六年级《比意义》教学设计

时间:2024-12-17 14:50:03 蔼媚 教学设计 我要投稿
  • 相关推荐

六年级《比意义》教学设计(通用17篇)

  作为一位优秀的人民教师,总归要编写教学设计,借助教学设计可以更好地组织教学活动。那么教学设计应该怎么写才合适呢?下面是小编为大家收集的六年级《比意义》教学设计,仅供参考,希望能够帮助到大家。

六年级《比意义》教学设计(通用17篇)

  六年级《比意义》教学设计 1

  教学要求:

  使学生进一步理解四则运算的意义、定律、法则。

  能正确地、合理灵活地进行四则计算和四则混合计算,

  教学过程:

  练习

  选择正确答案的'题号填在括号里。

  计算(58/15+7.8-3.5÷7/15)×5/7时()比较简便。

  把分数化成小数

  把小数化成分数.

  学生在完成选择题后,分别总结四则混合运算顺序和在分数、小数混合运算中把分化成小数还是把小数化成分数计算简便,总结其规律。

  试做教材91中第11题、第12题。

  口算练习,提高学生口算能力。

  1/2+1/31.5+1/23/4÷3/484/7×025.4÷12+33/4

  脱式计算。

  完成教材91页第13题。学生计算后,要说说估算的方法,通过估算和计算,对其结果进行比较。

  引导学生分析、解答91页第14题、15题和思考题。(鼓励学生积极思考,展示自己思维过程)

  全课小结

  教学反思:

  六年级《比意义》教学设计 2

  教学过程

  谈话导入

  我们学过哪些运算?这些运算的意义是什么?相关的知识都有哪些?这节课我们就来系统地归纳、整理四则运算的知识。

  回顾与整理

  1、四则运算的意义。

  (1)我们学过哪些运算?举例子说明。

  生1:加、减、乘、除。

  生2:列举算式……

  (2)课件出示教材70页1题。

  庆祝“六一”。

  你能提出哪些数学问题?在解决问题的过程中,你用了哪些运算?

  预设

  生1:我根据第一幅图提出问题,两个同学一共折了多少只纸鹤?用加法计算,列式为26+39=65(只)。

  生2:我根据第一幅图提出问题,还要折多少只纸鹤?用减法计算,列式为120-26-39=55(只)或120-(26+39)=55(只)。

  生3:我根据第二幅图提出问题,一共需要多少钱?用乘法计算,列式为1.5×52=78(元)。

  生4:我根据第三幅图提出问题,扎蝴蝶结用了多少米彩带?用乘法计算,列式为18×=9(m)。

  生5:我根据第四幅图提出问题,平均每组有几名同学?用除法计算,列式为36÷4=9(名)。

  (教师结合学生的提问、解答,用课件展示相关算式)

  (3)结合上面的算式,完成下面的表格。

  (注意引导学生考虑全面,结合学生的回答,用课件展示下表)

  算式

  意义

  加法

  26+39=65

  把几个数合并成一个数的.运算。

  减法

  120-26-39=55或120-(26+39)=55

  已知两个数的和与其中的一个加数,求另一个加数的运算。

  乘法

  1.5×52=78

  求几个相同加数的和的简便运算。

  18×=9

  求一个数的几分之几是多少。

  除法

  36÷4=9

  已知两个因数的积与其中的一个因数,求另一个因数的运算。

  (4)整数、分数、小数运算的哪些意义相同?

