结:这些折痕相交于一点,这一点就用圆规画圆时针尖固定的一点。我们把这一点叫做圆心。用字母O来表示。

  老师在黑板上表示出圆心,让学生标出自己圆上的圆心。

  3. 我们已经认识了圆心,如果我们在圆上任意取一点,连接圆心和这点,这条线段我们把它叫做半径。用字母r来表示。(边说边在圆上表示出来)

  让学生在自己的圆上标示出半径,再让一位学生上黑板表示。

  指点怎样量圆的半径的长度

  师:在这个圆上,你能画出几条半径来?他们的长度怎样。

  让学生自己探究发现,可以同桌、小组之间探讨。

  老师在学生回答的基础上总结板书

  4.我们再把圆拿出来,看看上面还有什么奥秘。

  我们在折圆时,每条折痕都通过什么?它的两个端点在哪里?

  谁来说说,这是一条怎样的折痕?

  我们把这条线段叫做圆的直径,用字母d来表示。请你在你的圆上画出你这个圆的直径。一人板演,说说直径是怎么来的。

  我们怎样测量它的长度呢?

  我们找出了圆的直径,它是否和半径一样也有这样的规律呢?请你们自己按我们研究半径的方法研究直径。

  老师在学生回答的基础上总结板书

  5. 完成“练一练”第1题

  展示讲评,说说怎样想的。

  6. 学到这里,你对圆还想说什么吗?

  可先让学生在同桌、小组之间讨论一下。再汇报,并说说是怎么想的。

  根据学生的汇报,总结演示半径直径的关系。

  三、 联系生活,拓展运用

  1. 口答“练习二十四”第1、2题

  在其中讲解半径与圆的大小的关系

  2. 如果你是设计师,你会把车轮设计成什么形状?

  说说你的理由。

  为什么不设计成其他形状?

  四、 学生自己总结

  师:同学们,刚才我们一起研究了圆,现在请你闭上眼睛,回忆一下我们的学习的过程,整理一下你的学习收获。睁开眼睛,你能介绍一下你所认识的圆吗?

  教后反思:

  多少年来,在孩子们的心目中,在教师们的课堂里,数学一直与定理、法则、记忆、运算、冷峻、机械等联系在一起,难学难教、枯燥乏味一直成为学生学习数学的绊脚石。如何让学生在轻松和谐的环境下学习数学知识,这就成了我们教学中最为关注的问题。

  圆的认识是在学生初步认识圆以后进行教学的,对于大多数学生来说,虽然已经初步认识过圆,但对于建立正确的圆的概念以及掌握圆的特征来说还是比较困难的`。一开始我就从学生的生活出发,从生活中感知圆,形成圆的初步认识,画圆就顺理成章,而且比较多种方法认识到用圆规画圆的普遍性。让学生试着用圆规画圆,有困难时再看书,向书本学习。比硬性让学生看书后画圆,更尊重学生,也更富有启发性。画圆之后,让学生共同概括规律,是从感性到理性的一种提高,是十分必要的。

  从感性认识到理性认识的升华,单靠学生讨论是完不成的,关键时刻,还需要教师系统的引导和讲解。因此在介绍圆各部分名称时,由老师带领着认识,当然也是在动手操作中感受圆的各部分名称。在学生操作的过程中已经积累了很多的潜在的意识,这时,老师只用稍微点拨一下,老师所要的内容学生就脱口而出。教学过程中,充分放手让学生参与知识的形成过程,让他们自己去发现、去猜想、去验证、去讨论、去合作。

  当然在教学过程中我也发现了还需改进的地方,在个别环节的处理上还欠细致,前后时间的安排上也不是很好。还有,漠视了数学本身的文化背景,漠视了浸润在数学发展演变过程中的人文背景。如何兼顾知识与技能的教学,如何使我们的课堂活中有实,实中见活,这是我们每个老师值得深思的问题。

圆的认识教学设计4

  教学内容:西师版六年级(上)教材1618页上圆的认识

  教学目标:

  1、认识圆的特征,知道什么是圆心、半径和直径。能正确判断一个图形是不是圆,并说明理由。

  2、运用不同的思想方法认识:在同一个圆(或等圆)里,半径的长度都相等;直径的长度都相等并且等于半径的两倍;知道圆是轴对称图形,有无数条对称轴,能画出加圆的对称轴。

  3、能用圆规画圆,知道半径(直径)决定圆的大小,圆心决定圆的位置。

  4、了解圆在生产、生活和科学技术的应用,并能用圆的特征解释。

  教学重难点:掌握圆的特征,会画圆。

  教学方法:讲授法,探究法。学生学法:自学法、观察法,探究法。

  教学具:圆片,三角板,PPT课件,圆规,尺子,白纸,剪刀,细线等。

  教学过程:

  一、再现场景,导入新课。

  对于圆,同学们一定不会感到陌生吧?生活中,你们在哪儿见到过圆形?(学生说)今天,老师也给大家带来一些。见过平静的水面吗,如果我们从上面往下丢进一颗小石子(课件),你发现了什么?其实这样的现象在大自然中随处可见,让我们一起来看看。(课件展示生活中的圆形图片。)我们生活中常见的物体中都有圆。你能从这些物体中找到圆了吗?

  圆和我们以前学过的平面图形有什么不同?

  意大利诗人但丁、古希腊著名数学家毕达哥拉斯认为一切平面图形中最美的是圆。今天这节课,就让我们一起走进圆的世界,去探寻其中的奥秘,好吗?板书课题

  二、师生合作学习新知

  (一)试一试

  1、同学们能用手中的材料试着画一个圆吗?

  2、交流反馈。

  3、既然同学们能用这么多方法能画出圆,把自己的方法与别人的比较一下,能发现那种方法适用性更广一些?从而引导出用圆规画圆。介绍圆规的组成部件。

  (二)说一说

  1、请用圆规画圆的同学谁能把你的方法给老师和同学们说一下。

  2、生说,教师在黑板上板画。适时规范学生的语言。(先将针尖和笔尖张开一定距离;然后将针尖固定在一个点上;最后使笔尖落在纸上,将圆规旋转一周,毛尖就画出了一个圆。)

  3、其它学生用刚才那个同学的方法在纸上自由画一个圆。

  (三)学一学

  1、请同学们打开课本第17页例2下面这部分内容自学一遍。把你新学到的知识勾画出来,并重点理解一下。最后在你刚才画的一个圆里标出圆心、半径和直径。

  2、学生自学,教师巡视,适时收集信息为下面反馈做好准备。

  3、学生交流,边说边在自己画的圆中指出相应位置。教师适时追问,刚才针尖的位置是什么,它有什么作用?针尖与笔尖的距离是什么?它决定圆的什么?教师根据学生的回答用一个绳子系上一支粉笔头甩出不同大小的圆,加深学生理解。当学生说出圆心、半径和直径的概念不够规范时要用书上的规范用语,并通过重点词语理解概念。教师在追问及学生回答时适时板书。

  三、独立探究,获取新知

  1、请同学们拿出准备好的圆片独立探究。出示探究目标(课件出示):

  1将自己手中的圆用不同的方式找到圆心、半径和直径并做好标识。(学生找圆心时若有困惑可适时引导:我发现有个同学真聪明,他将手中的圆对折几次后就很快地找到了圆心,学生们试试看。)

  2在同一个圆中,有多少条半径?这些半径的长度之间有什么关系?你是怎样得到的?

  3在同一个圆里,有多少条直径?这些直径的长度之间有什么关系?每一条直径的长度与半径有什么关系?这些关系你是怎么得到的?

  4圆是不是轴对称图形?若是,它有多少条对称轴?能画出其中的一条吗?目标出示后,学生一定要认真读,明确要求,然后可以选择自己喜欢的一个或几个问题进行探究。教师巡视,适时指导调控时间。

  2、学生交流反馈。教师适时板书。

  四、介绍圆的历史

  其实,早在二千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:圆,一中同长也。所谓一中,就是指一个――同长就是指----

  其实,我国古代关于圆的研究和记载还远不止这些。老师这儿还搜集到一份资料,《周髀算经》中有这样一个记载,说圆出于方,方出于矩,所谓圆出于方,就是说最初的圆形并不是用现在的这种圆规画出来的,而是由正方形不断地切割而来的(动画演示:圆向方的渐变过程)。现在,如果告诉你正方形的边长是6厘米,你能获得关于圆的哪些信息?

  说起中国古代的`圆,下面的这幅图案还真得介绍给大家(出示图),认识吗?

  想知道这幅图是怎么构成的吗?

  原来它是用一个大圆和两个同样大的小圆组合而成的(出示图)。现在,如果告诉你小圆的半径是3厘米,你又能知道什么呢?(学生说)

  师:看来,只要我们善于观察,善于联系,我们还能获得更多有用的信息。

  五、解释与应用

  1、基本练习(制成课件)

  2、解释现象。

  现在让我们重新回到现实生活中来。平静的水面丢进石子,荡起的波纹为什么是一个个圆形?现在,你能从数学的角度简单解释这一现象了吗?

  车轮是绕着轴承转动,轴承的位置在什么地方?为什么?

  简单的自然现象中,有时也蕴含着丰富的数学规律呢。至于其他一些现象中又为何会出现圆,当中的原因,就留待同学们课后进一步去调查、去研究了。

  其实,又何止是大自然对圆情有独钟呢,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏――(课件展示)

  六、总结与反思

  1、请同学们将本节课所学知识整理一下,用一两句话说说你这节课最大的收获是什么?

  2、教师总结:西方数学、哲学史上历来有这么种说法,上帝是按照数学原则创造这个世界的。对此,我一直无从理解。而现在想来,石子入水后浑然天成的圆形波纹,阳光下肆意绽放的向日葵,天体运行时近似圆形的轨迹,甚至于遥远天际悬挂的那轮明月、朝阳而所有这一切,给予我们的不正是一种微妙的启示吗?至于古老的东方,圆在我们身上遗留下的印痕又何尝不是深刻而广远的呢。有的说,中国人特别重视中秋、除夕佳节;有人说,中国古典文学喜欢以大团圆作结局;有人说,中国人在表达美好祝愿时最喜欢用上的词汇常常有圆满美满而所有这些,难道就和我们今天认识的圆没有任何关联吗?那就让我们从现在起,从今天起,真正走进历史、走进文化、走进民俗、走进圆的美妙世界吧!

圆的认识教学设计5

  教学目标:

  1、让学生在操作、体验中认识圆,知道圆各部分的名称,掌握圆的特征,能正确画圆,初步利用圆的知识解释一些日常生活现象。

  2、通过分组学习,动手操作,主动探索等活动,初步培养学生的合作意识和创新意识,以及抽象、概括等能力,进一步发展学生的空间观念,发展数学思考。

  3、通过学习,进一步体验图形与生活的联系,感受平面图形的学习价值,提高学生对数学的好奇心与求知欲,体验数学活动的意义和作用。

  教学重点:

  掌握圆的各部分名称,圆的基本特征,学会用圆规画圆。

  教学难点:

  归纳圆的特征。

  教学准备:

  老师准备、教具圆规,学生每人准备一张白纸、一把圆规、两个大小不一的圆片。

  教学过程:

  一、溯源生活,导入新课

  1.欣赏,走进圆的世界。

  师:老师给同学们带来了一些图片,我们一起来看看吧。

  师:这些图片中有什么相同之处?

  (都是圆形物体。)

  2.揭示课题。

  今天这节课我们就一起走进圆的世界去探寻圆的奥秘。板书课题:圆的认识

  3.师:生活中很多物体的面是圆形的,同学们能说说你们在哪儿看到过圆吗?

  让学生说一说。

  二、操作体验,感悟特征

  1、教学画圆

  师:说了这么多的圆,你想不想亲自动手画一个圆?(想)

  师:现在请同学们利用手中的工具画一个圆,会吗?在白纸上试着画一个。

  学生动手画圆。

  引导学生交流所画的圆,并说说是怎样画的。

  师:你能告诉老师用什么画的吗?有不是用圆规的画的吗?

  师:你能告诉我为什么你们都喜欢用圆规画呢?

  小结:用圆规画得圆很标准而且方便。

  师:现在请同学们用圆规在纸上画一个圆。

  师巡视,找出失败的作品。

  师:同学们,你们觉得这些圆画得怎么样?

  师:这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?

  (1是没有固定好有针的那个脚;2是两脚之间的距离变化了;3是可能不会旋转;4拿圆规方法不对。)

  师:其实同学们发现了没有,刚才你们说得问题就是在画圆的时候应该注意的地方。

  师示范画圆。边画边说步骤。

  第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)

  第二步:把有针尖的一只脚固定在一点上。(板书:定点)

  第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)

  强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。

  师:现在,掌握了这些要求,有没有信心比刚才画得更好?

  学生画圆。

  师:刚刚老师发现,同学们画的圆有的大有的小,你们知道为什么会这样吗?

  (画的时候圆规两脚之间的长度不一样。)

  师:现在老师想请同学们画同样大小的圆,你们有办法吗?谁来帮老师想个办法?

  师:好,现在我们就把圆规两脚间的距离统一定为4厘米。

  师:大家动手画一个。圆我们画好了,但是如果有人要你介绍这个圆,你怎么说呢?

  2.教学圆的`各部分名称。

  (如果有学生说出半径、直径这类的词)师:刚才同学们用到了半径、直径,我们把它写下来好吗?(板书)那么什么是半径、直径呢?下面我们把课本翻到94页,例2下面的一段话会告诉你答案,自学例2下面的一段话。

  师:现在你会介绍了吗?什么叫半径呢?(引出下面的教学内容。)

  师:那什么是圆的圆心呢?(针尖固定的一点是圆心。)

  学生说,教师在黑板上标出。圆心通常用大写字母O表示。

  师:圆心有什么作用?它可以确定圆的什么?

  师:刚刚同学介绍说半径是连接圆心和圆上任意一点的线段。圆心我们已经知道了,那什么是圆上任意一点呢?你能找一找吗?你会画半径吗?

  指名学生上黑板上画半径。其余学生在自己画的圆上画好。

  师:半径通常用字母r表示。请同学们在自己的圆上标出。

  师:什么是直径?(通过圆心,两端都在圆上的线段。)

  师:老师这里在圆上画了一些线段,现在请同学们来帮忙判断是不是直径,可以吗?

  师:好,请同学们在自己的圆上画上直径,直径我们可以用字母d表示,请同学们标出。

  师:下面老师想考考大家,找出下面圆的直径和半径。(让学生说明是怎样想的。)

  3.探究圆的基本特征。

  师:我们已经认识了圆的圆心、半径、直径。大家想不想再深入地研究一下圆呢?单单圆心、半径、直径里面就蕴藏着很多知识,你想研究吗?

  师:接下来请同学们拿出信封里的圆片,同桌之间一个大圆,一个小圆。请同学们折一折,画一画,量一量,比一比,议一议。相信同学们肯定有精彩的发现。

  (1)圆有无数条半径和直径。

  师:你是怎么发现的?

  学生可能是通过画发现的,也可能是推想的。

  (2)在同一个圆里,半径的长度都相等,所有的直径长度都相等。

  预设:如果学生没有说是在同一个圆里,那教师就及时追问:你的圆的半径跟你同桌圆里的半径一样长吗?跟老师黑板上画的圆的半径一样长吗?那怎么说更好呢?

  师:你是怎样发现的,能说一说吗?

  学生说明。有些学生是折的,有些学生是量的。

  (3)同一个圆里直径是半径的2倍。

  师:你是怎么知道的?

  学生可能说是观察到的,也可能是量的。

  师:你会用含有字母的式子来表示它们之间的关系吗?

  d=2r r=d÷2

  师:如果老师告诉你圆的半径或者直径,你能说出它的直径或者半径吗?

  师:好,那老师就来考考大家。

  (出示练习十七第1题。)

  (4)圆是轴对称图形,有无数条对称轴。

  师:你是怎么知道的?

  师:还有其他发现吗?

  师:刚才大家通过自己的努力又发现了圆这么多的特征,看来只要善于观察,善于探索,善于研究,就会有意想不到的收获。

  三、巩固练习,深化认识

  师:接下来,老师有几个问题想请同学们解答一下,你们愿意吗?

  出示判断题

  (1)直径长度是半径的'2倍。()

  (2)圆心决定圆的位置,半径决定圆的大小。( )

  (3)画一个直径4厘米的圆,圆规两脚的距离应该是4厘米。( )

  (4)在同一个圆内只可以画100条直径。 ( )

  四、走进历史,探索信息

  师:今天我们一起认识了圆。其实,早在两千多年前,我国古代就有了关于圆的精确记载。墨子在他的著作中这样描述道:&ldqu;圆,一中同长也。&rdqu;你怎么理解这句话?

  师:我国古代这一发现要比西方整整早一千多年。说到这里你有什么想法!

  师:其实在我们古代对圆的研究远不止这些,有兴趣的同学可以利用课余时间通过网络去了解。现在老师还为大家带来了一个古代的圆,你们认识吗?对了,这是我们古代的太极图,有句话说,太极生两仪,两仪就是我们图上的黑和白,表示阴和阳。谁来说说看这幅图是由什么构成的?

  师:原来它是用一个大圆和两个同样大的小圆组成,假如小圆的半径是3厘米,你又能知道哪些信息呢?

  师:同学们发现的信息还真不少,只要同学们肯动脑筋,善于联系,在以后的学习中肯定会有更多收获。

  五、全课总结

  师:在古代我们很早有了圆的发现和研究,在现代圆一直扮演着重要的角色,并一度成为美的使者和化身。接下来我们一起再来欣赏一下关于圆的一些图片。感觉怎么样?美吗?想说点什么吗?