  预设

  生1:整数、分数、小数的加法、减法、除法的意义相同。

  生2:分数乘法的意义分两种情况,一种是求几个相同加数的和的简便运算,一种是求一个数的几分之几是多少。

  2、四则运算的关系。

  (1)陈述加与乘、加与减、乘与除相互间的关系。

  预设

  生1:加法是最基本的运算,整数乘法是求几个相同加数的和的简便运算。

  生2:加法是把几个数合并成一个数的运算,而减法是知道总数和其中一部分,求另一部分,加法和减法是互逆关系,减法是加法的逆运算。

  生3:乘法是求几个相同加数的和的简便运算,除法是把一个数进行平均分,求份数或每份数,乘法和除法是互逆关系,除法是乘法的逆运算。

  (2)陈述加、减、乘、除算式中各部分之间的关系。

  预设

  生1:一个加数+另一个加数=和,一个加数=和-另一个加数。

  生2:被减数-减数=差,被减数-差=减数,减数+差=被减数。

  生3:一个因数×另一个因数=积,积÷一个因数=另一个因数。

  生4:被除数÷除数=商,除数×商=被除数,被除数÷商=除数。

  生5:被除数=除数×商+余数。

  六年级《比意义》教学设计 3

  【设计思想】

  教学活动中,从教师教与学生学向师生互教互学转变,彼此形成一个真正的学习共同体。创造性处理教材,对教材知识进行教学重组与整合,为学生提供了有一定思考性,挑战性的学习素材,充分有效地将教材知识激活,促使学生积极参与学习。关注学生独立思考,自主探究和合作交流。

  【教学内容】

  人教版小学六年级上册第43—44页内容。

  【教材及学生情况分析】

  “比的意义”是小学六年级第十一册教材中第四单元的起始课,是本册教材的教学重点之一。它在教材中起着承上启下的重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。

  【教学目标】

  1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

  2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。

  3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。

  【教学重难点】

  理解比的意义,比与分数、除法的关系。

  【教学准备】

  多媒体课件

  【教学过程】

  一、创设情境,引入比。

  1.图片激趣。(展示“神七”图片)

  2.出示主题图。

  提问:你能不能用算式表示长和宽的关系?

  3.揭题:比较两个数量之间的关系还可以用一种新的方法——比。

  4.提问:有关比你还想了解什么?

  二、自主探索,认识比。

  (一)初步认识比的意义

  1.启发谈话:用“比”怎样表示长和宽这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。

  “15÷10表示长是宽的几倍”,我们还可以说成“长和宽的比是15比10”

  “10÷15表示宽是长的几分之几”还可以怎样说成“宽和长的比是10比15”

  2.认识不同量之间的比。

  (1)生读例题,师:谁能解决小精灵给我们带来的问题?速度怎么求?

  (2)指出:像路程和时间这两个有着相除关系的量,我们也可以用“比”来表示。

  交流得出:路程与时间的比是42252:90,

  3.总结概括比的意义。

  (1)观察一下这几组式子,总结相同的特点。

  (2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?

  (3)小结:“两个数的比”归根结底表示的都是“两个数相除”。

  4.练习

  考考你们:

  (1)4÷5,又叫做();

  ()÷(),又叫做18比2。

  (2)有5个红球和10白球,

  白球和红球的个数比是()。

  红球和白球的个数比是()。

  5.看书自学,汇报交流:

  (1)比的写法。

  (2)比的各部分名称。

  (3)如何求比值。

  (4)比与除法、分数的关系。

  6.利用表格整理知识

  比

  前项

  :(比号)

  后项

  比值

  除法

  被除数

  ÷(除号)

  除数

  商

  分数

  分子

  —(分数线)

  分母

  分数值

  7.讨论:比的后项可以为0吗?为什么?

  8.出示足球赛比分。(解答足球赛中的1﹕0现象)

  三、多层练习,巩固新知

  (一)正确判断,明辨是非。

  1.杨利伟在地球上的体重是66千克,在地球上的体重只有11千克,他在地球上的月球上体重比是13:78。()

  2.杨利伟身高是168厘米,他儿子的身高是1米,杨利伟和儿子的身高的比是168:1。()

  3.“神舟五号”发射时10秒飞行79千米,那么“神舟五号”发射时所行的路程和时间的比是79:10。()

  (二)试一试。

  下图是配制溶液时洗洁液与水的比。(洗洁液与水的比是1:8)

  把溶液里的洗洁液看作1份,水可看作几份?溶液可看作几份?

  可以怎样表示洗洁液与水的体积之间的关系?还可以怎样表示洗洁液与溶液的体积之间的关系?