  师:的确圆是非常漂亮的图案,以前有位思想家说过,圆是世界上最美丽的图形。可见这句话不是随便说的,那么其中到底蕴涵了什么深沉的意义呢?这个问题就留给同学们课后思考。相信随着你们学识的增长,会有更多更深的理解。

圆的认识教学设计6

  一、情景引入

  出示一组生活中物体的图片,让学生欣赏。(如太阳、圆月、汽车的车轮、呼拉圈、光盘、钟面等)

  1、刚才欣赏到的那些漂亮图片中的物体是什么形状?

  2、在我们的生活中,就在我们的身边,还有那些地方能看到圆?

  (学生衣服上的纽扣、身上的硬币、桌子里的杯子等等)

  请学生用手指一指这些物体上的圆,并用手摸一摸,有什么感觉?

  3、看来,在我们的大自然中、生活中圆是无处不在,今天就让我们一起来了解这个虽然不熟悉但和我们处处在一起的圆。(板书:圆的认识)

  二、教学新知,初步画圆

  1、刚才看了那么多的圆,说了那么多的圆。接下来请大家用你能想到的办法自己动手画一个圆。

  2、请学生交流画圆的方法。如借助圆形的物体画,还有书上讲到的方法或是用圆规画)

  3、通过刚才的看圆、说圆与画圆,你觉得圆与以前学过的平面图形有什么不同?

  总结:以前学过的平面徒刑都是由线段围成的,圆是由曲线围成的,圆比较光滑,没有角。

  4、大家介绍了很多画圆的方法。为了使我们能画出任意大小的圆来,勤劳、智慧的人们制成了专门用来画圆的工具――圆规。

  三、认识圆规,掌握用圆规画圆的方法。

  1、认识圆规。

  让学生取出课前准备好的圆规,一起认识圆规的的构成并介绍圆规两脚的功能:圆规有两只脚,一只是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。

  2、尝试画圆。

  1 )你能试着用圆规画一个圆吗?学生独立画圆。

  2 )刚才老师转了转,发现有些同学要么没画好,要么画出来的不圆,下面我们一起看大屏幕,注意观察如何使用圆规画圆。(使用实物投影仪,教师示范使用圆规画圆)

  3 )说说,老师刚才是如何使用圆规画圆的?学生回答,教师总结并板书:两脚叉开――固定针尖――旋转成圆。

  4 )学生按照这个方法再练习画一个圆,同时思考:通过两次画圆,应该注意什么?

  总结:针尖要固定,不能移动;两脚间的距离保持不变;要旋转一周。

  5 )练习画一个两脚之间距离是2 厘米的圆。

  四、学习圆的各部分名称及特征。

  1、认识圆心、半径、直径。

  1 )教学圆心:刚才我们画圆时,针尖固定的这个点,我们把它叫做圆心,用字母O 来表示。找出你刚才所画的圆的圆心,并标上字母O 。同桌相互检查一下,有没有标对。

  2 )教学半径:连接圆心和圆上一点的线段是半径,用字母r 表示。指导学生画一条圆的半径,并标上字母。在我们用圆规画圆时,这个半径就是指什么?(两脚之间的距离)因此圆的大小就是由圆的半径决定的。

  让学生联系画一个半径是4 厘米的圆,画出一条半径,标上圆心和半径的字母。向全班展示自己的圆,看一看,自己画的、标的还有什么地方部不对。

  3 )教学直径。

  出示一个画有一条直径的圆,让学生观察这条线段的位置有什么特点?

  总结:像这样通过圆心并且两端都在圆上的线段是直径,通常用字母d 表示。

  同学们你们画的圆也有直径,请你画一条圆。

  4 )闭好眼睛,回想标圆心、画半径与直径的方法。

  2、练习,完成练一练的第1 题。

  说说哪些不是半径或直径,为什么?

  3、研究圆的特点。

  我们已经认识了圆心、半径和直径,现在我们就继续来研究圆的特点。

  1 )出示一张圆形的纸,你能找到它的圆心吗?(把圆对折两次)

  通过对折,你还发现圆有什么地方比较特别吗?(对折后能完全重合,是轴对称图形)

  2 )把你手中的圆通过:画一画、量一量、比一比、折一折,在小组内讨论交流下面问题:在同一个圆里可以画多少条半径,多少条直径?

  在同一个圆里,半径的'长度都相等吗?直径呢?

  同一个圆的直径和半径有什么关系?

  圆是轴对称图形吗?它有几条对称轴?

  3 )学生汇报回答上述四个问题,教师适当引导:前面三个问题为什么要强调在同一个圆里?可以画无数条半径和直径,你是怎么知道的?你能用字母来表示半径与直径之间的关系吗?(板书:d=2r )

  4 )通过刚才的讨论和交流,我们掌握了圆的特征,谁来总结一下圆的特征。

  五、巩固练习。

  1、练习十七的第1 题。

  填写表格,并说一说半径与直径之间有什么关系?

  2、练一练的第2 题。

  画一个直径是5 厘米的圆,并用字母O、r、d 分别表示出它的圆心、半径和直径。

  教师提问:使用圆规画一个直径是5 厘米的圆,先要确定什么?(求出半径,也就是两脚之间的距离)

  3、判断题。

  1 )圆有无数条对称轴。

  2 )直径是半径的2 倍。

  3 )画一个直径为4 厘米的圆,圆规两脚间的距离为4 厘米。

  4 )圆的位置由圆心决定。

  5 )两脚间的距离越大,画出的圆就越大。

  六、欣赏生活中的圆

  谈话:瞧,生活中,也蕴含着丰富的数学规律呢。其实,在我们人类生活的每一个角落,圆都扮演着重要的角色,并成为美的使者和化身。让我们一起来欣赏。

  师:感觉怎么样?

  师小结: 而这,不正是圆的魅力所在吗?

  七、全课总结

  谈话:其实短短的一节课,要想真正了解圆还不太容易。那么就让我们从今天起,走进历史,走进文化,走进圆的世界吧!

圆的认识教学设计7

  1. 例1。

  编写意图

  例1是让学生想办法在纸上画圆,直观感受圆的曲线特征,同时为后面探究圆的基本性质做好准备。教材共呈现了3名学生用不同的实物来描摹画圆的方法,这种方法简单,且学生以前有基础,但因受实物所限,画出的圆大小是固定的,不能随意变化,从而为后面教学用圆规画圆做了铺垫。

  教学建议

  教学时,教师应在课前备好相应的学具,如茶杯盖、圆柱等用来画圆的物品,以便于学生活动。实际教学中,学生也可能会提出用圆规画圆的方法,教师不用回避,说明这种方法将在后面学习。

  2. 例2及“做一做”。

  编写意图

  例2教学圆的认识和画法。

  圆的认识主要是认识圆的各部分名称及特征。分三个层次编排:首先让学生将画好的圆反复对折,发现折痕相交于一点,引出圆心的概念。然后由圆心出发,定义半径和直径,并让学生探索出在同一个圆内,半径和直径都有无数条。最后通过测量比较,让学生认识到同一圆内所有的半径都相等,所有的直径也都相等,并且半径的长度是直径的1/2。

  教材对用圆规画圆的编排是先让学生自主探索,然后小组交流,最后由教师归纳总结出画圆的基本方法。

  “做一做”的第1题主要是巩固学生对半径和直径的认识。第2题重点在于画出一个确定大小的圆;第3题让学生找出圆的圆心和直径,由于这两个圆都是画在纸上的,无法通过折叠的方法来确定,所以较难。可以引导学生借助正方形的对称性来找圆心,只要连接正方形的对角线即可。第4题主要说明圆形物体具有易滚动这一特性,故车轮常做成圆形的,而车轴之所以装在圆心的位置,则是因为圆心到圆上任意一点的距离都相等,故只有把车轴装在圆心处,当车轮滚动时方可使行进的车辆保持平稳状态。

  教学建议

  教材注重学生动手操作来探究圆的基本特征,故教学时应放手让学生活动,通过折、画、量等方式来寻找规律。在学生活动中,教师可适时用问题引导探究的内容。如“同一个圆里,有多少条半径呢?”“半径和直径的长度有什么关系?”……最后,教师应在学生探究的基础上,对圆的有关概念和基本特征进行归纳和整理,以使学生形成系统、科学的认识。

  教学用圆规画圆时,应先让学生自己在纸上画一画,然后小组交流画法。在此基础上,教师可归纳总结出画圆的基本步骤和方法,主要应说明两点:一是圆的位置和大小分别是由圆心和半径决定的,故画圆时应先确定圆心,然后按照指定的长度为半径来画圆;二是圆的大小取决于半径的长短,与圆心的位置无关。然后再让学生按照要求画几个圆,逐步掌握用圆规画圆的方法。

  3. 例3及“做一做”。

  编写意图

  例3在前面所学的'成轴对称的平面图形的基础上,教学认识圆的对称性。使学生认识到圆是轴对称图形,且对称轴有无数条。

  教学建议

  教学时可分两个层次:一是让学生回顾以前学过的轴对称图形,复习对称特点及明确对称轴,然后说明以前学过的长方形、正方形等都有对称轴,这些图形都是轴对称图形;二是引导学生认识到圆也是轴对称图形,并且每条直径所在的直线都是圆的对称轴。这部分内容应让学生动手画一画,折一折,在实际操作中联系直径的含义来体会圆的对称轴有无数条这一特性。

  “做一做”的第1题是总结性题目,在学过的轴对称图形中,等腰三角形和等腰梯形只有1条对称轴,长方形有2条对称轴,等边三角形有3条对称轴,正方形有4条对称轴,圆有无数条对称轴;第2题是根据对称轴画出轴对称图形的另一半,教学时应引导学生利用方格纸先描出对应点,再连线构成图形。

  4. 关于练习十四中一些习题的说明和教学建议。

  第2题,第3幅图是一个圆内切于一个正方形,则正方形的边长就是圆的直径,故r=5 cm;第4幅图以梯形的上底为直径作出的半圆内切于梯形的下底,则梯形的高即为半圆的半径,故d=7 cm。

  第3题,使学生知道两端都在圆上的线段,直径是最长的一条。

  第4题,这两种方法都是利用第3题的结论,通过移动尺子或用两个三角板同时夹住圆并垂直于刻度尺来测量出圆内“最长的线段”,也就是直径。

  第6题,可先固定一点,然后以此为圆心,用长为5 m的绳子绕此点旋转一周即可画出。

  第8题,最本质的区别在于圆是曲线图形,而三角形和四边形是直线构成的图形。

圆的认识教学设计8

  教学目标:

  知识目标:组织学生通过画一画、折一折、观察体验圆的特征,认识圆的各部分名称,

  理解在同一个圆内直径与半径的关系。

  能力目标:让学生了解、掌握画圆的多种方法,初步学会用圆规画圆;

  转变学生学习的方式,培养学生观察、分析、概括等思维能力和初步的空间观念。

  德育目标:让学生养成在交流、合作中获得新知的习惯。

  教学重点:探索出圆各部分的名称、特征及关系。

  教学难点:通过动手操作体会圆的特征。

  教具准备:硬币、线绳、图钉、铅笔头、圆规、课件。

  教学过程:

  一、创设情境、激发兴趣:

  1、创设情境

  师:同学们,你们喜欢运动会吗?老师今天给你们带来了一场紧张而又激烈的塞车运动。看,它们已经来到了起跑线上,一号、二号、三号谁将会成为最后的冠军,请同学们大胆预测。

  师:让我们把掌声献给冠军,送给一号车手。同学们预测的很好,那么一号的赛车为什么成为了最后的冠军呢?

  生:因为一号的赛车,轮子是圆的。

  师:其它的车手为什么会比一号的赛车慢呢?

  生:因为它们的轮子是方形,是三角形,有棱有角的。

  2、联系生活、举例说明

  师:你在生活中,哪些物体上还有圆?指名学生回答日常生活中含有圆的物体。

  师:圆在我们的生活中是无处不在的,汽车作为现代工业化的产物,正是因为装上了圆形的轮子,不仅极大的方便了我们的生活出行,也大大提高了社会生产效率;家庭用的圆形套装餐具,满足我们审美需求的同时,也更让我们味口大开,看来圆在我们的生活中的确很重要。下面就让我们对圆作更进一步的认识吧!揭示课题:圆的认识

  二、自主探索,初步体验:

  1、第一次自主探索画一画。

  师:你能创造出一个任意大小的圆吗?

  生:能。

  师:同学们真有自信,下面就请同学们前后四人小组为单位,可以利用学具袋中老师给大家准备的工具,也可以自己想办法去创造圆,比一比看哪个小组想到的方法最多?

  学生进行小组合作,分工创造圆。

  生:进行小组反馈。

  教师注意将各种方法进行概括分类,学生可能会出现的答案有①利用硬币或其它圆形轮廓描圆;②利用图钉和线画圆;③用圆规画圆;④用圆形物体用力在纸上压印圆;⑤线一头系上重物旋转形成圆……

  师:这么多的方法都能创造出圆,那么这些方法有什么缺点吗?

  学生说一说各种画法的缺陷:(

  1、利用圆形轮廓描和印圆,方便但圆的大小固定。

  2、线画圆,比较麻烦但可以画很小的圆也可以画很大的圆。

  3、旋转形成圆不能留下痕迹。

  4、圆规画圆,方便且一定大小的圆都能画)

  师:那你认为这么多方法中用什么画圆最科学最方便?

  生:用圆规画圆最方便。

  2、第二次尝试画一画-----用圆规画圆。

  师:那请同学们用圆规自已尝试画一个圆。

  没有画成功的同学把图案展示,我们愿意帮助你寻找原因。

  生:(

  1、画移位的,

  2、重新画又找不到位置的,)如:问为什么会移位,为什么会找不到原来的位置?

  学生回答问题的原因,教师边示范边讲解:所以画圆的时候要先确定位置,点上一点,把钢针戳在点上,用手捏住圆规的头,岔开圆规两脚的开口,将圆规略微倾斜一点,旋转一周,一个圆就画好了。请大家也一起试试看。(板书:定点、定长、旋转一周)

  师:学生根据老师的讲解独立画圆。

  师:大家画的`圆的位置都一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为刚针戳的位置不一样,(或点的位置不一样)

  师:看来这个点能决定圆的位置,(板书:能决定圆的位置)

  师:请同桌再互相比较一下你们刚才画的圆大小完全一样吗?

  生:不一样。

  师:为什么会不一样?

  生:因为我们圆规的开口大小不一样。

  生:圆规的两脚开得越大,所画的圆也就越大,圆规两脚间的距离能决定圆的大小。(师板书:能决定圆的大小)

  师:那请同学们把圆规两脚间的距离定为3厘米,来画一个圆,并用剪刀将你所画的圆剪下来。

  三、认识圆各部分名称及探究其特征:

  ①学生跟老师一起操作:把圆对折、打开,换个方向,再对折,再打开…这样反复几次。(也可进行一下小竞赛,看谁折得快、折得好。)

  提问:折过若干次后,你发现什么?(在圆内出现了许多折痕。)

  师:仔细观察一下,这些折痕总在圆的什么地方相交?(圆中心一点)

  教师指出:我们把圆中心的这一点叫做圆心。(贴出纸圆,点出圆心,并板书:圆心)

  师:圆心一般用字母o来表示。(板书:o)

  教师领学生读字母“o”,说明“o”的写法,让学生在自己的圆里标出圆心并用字母“o”来表示。

  游戏过渡:下面让我们放松一下,玩一个“食指点圆”的游戏,游戏规则:教师说出圆的位置(圆外、圆心、圆内、圆上)让学生用食指来点,看谁点的快,点的准。尤其强调“圆上”的概念,指圆的边缘上。

  ②师:强调之后,让学生说圆上有多少个点?(无数个)现在请同学们用尺子量一量圆心到圆上任意一点的距离,看一看,可以发现什么?

  通过测量引导学生发现:圆心到圆上任意一点的距离都相等。

  教师指出:我们把连接圆心和圆上任意一点的线段叫做半径。(教师在圆内画出一条半径,并板书:半径)

  提问:谁能说一说什么样的线段叫做半径?

  教师说明:半径一般用字母r来表示。(板书:r)

  教师领学生读“r”,强调“r”的写法,让学生在自己圆里画出一条半径并用字母r来表示。

  学生做完后,教师提问:在同一个圆里可以画出多少条半径?所有的半径长度都相等吗?

  启发学生说出:在同一个圆里,有无数条半径,所有的半径长度都相等。(并板书)。

  ③同学们接着观察,刚才我们把圆对折时,每条折痕都从圆的什么地方通过?两端都在圆的什么地方?(每条折痕都通过圆心,两端都在圆上。)

  学生回答后,教师指出:我们把这样的线段叫做直径。(在圆内画出一条直径,并板书:直径)

  提问:谁能说一说,什么样的线段叫做直径?

  启发学生说出:通过圆心并且两段都在圆上的线段叫做直径。

  教师说明:直径一般用字母“d”来表示。(板书:d)

  教师领学生读“d”,强调"d"的写法,让学生在自己的圆里画出一条直径,并用字母“d”来表示。

  学生做完后,教师提问:在同一个圆里可以画出多少条直径?自己用尺子量一量同一个圆里的的几条直径,看一看可以发现什么?