  四、拓展知识

  介绍黄金比的知识,让学生对所学的知识在生活中的应用有了更深的体会,并通过介绍黄金比的妙处,让学生有更强烈的学习欲望。

  五、请你欣赏,美丽之比

  (课件出示:五星红旗图、神庙图、神秘的古埃及金字塔、芭蕾舞演员。)

  六、回顾本课,自由小结。

  通过今天的学习你们有什么收获?在我们的生活中“比比皆是”,只要你做个有心人,你会发现在我们身边有很多有趣的比。

  教后反思:

  “比的意义”一课是人教版数学教材中六年级上册“分数除法”这一单元的内容,是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对以后有关比的知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且“比的意义”中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的'求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,紧促而成功的串联是我课前备课中的一个主体思想。

  因为比的意义实际是两个数的相除关系,所以设计时我先引导学生从研究两个数的关系入手,通过典型例子的独立解答和讲解,使学生明确两个数相除就是两个数的比,使学生把比的知识纳入已有的知识结构之中。然后,通过学生的观察、自学、思考、回忆、小组讨论等一系列活动,使学生进一步理解比的意义,掌握比各部分的名称以及比和除法、分数的关系,加强知识间的联系;并且使学生的多种感官参与教学活动,提高了学生主动参与学习的积极性。

  《数学课程标准》倡导自主探究、合作交流、实践创新的教学学习方式,强调从学生的生活经验和已有的知识背景出发,为学生提供充分的从事教学活动和交流的机会,促使他们在自主探究的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,同时获得广泛的数学活动经验。本节课的教学中,我就是采取了合作探究与自主学习相结合的教学方式,重视了学生知识的形成与发展过程,注重了学生观察、类比、分析、概括和自学等能力的培养。整节课安排有序,环环紧扣,变化有致,既有高潮又有适时调整,课堂教学自然流畅,活而不乱,教与学的双边关系处理得非常好,充分体现了勇于创新的精神。具体体现在以下几个方面:

  一、师生关系的变革。

  教学活动中,从传统意义上的教师教与学生学向师生互教互学转变,彼此形成一个真正的学习共同体,老师的作用特别体现在:

  1.设计空间较大的问题,给学生发现的时间和空间。

  2.精心组织与呈现学习材料,创设富有挑战性的问题情境。学习材料的合理组织与呈现,能够富有挑战性的问题情境,激发学生强烈的探究欲望,能够引导学生有序思维,积极发现,从而提高课堂教学的效率。

  3.重视学习活动中的知识生成,凸现学生学习主人地位。

  二、教学内容的变革。

  本节课我能创造性地处理教材,对教材知识进行教学重组与整合,为学生提供了有一定思考性,挑战性的学习素材,充分有效地将教材知识激活,促使学生积极参与学习。

  改进教材是为了更好地融入学生熟悉、鲜活的生活内容,更有利于发挥学生自身的课程资源优势,从而更好地为学生的发展服务。

  三、学习方式的变革

  关注学生独立思考,自主探究和合作交流。具体表现在:

  1.指令性活动向自主探究转化。教师通过提供学习材料使学生始终处于观察、探究、交流等高层次的思维活动之中。

  2.问答式教学向学生独立思考基础上的合作学习转变。

  3.学习过程从封闭预设走向开放、生成。

  学生学习的数学应是生活中的数学,是学生“自己的数学”。数学来自于生活,又必须回归于生活。数学只有在生活中才能赋予活力与灵性。教学中的教与学联系生活,让学生感受到比在生活中无处不在。由于“比的意义”内容繁杂,在一开始,根据内容特点和学生的认知规律,紧密联系生活实际,让学生观察生活中的比,初步感知比,使学生对比感兴趣,非常乐意探究知识,巧妙地导入新课。在出示例题后,组织学生围绕“比”的问题去研究、探索、讨论、概括、总结,实现了自主学习,这样,尊重学生的主体地位,培养创新精神。

  比在数学中是一个重要的概念,体会比的意义和价值是教材内容的数学核心思想。但在实际中,学生记住“比”概念容易,但要真正理解比的意义往往比较困难。于是,我没有采取给出几个实例,就直接定义“比”的概念,而是以系列情境为学生理解比的意义提供了丰富的直观背景和具体案例。这样易于引发学生的讨论和思考,并在此基础上抽象出比的概念,使学生体会引入比的必要性以及比在生活中的广泛存在。这样既不显得单薄,也不显得零碎,利于学生探究和掌握知识。

  采取自主学习的形式,促进了学生能力的发展。知识、能力并重是现代人素质培养的要求,也是成功学习的内在规律。学生掌握知识仅仅是教学活动的一个方面,更重要的是要对学生进行情感、态度、价值和自学能力的培养。本节课中“比的读写”、“比的构成”、“比的各部分名称”“求比值”等都是比较浅显的知识。教学时我不断把学习的主动权交给学生,让他们自主学习,然后通过集体讨论反馈认识,这样的课堂是学生的课堂,真正体现了学生的主体地位。