  引导学生得出在同一个圆里有无数条直径,所有的直线的长度都相等。

  ④练习:出示课件请观察下图中哪些直径,哪些是半径。哪些不是,为什么?

  ⑤小结与过渡:通过刚才的学习我们知道,在同一个圆里,有无数条半径,所有半径的长度都相等;有无数条直径,所有直径的长度也都相等。那么,在同一个圆里,直径与半径之间又有什么关系呢?(组织学生讨论)

  引导学生得出:在同一个圆里,直径的长度是半径的2倍,半径的长度是直径的一半。

  师:如何用字母表示这种关系?学生回答后,教师板书:d=2rr=d/2。

  师:这就是说,在同一个圆里,知道了半径的长度,乘以2就可以求出直径的长度;知道了直径的长度,乘以1/2就可以求出半径的长度。(组织学生说半径或直径的长度,让其他学生说直径或半径的长度,然后组内互说互评。)

  ⑥练习:出示课件填表。

  ⑦巩固练习:出示判断题。

  四、转回课前问题:

  为什么车轮做成圆形的能得冠军呢?

  (让学生结合今天所学知识解决此题。)

  五、课后作业:

  用今天所学知识画出各种大小、不同颜色的圆,组合出一幅美丽的图画。

  六、板书设计:

  圆的认识

  圆心O ——能决定圆的位置(定点)

  半径r

  ——能决定圆的大小(定长)

  直径d

  同圆半径

  无数条且长度相等

  (等圆)直径

  d=2r或r=d=

圆的认识教学设计9

  【教学背景】

  随着现代教育技术的发展,在小学数学课堂中,学生已经不能满足于传统的“一支粉笔一块黑板”的模式,他们想要的是更精彩更联系生活的知识。多媒体课件就可以实现这个愿望,它能使数学问题由抽象变具体,由复杂变简单。每次用多媒体课件给学生上课,学生总是兴致勃勃,教学效率也有所提高。现在的学生对电脑已经很熟悉了,有时让学生亲自用课件练习,学生也总能全神贯注地领会教学意图,同时,组织学生自己在互联网上搜索相关知识,既提高了学生的学习兴趣,又在新颖的数学活动中掌握了新知,达到教学预期效果。

  【教材简解】

  圆是小学数学“空间与图形”领域里最后教学的一个平面图形,也是教学的唯一的曲线图形,是学生对平面图形认知结构的一次重要拓展。此前,学生已经学过了正方形、长方形、平行四边形等诸多直线图形。《圆的认识》教材编排思路是从情境入手,让学生感受到圆与生活的密切联系,再引导学生画圆,初步感受圆的特征,掌握圆规画圆的方法,引导学生认识圆的相关概念,掌握圆的基本特征。教学这部分内容,既能丰富学生空间与图形的学习经验,也是为学习圆的周长和面积打下基础。

  【目标预设】

  1. 知识与技能目标:

  在观察、画图、操作等活动中感受并发现圆的有关特征;知道什么是圆的圆心、半径、直径;能借助工具画圆,能用圆规画指定大小的圆,能用圆的知识解释一些日常生活现象。

  2. 过程与方法目标:

  通过观察、画图、比较、猜想、上网搜索等活动,进一步积累认识图形的学习经验,增强空间观念,发展数学思考。

  3. 情感与态度目标:

  进一步体验图形与生活的密切联系,感受平面图形的美和学习价值,提高数学学习的兴趣和信心,培养应用数学的意识。

  【教学过程】

  一、铺垫孕伏

  1.复习旧知

  谈话:我们已经学过了许多的平面图形,仔细想一想、搜一搜有哪些常见的平面图形?

  2.揭示课题

  演示:一个小球,小球的一端还系着一段绳子,老师用手拽住绳的一端,将小球甩起来。

  提问:小球的运动轨迹是一个什么图形?(学生回答:圆,然后利用搜索引擎搜索“圆形”

  引入:对,这就是一个圆!圆也是一个平面图形。这节课我们就一起来认识圆。(板书课题:圆的认识)

  二、探究新知

  (一)教学例1

  1.课件出示例1中的四幅图

  提问:这些都是生活中常见的物体,这些物体上有圆吗?(学生上计算机点出圆)

  2.课件出示篮球图片

  提问:你认为它也是一个圆吗?(学生思考并回答)

  指出:球是立体图形,而圆是平面图形,所以球不是一个圆,但球的切面是圆形。圆是平面上的曲线图形。

  (二)教学例2

  1.介绍圆规构造(同时出示圆规实物与课件)

  在画圆时,我们通常会借助一个专门的工具,那就是圆规。圆规有两只脚,一只脚是针尖,另一只脚是用来画圆的笔,两只脚可以随意叉开。

  2.边讲解边演示圆规画圆的方法

  第一步:把圆规两脚分开,定好两脚间距离。(板书:定长)

  第二步:把有针尖的一只脚固定在一点上。(板书:定点)

  第三步:把装有铅笔尖的一只脚旋转一周。(板书:旋转)

  强调:针尖必须固定在一点,不可移动,重心放在针尖一脚上;两脚间的距离必须保持不变,要旋转一周。

  3.尝试画圆

  讲述:现在请你把圆规两脚间的距离分别定为2㎝和4cm,按照老师演示的'方法自己试着画两个圆。

  4.介绍圆心、半径和直径

  讲授:刚才我们用圆规画圆时,针尖固定的一点是圆心,通常用字母o表示。(学生标出圆心)

  讲授:连接圆心和圆上任意一点的线段是半径。通常用字母r表示。(学生标出半径)

  提问:那你有没有发现圆规两脚间距离和半径有什么关系?(学生比较后发现,圆规两脚间距就等于半径)

  讲授:通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。(学生标出直径)

  强调:让我们再直观地来看看圆心、半径和直径。

  5.巩固练习:练一练第1题。(教材p97)

  三、深化感知(教学例3)

  1. 认识半径特征

  (1)比一比:

  讲述:给大家10秒时间,看谁在自己的圆中画的半径最多!

  追问:还能继续画吗?能画得完吗?说明了什么?(学生思考并回答:半径有无数条,同时课件出示“无数条”半径)

  (2)量一量:

  提问:用直尺量一量这些半径,你有什么发现?(板书:半径都相等)

  (3)议一议:

  追问:你们手上圆的半径和老师黑板上圆的半径长度相等吗?什么情况下半径的长度才相等? (板书:在同圆或等圆中)

  2.认识直径特征

  (1)猜一猜:

  提问:在同一个圆里有多少条直径?这些直径都相等吗?(学生迅速反应:一个圆有无数条直径,它们都相等。同时课件出示“无数”条直径)

  (2)谈一谈:通过前面的活动,我们对同一圆内半径和直径的特征有哪些认识?

  3.半径和直径的关系

  (1)讲述:我们已分别找到了半径和直径各自的特征,那么半径和直径之间还有关系?(同桌互相讨论后全班交流)

  指出:在同圆或等圆中,直径的长度是半径的2倍,半径的长度是直径的一半。

  讲述:你能用字母表示这种关系吗?(课件演示并板书:d=2r,r=d/2)

  (2)练习应用:(练习十七第1题)

  4.认识圆的对称轴

  提问:圆是轴对称图形吗?它的对称轴有几条?在哪里?(学生小组讨论后交流意见)

  强调:对称轴是直线,应严密地表述:直径所在的直线是圆的对称轴。

  四、生活思考

  提问:你能用数学的角度解释一下为什么车轮要做成圆的?车轴应装在哪里?

  五、全课总结

  同学们,今天我们学习有关圆的知识,你对圆形有了什么新的认识?还有什么疑问吗?和大家一起来分享!

  六、板书设计:

  圆的认识

  在同圆或等圆中,半径都相等,定长

  直径都相等。定点

  d=2rr=d/2旋转

  【教学反思】

  《数学课程标准》在高年级段的教学建议中指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,使学生通过观察、操作、猜测、交流、反思等活动,进一步发展思维能力,激发学生的学习兴趣。在《圆的认识》教学过程中,我注意从以下几方面来着力体现这一理念:

  1、自主探索,凸显主体作用

  在教学的各个环节始终将学生自主探索的理念贯穿其中,例如:让学生自主尝试画圆的方法;让学生小组合作,观察、探究圆的半径和直径的特点等,在各个活动中力求使学生崭露出他们的个性和创新意识。

  2、联系生活,注重学以致用

  “生活即学问”,在教学时时刻注意数学的生活性。例如:让学生举例说说生活中哪些地方有圆形;讨论生活中的车轮为什么是圆形的等环节,都注意了密切联系生活实际。

  3、以生为本,引导构建新知

  在对圆的概念的要求上,并没有强加给学生圆的科学概念,而是让学生通过观察、操作等活动进行学习,在头脑中自然形成圆的概念,这样学生才学得有趣,学得扎实,同时,结合学生的已有体验,组织学生在互联网条件下搜索相关知识,自主构建新知,既达到了教学目标,又提高了学生的自主利用互联网学习的能力。

圆的认识教学设计10

  教学内容:《圆的认识》人教版 六年级上册

  教学目标:

  1、使学生认识圆的各部分名称,掌握圆的特征及画圆的方法。

  2、在活动中培养学生观察、动手操作、与他人合作交流等方面的能力。

  3、使学生感受生活中圆的存在及作用,感受平面图形的学习价值,提高学生数学学习的兴趣和学好数学的信心。

  教学重难点:掌握圆的特征及画圆的方法。

  教学过程:

  一、创设情境,导入新课

  (1)喜羊羊和灰太狼一起参加动物王国里举办的汽车设计大赛,喜羊羊设计一个圆形车轮的汽车,灰太狼设计一个方形车轮的汽车。它们行驶起来会是什么感觉呢?

  (2)对于圆,我们一定不会感到陌生吧?生活中你们在哪见过它们呢?

  (3)(课件出示)欣赏有关圆的美丽的图片,如向日葵、光环等。

  【设计意图】

  数学来源于生活,又应用于生活。创设学生熟悉的生活情境,使学生产生积极的心理需求,感受数学与生活的密切联系,体验到生活中处处有数学与数学的运用。

  二、自主探索,交流互动

  1、感悟画圆法

  师:好了,欣赏了那么多美丽的圆,大家想画这些圆吗?你们有什么办法把圆画出来呢?

  ……

  2、尝试用圆规画圆

  师:利用实物画圆这个方法大家都会了,我们就不研究了。你们想挑战用圆规画圆吗?

  (生在纸上画圆,师巡视,仔细观察学生画圆时出现的问题)

  师:老师发现大部分同学画的圆很漂亮,但有小部分同学画的圆不是很好喔!你猜猜,他们可能在什么地方出现了问题?大家愿不愿意帮帮他们呢?

  ……

  师:其实大家所说到的就是用圆规画圆的步骤和应注意的地方。谁说说?师根据生说相机归纳与板书,并示范画圆。

  (1)确定圆规两脚间的距离

  (2)把针尖固定在一个点上

  (3)把另一只脚旋转一周

  3、画定长为2厘米的圆

  师:同学们学会画圆了吧?想再画一个吗?不过这次老师有一个小小的要求喔,就是要使咱班同学画的圆一样大,怎么办?(圆规两脚间的距离定的一样长)

  【设计意图】

  把静态的图片变为动态的操作,从学生的真实点出发,以练习作为贯穿用圆规画圆的教学过程的始终,并以观察、讨论、谈话等教学方法加以辅助,让学生在亲身经历知识的过程中掌握画圆的方法及注意点。

  4、剪一剪、折一折

  (1)认识圆心。师:把这些折痕都相交于圆中心的'一点,我们把它叫做什么?用字母怎样表示?

  小结:我们把圆中心的这一点叫做圆心,用字母“O”表示。请同学们用彩笔在圆上标出圆心。

  (2)认识直径。师:我们任取一条折痕,观察它有什么特点?

  小结:通过圆心,两端都在圆上,是一条线段。(揭示概念像这样通过圆心并两端都在圆上的线段就是圆的直径)用字母d表示,并在圆上标出。

  (4)认识半径。师:画面中的线段有什么特点?

  小结:一端在圆心上,另一端在圆上任意一点。揭示概念(连接圆心与圆上任意一点的线段叫做半径)用字母“r”表示。

  (5)半径与直径的关系。师:我们认识了圆心、直径与半径,想想它们的特征及其关系?

  a在剪成的圆里你能画多少条半径?它们的关系有什么关系?

  b在剪成的圆里你能画多少条直径?

  c直径与半径有什么关系?

  小组讨论交流

  小结、板书

  【设计意图】

  在这里先让学生掌握画圆的方法,再让他们认识圆的各部分名称及其特征,既优化了教材的编排,又符合学生的认知结构,达到了教学目标的要求。

  三、自练反馈,巩固练习

  (1)填一填:

  ①同一圆里有( )条直径,有( )条半径。

  ②在同一圆里,直径与半径的比是( )。

  ③把一个圆规的两脚张开2厘米,画一个圆,它的直径是( )。

  (2)判一判,对的打“√”错的打“×”。

  ①两端都在圆上的线段叫圆的直径。 ( )

  ②圆心到圆上任意一点的距离都相等。 ( )

  ③直径是半径的2倍。 ( )

  (3)三题中选一题做:

  ①请你当裁判员:我们班举行迎“元旦”套圈比赛,参赛的同学应站成什么形状合理、又省时?请根据你的创意画出相应的示意图。

  ②请你当设计师:绿岛公园计划在圆形人工湖里建一个观影亭,请你拟定一个选择建设位置的方案并简要说明理由。

  ③体育老师想在操场上画一个10厘米的圆圈做游戏,可圆规太小,你能帮她想一个办法吗?

  【设计意图】

  《课标》提倡:学生的数学学习内容应是现实的、有意义的、富有挑战性的,强调数学知识的来源与应用。这一环节将枯燥的练习,融入到当设计师、裁判员中来,促使学生以饱满的热情参与学习,又在活动中巩固所学的知识,在交流中开阔思维,培养学生的创新意识及实践能力。而且练习的设计富有层次性,体现了实践性、应用性、开放性。

  四、回顾总结

  师:在这节课里,我们学到了什么?我们生活中有些东西为什么要做成圆形的呢?感兴趣的话课后我们可以用今天所学的知识解释一下。

圆的认识教学设计11

  教材分析

  “圆的认识”是在学生已经认识了长方形、正方形、平行四边形、三角形、梯形等平面图形和初步认识圆的基础上进行学习的,在学生认识了多种平面图形的基础上认识的由曲线围成的平面图形,是小学阶段认识的最后一种常见的平面图形。由于学生已经对圆有了初步的感性认识,所以教材首先从日常生活的常见物体中引出圆,再凭借圆形物体画出圆,然后利用折叠的方法找出圆心,在此基础上,通过测量、比较和交流等活动,引导学生认识圆的半径和直径以及它们的长度之间的关系,从而使学生掌握圆的特征。考虑到小学生的认知水平,教材并没有给出圆的本质特征的描述,但教材通过观察与思考、画一画等活动帮助学生逐步对此加以体会,为学生到中学学习圆的定义提供了感性认识和直观经验。

  学情分析

  我班学生在低年级已经对圆有了初步认识,加之生活中比较常见的缘故,已经有了一定的感性积累,只是在概念上尚不具体化,同时已经学过了几种常见图形认识,如:长方形、正方形、三角形等,为本课的学习奠定了基础。小学五年级的学生思维处于经验性的逻辑思维,思维的形成与发展需要依赖具体形象的经验材料来理解和抽象事物之间的内在联系,以前学的几种常见图形是由线段围成的,而圆则是由曲线围成的图形,无论从内容本身,还是研究问题的方法,都有所变化。故此,在教学中要紧密联系学生的实际生活,列举出日常生活、生产中所见到的圆形物体,引出圆的概念,了解圆的特征。圆的相关知识与特征,学生通过自己的操作、探索都能获得,“学”数学就是“做”数学;而学生的心理特点,决定了应当重视引导学生运用多种感官,参与知识的形成过程,因此我借助多媒体课件为自己的探索所得提供科学验证和知识深化、运用的机会。通过认识圆、画圆过程,体验数学的乐趣。

  教学目标

  1、使学生在观察、操作、画图等活动中感受并发现圆的有关特征,知道什么是圆的圆心、半径和直径,能借助工具画圆,能用圆规画指定大小的圆,能应用圆的知识解释一些日常生活的现象。

  2、使学生进一步体验圆形与生活的联系,体会圆形物体的美。

  教学重点和难点

  进一步认识圆的特征及其内在联系,使学生深切体会圆的特征与我们的生活紧密相连,并学会用圆规画圆。

  教学过程

  一、情境引入

  师在黑板上板书“圆”字,问:看到这个字你想到什么?(指名回答)

  生:十五的月亮、轮胎、月饼、圆脸蛋、唱片……

  师:一个“圆”字让大家浮想联翩,在我们的生活中,圆无处不在,说了这么多的圆,看了这么多的圆,你想不想亲自动手画一个?用你手上的工具动手画一画。问:圆和以前学过的`平面图形有什么不同?(长方形、正方形、三角形、平行四边形、梯形都是由线段围成的,而圆是由曲线所围成的。)

  二、探究特征

  师:刚才大家用各种工具画了圆,但是,大家可能也发现了,有的工具并不好用,而且大多数只能画一种大小的圆,有没有一种工具可以很方便地画各种大小的圆呢?是什么?