  六年级《比意义》教学设计 4

  教材分析

  教材在安排比的意义的学习时,分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。比的意义教材是从富有教育意义的神五飞天的例子中引出的,通过对具体例子的讨论,明确了比的概念是建立在除法的意义基础之上的,揭示了比与除法之间的本质联系,是一种以“倍比”为基础的比较关系。教材在介绍比的各部分名称时提出了比值的意义,它既是一个知识点,又有助于进一步理解比的意义。比与分数、除法的关系是本节课的又一教学要点,理解它们之间的'关系,对后继学习特别是综合应用各种知识解决问题具有重要意义,同时也是理解比的后项不能为0的认知基础。

  学情分析

  学生在已学过和掌握分数、除法的意义,及分数与除法的关系的基础上,进一步学习“比的意义”。虽然学生在生活中也接触到了一些“比”,但并不了解数学的比和生活中的“比”的内在联系和区别。

  教学目标

  一、知识与技能:

  1、理解比的意义,掌握比的读写法,认识比的各部分名称。

  2、理解比值的含义,知道求比值的方法,并能正确地求比值。

  3、理解并掌握比与分数、除法的关系。

  4、培养学生分析、比较、抽象概括、分析解决问题的能力和应用意识。

  二、过程与方法:

  1、通过自主学习,合作交流,使学生掌握一定的学习方法。

  2、利用多媒体课件沟通数学与生活的联系,培养学生的应用意识。

  3、引导学生加强知识间的联系,提高学生分析解决问题的能力。

  三、情感态度价值观:

  1、有机渗透爱国主义教育。

  2、引导学生探索知识间的内在联系,激发学生学习兴趣。

  3、通过课件演示,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。

  教学重点和难点

  1、教学重点:比与除法、分数的关系

  2、教学难点:理解比的意义

  六年级《比意义》教学设计 5

  教学内容

  六年级数学下册第70~71页。

  教学目标

  知识技能

  1、结合生活中的具体情境,体会四则运算的意义;

  2、在具体运算和解决简单实际问题的过程中,体会加与减、乘与除的互逆关系。

  过程与方法

  自己先复习,小组交流,全班交流

  情感态度价值观

  3、培养学生良好的学习习惯和独立思考的好习惯。

  教学重、难点

  1、体会四则运算的意义。

  2、感受加与减、乘与除的互逆关系。

  教法学法

  自主学习法、合作学习法、讨论法、练习法、讲授法

  教学准备

  复习本、课件

  教学过程

  一、创设情景,导入复习。

  1、同桌交流情境“庆祝六一”的预习情况:你能提出哪些数学问题?

  2、全班交流(师根据学生汇报情况相机板书)。

  学生可能提出的问题:

  两位同学一共折了多少只纸鹤?

  装饰教室还需要折多少只纸鹤?

  一共需要多少钱?

  扎礼品盒、蝴蝶结分别需要用多少米彩带?

  每个小组有多少人?……

  二、回顾整理、构建网络。

  1、在解决问题的过程中,你使用了哪些运算?

  2、这些知识在我们脑中比较零散,不便于记忆和运用,请大家用自己喜欢的方式对这些知识加以整理。

  3、全班交流,展示。每个同学整理完后,先在小组讨论、交流,再选出代表在全班交流。

  四则运算、关系、意义、各部分之间关系

  加法:加、减法互为逆运算把两个数合并成一个数的运算。

  加数+加数=和

  一个加数=和-另一个加数

  减法:已知两个加数的和与其中的一个加数,求另一个加数的运算。被减数-减数=差

  被减数-差=减数

  被减数=减数+差

  乘法:乘、除法互为逆运算求几个相同加数的和的简便运算。一个因数×另一个因数=积

  一个因数=积÷另一个因数

  除法:已知两个因数的积与其中一个因数,求另一个因数的运算。被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  【设计意图】这样的设计让学生对所学的所有的.运算有个完整的认识,同时搞清楚各种运算的意义。