  生:圆规。

  师:对,这个工具就是圆规,圆规就是专门用来画圆的工具(生拿出自己的圆规观察),圆规有一个小圆柄,画圆时手要握住这个小圆柄,还两只脚,一只脚是针尖,另一只脚是用来画圆的笔,画圆时,针尖必须固定在一点,不可移动,两只脚要叉开,手握住小圆柄旋转一周。

  师:你能试着用圆规画出一个圆吗?(生画圆)

  师:让学生说说自己用圆规画圆的过程(组织交流)

  师在黑板上示范画圆,大家看,我们在用圆规画圆的时候要注意一些什么问题?

  1、注意圆规这个针尖要固定在一个点上,我们画的图形才够圆。(板书:1、定点)

  2、圆规的两只脚之间的长度不能变,否则圆形不能闭合。(板书:2、定长)

  3、要用手握住圆规的这个小圆柄旋转一周。(板书:3、旋转)

  师:同学们,现在大家运用刚才总结的方法,再在练习本上画一个圆,看看是否画得更顺畅了。(生画圆)

  师:现在大家都已经学会画圆了,那么同学们再想想,有没有什么办法让我们画的圆都一样大呢?

  师:对!我们可以让两只脚固定,这样就可以画出固定大小的圆了。现在我们先拿出直尺,让针尖和铅笔头之间的距离是3厘米,把圆规固定好,在纸上画一个圆。

  师:这个针尖是什么?(圆心)用什么字母表示?(O)圆心,顾名思义就是圆的中心,刚才我们画的两个圆一样大,但位置不同,想一想:圆的位置是由什么来决定的?(圆心)圆心可以确定一个圆的位置,针尖固定在哪个位置,圆就在那个位置。(板书:圆心决定圆的位置)

  师:大家看这个刚才画的两脚距离是3厘米的圆,要是有人问这个圆有多大,你们怎么回答呢?(半径3厘米的圆),对这个两脚间的距离就是半径,用什么字母表示?(r)(指导书写r,说说什么是半径,作相应的练习)

  师:请你在纸上画一个圆,比原来的圆要小得多。请你在纸上再画一个圆,比原来的圆要大得多。(生画)

  师:刚才我们画了大小不同的两个圆,谁来说一说:圆的大小是由什么来决定的?(板书:半径决定圆的大小)

  师:同学们,你们再想一想,在同一个圆里,这样的半径可以画几条呢?现在我们来做个小小的竞赛,怎么样?在一分钟内看看哪位同学在同一个圆里画的半径又多又好。(板书:在同一个圆里,有无数条半径)请同学们用尺子来量一量这些半径,它们的长度到底是怎样的。(板书:在同一个圆里,所有的半径都相等。)

  师:除了半径以外在圆中还有能决定圆的大小的线段吗?

  生:直径。

  师画一条直径,讲解:通过圆心并且两端都在圆上的线段,叫做直径,用什么字母表示(d)(做相应的练习)

  师:如果我给你们一分钟的时间画直径,想一想:能够画出圆的所有直径吗?(板书:有无数条直径),同样在同一个圆里,所有的直径也相等吗?(板书:所有的直径也相等)

  师:请同学们量一量半径和直径,有什么发现?(r=d=2r)

  师:我们来做个小游戏,比一比谁的反应比较快。(师报半径,生说直径;师报直径,生说半径。)

  师:大家还记得什么是轴对称图形吗?(生拿圆片折,发现交流)

  三、巩固练习

  师:同学们学得可真不错,大家有没有兴趣接受新的挑战呢?

  1、判断题。

  (1)在一个圆中,有一个圆心,无数条半径,无数条直径。( )

  (2)两端都在圆上的线段叫做直径。( )

  (3)半径总是直径的一半。( )

  (4)圆心决定圆的位置,半径决定圆的大小。( )

  (5)圆内直径是最长的线段。( )

  (6)所有的半径都相等,所有的直径都相等。( )

  2、欣赏图片。

圆的认识教学设计12

  一、课题引入

  1、课件出示:圆 这样一个圆让你联想到生活中的什么物体?(月饼、月亮、硬币、钟面……)

  2、老师也收集了一组,瞧(出示图片)连大自然对圆也是情有独钟!(欣赏)

  3、有什么感受?难怪20xx多年前,伟大的古希腊数学家毕达哥拉斯在研究完大量的平面图形后,发出这样的感慨:在一切平面图形中,圆最美。

  4、圆看起来很美,究竟是什么内在原因使得圆看起来那么美?现在就来研究圆的奥秘。

  二、在画圆中,解读“圆”的概念

  1、师:你能试着在纸上画一个圆吗?

  预设:利用圆形物体描圆;利用工具画圆(有小孔的木条、绳子、圆规)

  如果有学生用物体描圆,师则引导假如我们身边没有这些圆形物体,你准备怎么办?学生一下子想不出来,则课件出示:有小孔的木条、绳子。

  2、学生说说利用工具怎样画圆,可以请学生演示。

  3、其实,很多同学知道还有专门的工具:圆规,请同学们用圆规在纸上画圆。大胆地猜一猜,这些同学之所以没能成功地用圆规画出一个圆,可能在哪儿出问题了?

  4、师:刚才我们用圆规画圆、用绳子画圆,工具不一样,画出来的却都是圆。这是什么道理?

  (预设:都绕了360度;都有一个中心点;两者画圆的原理是一样的。运动时与中心点的距离是一样的。)

  5、看到们画的这么好老师也想画一个圆,师作图,(教师画完半个圆后,停下。)想象一下,照这样画下去,会画出一会儿凹、一会儿凸的平面图形吗?

  预设:因为圆规两脚间的距离没有变;就是从这儿(手指圆上的点)到这儿(手指圆心)的距离没有变。只要距离不变,就不会画出一会儿凹、一会儿凸的平面图形了。

  6、自学圆的各部分名称及关系

  生看书自学 反馈 给黑板上(或自己画的圆画出一条半径、直径,再标上字母)

  7、学生画制定的圆:分别画r=2cm, d=2cm的圆

  三、在运用中体验圆与半径、圆心的关系

  让大家在一张正方形纸上画一个最大的圆,怎么画?

  学生思考后动手操作、反馈

  预设:学生有不成功的.作品,则让大家一起分析;有成功的作品让他说方法。引导学生理解在正方形画最大圆的关键:①如何找到圆心(圆的位置)②如何确定半径(圆的大小)

  师:(借助PPT动态演示找正方形中心点的过程)这就是圆心。接着确定半径,有了圆心和半径,就可以画出一个最大的圆。(让学生修正自己的作品)

  四、拓展与延伸

  师:其实,今天我们对圆的认识还是很初步,关于圆你还想学习知道些什么?(生说)

  师:圆与正方形有什么不同?为什么汽车的车轮要用圆的,不用方的呢?这些问题,同学们课后去思考。

圆的认识教学设计13

  教学内容:

  人教版六年制小学数学第十一册第四单元“圆”的起始课。

  教学目标:

  1、认识圆的特征,初步学会画圆,发展空间观念。

  2、在认识圆的过程中,感受研究的一般方法,享受思维的乐趣

  教学重难点:

  教学重点:掌握圆的特征,理解同圆或等圆中半径和直径的关系。

  教学难点:画圆

  教学准备:

  教具、学具准备。

  教具准备:

  圆规、三角板、多媒体课件。

  学具准备:

  圆规直尺、铅笔

  课前学习活动。

  (1)观察生活中的圆。

  教学程序及设计理念

  一、创设情境激发兴趣

  1、引言:对于圆(板书“圆”字),同学们一定不会感到陌生吧?说说生活中,哪些物体的形状是圆的?

  2、多媒体课件播放精美图片,让学生感受生活中丰富多彩的圆。

  3、揭示课题。

  (板书课题:圆的'认识)

  二、在画圆中感受新知

  1、我们一起回顾我们昨天预习的情况。

  2、体会画圆的多种方法。

  3、在观察中体会:圆与其它图形有怎样的区别?在交流中整体感知圆的特征。

  4、在操作中丰富感受

  (1)操作:学生尝试画圆,交流中归纳用圆规画圆的一般方法。

  (2)体会(学生第二次画圆):如果方法正确,为什么用圆规画不出直线图形或是其它的曲线图形?

  (3)引导(教师示范画圆):使学生将思维聚焦于圆规两脚之间的距离,体会到圆规两脚距离的恒等,恰是“圆之所以为圆”的内在原因。

  5、在交流中建构认识

  (1)引导:引导学生将上述距离画下来,由此揭示圆心及半径,进而介绍各自的字母表示。

  (2)思考:半径有多少条、长度怎样,你是怎么发现的?

  (3)概括:介绍古代数学家的相关发现,并与学生的发现作比较。

  6、类比:先介绍直径,进而引导学生借助类比展开思考,发现直径的特征,并提出同一圆中直径与半径的关系。

  三、实际应用、深化认知

  1、车轮为什么做成圆形,车轴应该装在哪?

  2、篮球场的中间为什么有圆。

  3、扣子的扣眼应该开多大的口?

  板书设计:

  圆的认识

  圆心O

  半径r

  o无数条相等

  直径d

圆的认识教学设计14

  一、教材分析

  (一)、教学设计理念

  地位学情:人教版小学数学第十一册圆的认识是在学生认识了长方形、正方形、三角形等平面图形后所要认识的小学阶段的最后一种图形。学生认识圆应把握它的特点,借助多媒体使学生体会到圆所蕴涵的美学特征与文化积淀。本课教学针对的是六年级学生,他们已初步具有处理信息和网络上自主学习的能力,特别是结合远程多媒体教学使这成为现实。信息技术与课程整合,学生是学习过程的主体,远程多媒体教育网络成为学生学习的重要平台。

  理念设想:学生不是一张白纸,有着丰富的生活体验和知识积累。数学教学应适合学生认知水平,建立在学生主观愿望及知识经验上。提供充分活动和交流机会,引导学生自主探索,理解掌握基本的数学知识技能思想及方法经验,加强数学与生活的联系,彰显美学价值,让学生感受到圆与人们的生活、建筑、人文艺术和实际应用等息息相关。

  (二)、目标设置

  根据数学课程标准与本课教材特点以及学生学情和设计理念,结合学生实际情况制定以下教学目标。

  1、知识目标:认识圆各部分名称,掌握圆的特征和画圆的方法。

  2、技能目标:在已有知识经验基础上,熟练掌握用圆规画圆,培养学生实际操作能力。

  3、情感目标:通过生动画面、图像、演示让学生感受生活中圆的存在与作用,感受其神奇与蕴含的美学价值。

  根据本课的'设计理念和目标设置确定本课的教学重点即通过多媒体认识圆各部分名称,掌握圆的特征。

  教学难点在于掌握圆的特征,能熟练地画圆。

  (三)、教法、学法

  根据本课的目标设置和重难点特制定

  1、教法:以学定教、合作探究如情景陶冶法等。

  2、学法:顺学而导、互助学习如师生互动学习法等。

  二、教学流程

  (一)、情景导入

  通过多媒体、课件演示,创设情景,展现大自然中随时都有圆的存在。让学生感受到圆的神奇进而激发学生的学习兴趣,顺利地导入到新课之中。(课件展示,宇宙星际、其它星球、地球、月亮和生活中的日落等美景以及大自然中的物体如鲜花等)

  (二)、探究新知

  1、创作圆:

  学生在准备好的纸上作圆,方法工具不限。同时教师课件演示一两种作圆的过程方法,以启迪学生。)

  2、学生完成后我会提问:

  (1)你是用怎样的方法画的?在学生作答间我会适时做出科学的评语固定的一点叫做圆心,用字母O表示。从圆心到圆上任意一点的线段叫做半径,用字母

  r表示。通过圆心且两端都在圆上的线段叫做直径,用字母d表示。(课件圆的画面及各部分的名称展示)

  (2)同时根据课件图片请学生分析圆上、圆内、圆外和圆心各指什么?我再适时讲解加深学生的理解。

  3、学生探索

  (1)此时我会播放课件--以半径旋转并标有直径的圆,请学生观察分析并且提问你发现了什么?学生会发现直径是半径的两倍等。

  (2)我再结合课件图片总结:圆的半径在旋转中,与圆的直径重合时,半径只有直径的一半,由此得出:r=d/2d=2r

  给答对的学生给予奖励、以激励学生的积极性。(同时课件展示两个分别以半径和直径旋转的圆)

  (3)接下来我会再问那圆有多少条半径和直径呢?为什么?学生自己看着旋转的圆自己总结,我适时做出评述圆的半径有无数条、直径也有无数条、在同圆或等圆中所有的半径相等直径也相等,圆心确定圆的位置、半径确定圆的大小

  4、知识延伸

  (1)我会向学生提问:刚才同学们画圆时都用到了些什么工具和方法啊?和大家交流借鉴一下经验好吗?学生:学生会说出不同的方法和工具我再课件播放(可能会用到的工具如硬币、线、笔、圆规等)。

  (2)此时我会装作很着急的样子向学生问:老师想画一个直径8厘米的圆可不可以用一块钱的硬币哦?为什么啊?生:学生会从大小不符合等方面来说明不行。此时我又会说那我要是想画一个半径6厘米的圆又该怎么办呢?为什么啊?生:可能会比较为难(我再适时从大小符合以及方便等方面慢慢导出学生说出用圆规画)

  (3)接下来我再小结得出画大小不同的圆我们通常用圆规来画并播放课件圆规确定半径的方法以及圆规画圆的方法的重复过程(并得出结论用圆规画圆可以画出大小不同的圆、也可以得到我们想要的圆,再次论证得出半径越大,圆就越大。半径越小、圆就越小)

  (三)、知识反馈

  1、请同学们用圆规画出一个半径5厘米的圆并用字母标出圆心、半径和直径,画好之后相互检查以巩固刚才所学的方法。

  2、测试、学生举手回答并说出理由(课件展示)

  A、

  图(1)中直径是()

  (图1)半径是()

  B.圆规两脚分开距离是4厘米,画出的圆直径是()(图2)

  C.图(2)中长方形的长是(),宽是()

  3、解释生活中的圆的相关运用如:

  (1)车轮为什么是圆的?

  (2)飞标标靶的靶圈为什么是圆的?我会适时引导加以巩固。

  (四)、知识拓展

  1、史料连接:有关圆的知识、名言、名句以及网页链接等,通过课件展示使学生体会到圆所蕴涵的历史与文化积淀、激发学生学数学、用数学的激情以及在以后的数学学习中更加用心。(课件展示)

  2、圆与生活:(课件展示圆与人们的生活如鲜花、日落、小桥流水、雄壮美丽的建筑物以及日常生活中常见的一些体现有圆的应用的物体等等,使本课知识得以拓展,学以致用,体现数学来源于生活而又返回到生活中去,使学生感受到学数学、用数学,数学无处不在。)

  三、板书设计

  圆的认识

  无数条r=d/2d=2r

  直径半径

圆的认识教学设计15

  【教学内容】

  义务教育课程标准北师大版试验教材六年级上册第一单元第2、3页“圆的认识一”。

  【教学目标】

  1、结合生活实际,通过观察、操作等活动认识圆,认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。

  2、结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

  3、通过观察、操作、想象等活动,发展空间观念。

  【教学重、难点】

  1、圆的特征。

  2、画圆的方法。

  【教具、学具准备】

  1、三角尺、直尺、圆规。

  2、教学课件。

  【教学设计】

  一、观察思考。

  1、欣赏生活中的圆:棋子、桌面、钟面、车轮、中国结。

  2、观察这些图形与我们以前学过的图形有什么不同?

  生活中还有哪些物体的面是圆形?

  做套圈游戏,哪种方式更公平?

  二、画一画。

  你能想办法画一个圆吗?

  用手比划着画圆。

  用一根线和一支笔画圆。

  用圆规画圆。

  2、教学用圆规画圆的方法。

  三、认一认。

  学生用圆规画一个圆。

  讨论:圆规的“尖”、圆规张开的两脚之间的长度所起的作用。

  告诉学生半径和圆心。

  四、画一画、想一想。

  要求学生画一个任意大小的圆,并画出它的半径和直径。

  观察比较得知:圆有无数条直径,无数条半径。

  在同一个圆内直径都相等,半径都相等。

  以点A为圆心,要求学生以A为圆心画两个大小不同的圆。

  画两个半径都是2厘米的圆。

  五、讨论。

  圆的位置与什么有关系?

  圆的大小与什么有关? 使学生通过观察日常生活中的'圆形物体,建立正确的圆的表象。

  使学生在动手操作中体会圆的本质特征。

  让学生进一步体会圆的本质特征。

  让学生认识到圆心决定圆的位置,圆的半径决定圆的大小。

  六、观察与思考。

  1、播放课件。

  动物王国自行车比赛。分别有圆形、椭圆形、正方形的车轮。

  思考:车轮为什么是圆形?

  操作:

  用硬纸板分别剪一个圆形、正方形、椭圆形。

  小组合作描出运动轨迹。

  七、练一练。

  课本练一练题目。

  八、全课小结。

  【教学反思】

  圆的认识是在学生已有知识的情况下进行的,所以学生很快能找到圆的主要特征,而且能从本节课里掌握圆的特征,掌握圆各部分的名称,以及直径半径等之间的关系。

【圆的认识教学设计】相关文章:

《圆的认识》教学设计08-25

《圆的认识》教学设计(热)11-07

圆的认识教学设计15篇01-23

圆的认识教学设计集锦(15篇)12-07

圆的认识教学反思05-27

圆的认识教学反思05-16

《圆的认识》教学反思07-10

《圆的认识》教学反思08-16

圆的认识的教学反思06-22