  4、师生总结。

  三、重点复习、强化提高

  1、课本第71页第1题。

  让学生在提出问题,在解决问题的过程中巩固四则运算的意义。

  2、课本第71页第2题。

  先让学生弄清题目中的数量关系,独立解答后再说说解答过程。

  3、课本第71页第3题。

  独立解答后再说说解答过程。

  4、课本第71页第4题。

  让学生自己给算式找出生活中的具体情境。

  四、自主检评,完善提高

  (一)自主检评。

  1、想一想,填一填。

  (1)58+58+58+58=()×()

  (2)根据2516÷68=37,直接写出下列各题得数:

  2516÷37=()68×37=()25、16÷0、37=()

  (3)在()内填入适当的运算符号或数据:

  0、43()1000=4302、46×()=24、6

  12、5()100=0、1250、03×()=30

  ()×0、3×8、54=064×125=()×8×125

  2、2008年5月12日,四川汶川发生了特大地震。为支援地震灾区,实验小学开展了献爱心活动。

  (1)五、六年级学生各捐款多少元?

  (2)五年级学生捐款数是四年级的几倍?

  (3)六年级学生捐款数正好是三年级的8倍,三年级学生捐款多少元?

  (4)全校教师捐款比六年级的3倍多80元,全校教师共捐款多少元?

  (5)如果全校共有2000人比六年级的6倍少200个人,六年级有多少人?

  要加强这方面的练习,不要让学生养成简单模仿的习惯,要让学生在对比练习中养成独立思考,善于思考的良好学习品质。

  (二)交流、评价。

  五、归纳小结、课外延伸。

  1、通过本节课的复习,你有什么新的收获或感受?

  2、课外延伸。两个数相除,商9余4,被除数、除数、商、余数之和等于867,求原来的被除数和除数各是多少?

  板书设计

  运算的意义

  加法:加、减法互为逆运算把两个数合并成一个数的运算。

  加数+加数=和

  一个加数=和-另一个加数

  减法:已知两个加数的和与其中的一个加数,求另一个加数的运算。被减数-减数=差

  被减数-差=减数

  被减数=减数+差

  乘法:乘、除法互为逆运算求几个相同加数的和的简便运算。一个因数×另一个因数=积

  一个因数=积÷另一个因数

  除法:已知两个因数的积与其中一个因数,求另一个因数的运算。被除数÷除数=商

  除数=被除数÷商

  被除数=商×除数

  教学反思:今天复习的是四则运算的意义和法则,对这一直感到很烦恼:如果单纯地让孩子回忆意义和法则,全部到位,一节课的时间也就所剩无几了,根本没有练习的时间;而更为重要的是学生会背诵法则是否表示他能正确合理地进行计算了呢?这答案当然是否定的。基于这样一种考虑,今天我并没有强求学生背诵意义法则,特别是法则,主要是结合具体的习题练习来复习。显然,学生也更喜欢更愿意通过习题来复习,而不是枯燥地背诵。

  练习分成了三个层次:第一层次是整数、小数的四则计算和验算,主要考虑这两者的计算方法几乎一样,有共通性;第二层次是分数四则计算,第三层次则是估算,这是我本学期增添的内容

  在练习中,特别强调了计算中的余数处理问题,如5400÷2600,我让学生明确计算时可以写成54÷26,但确定余数时必需回到原式;又如70、5÷2、5,也通过同样的道理让学生明确余数应该结合原数确定。在课后练习中,同样的情况,由于课中进行了练习,错误明显降低,这也要求教师在进行教学前一定要认真研究习题,做到预先计划,才能达到更好的效果。

  六年级《比意义》教学设计 6

  教学目标

  1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。

  2、培养学生比较、分析和概括等思维能力。

  教学重难点

  使学生认识比的意义和各部分的名称,学会比的`读写方法,理解和认识比与除法、分数之间的联系

  教学准备

  幻灯片

  教学过程设计

  教学内容

  师生活动

  备注

  一、 引入新课

  二、教学新课

  三、巩固联系

  四、作业

  1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)

  引入新课

  2、出示两道文字题

  (!)3千米是5千米的几分之几?

  (2)8吨是4吨的几倍?

  学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。

  1、学生用十分钟自习书本52到53页

  2、问:通过自习你知道了哪些知识?还有哪些疑问?

  3、小组内互相说,解决问题。

  4、教师请个别同学说,然后师生一起探讨、研究。

  5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。

  6、说明相关注意点。如:单位、比值、名称、写法、读法......

  1、书本53页练一练

  2、练习十二1、2

  练习十二3、4、5

  六年级《比意义》教学设计 7

  教学目标:

  1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

  2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

  3.在自主学习中,积累数学活动经验,培养学生分析、概括的能力,感受数学学习的乐趣。

  教学重点:

  理解比的意义以及比与分数、除法之间的关系。

  教学难点:

  理解比与分数、除法之间的关系,明确比与比值的区别。

  教学准备:

  课件,学具。

  教学过程:

  一、创设情境,揭示课题

  1.课件出示:2003年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。

  教师提问:这就是杨利伟展示的两面旗,它们的长都是15 cm,宽都是10 cm。比较它们长和宽的关系,你能提出怎样的数学问题?

  预设情况:

  (1)长比宽多多少厘米?15-10;

  (2)宽比长少多少厘米?15-10;

  (3)长是宽的多少倍?15÷10;

  (4)宽是长的几分之几?10÷15。

  2.揭题:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法──“比”来表示。(板书课题:比的意义)

  【设计意图】利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时对学生进行爱国主义教育。

  二、探究新知,理解比的意义

  (一)同类量的比

  师:刚才我们用“15÷10”表示长是宽的多少倍,可以说成长和宽的比是15比10,记作15:10。那么,10÷15表示宽是长的几分之几,怎样用比表示它们的关系呢?(可以说成宽和长的比是10比15,记作10:15。)

  师:想一想15比10和10比15一样吗?它们有什么不同?(引导学生理解比的前项、后项所表示的意义不同。)

  (二)不同类量的比

  课件出示:“神舟”五号进入运行轨道后,在距地350 km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252 km。那么飞船进入轨道后平均每分钟飞行多少千米?

  1.读题理解题意,说说知道了哪些信息?

  2.独立解答,说清解题思路。(速度可以用“路程÷时间”表示。)

  3.尝试用比表示路程和时间的关系。(路程和时间的比是42252比90,记作42252:90。)

  (三)比较分析

  1.观察比较。

  师:观察这三个比,说说它们有什么联系与区别?(引导学生发现这三个比都表示相除的关系,但前两个比中两个量都表示长度,相比的两个量是同类量;第三个比中的两个量,一个表示路程,一个表示时间,是不同类量,不同类量的比可以表示一个新的量。)

  师:想一想,路程与时间的比可以表示哪个量?(速度)

  2.归纳:什么叫比?(板书:两个数的比表示两个数相除。)

  【设计意图】在比较分析中让学生进一步感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

  三、自主学习,加深认识

  (一)深化理解

  1.自学比的相关知识。

  学生自学教材第49页“做一做”之前的内容,思考以下问题:比各部分的名称是什么?怎样求一个比的比值?

  2.汇报交流。

  (1)比各部分的名称。

  课件出示:15:10=15÷10=

  ,让学生说出比的各部分名称。(板书:前项、比号、后项、比值。)

  (2)比值的意义。

  师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

  (3)练习:求出下列各比的比值:

  3:5; 0.4:0.16;

  :8。

  师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

  【设计意图】自主学习也是学生探索问题、解决问题的`重要途径。教师把学习的主动权交给学生,引导学生在抽象概括出比的意义的基础上自主学习比的相关知识,促进学生自主探究能力的发展。

  (二)沟通联系

  1.师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

  讨论后根据学生交流反馈填写下表:

  联系

  区别

  比

  前 项

  :(比号)

  后项

  比 值

  一种关系

  除法

  被除数

  ÷(除号)

  除数

  商

  一种运算

  分数

  分 子

  —(分数线)

  分母

  分数值

  一个数

  2.请尝试用字母表示比和除法、分数之间的内在联系。

  板书:。

  师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15:10也可以写成,仍读作“15比10”。

  3.师:足球比赛中的比分3:0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

  【设计意图】在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

  四、巩固知识,应用拓展

  1.P49“做一做”第1题。

  (1)出示课件,让学生根据条件和要求写出比并求出比值。反馈交流时,让学生说说两个相比的量是同类量吗?并说说有什么发现?(发现是同类量的比,这两个比的比值相等。)

  (2)提问:小敏所花的钱数和练习本数之比是( ):( ),比值是( )。

  请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

  【设计意图】结合具体情境帮助学生巩固比的概念,为以后学习比例打下基础。

  2.P49“做一做”第2题。

  学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

  【设计意图】通过练习,引导学生进一步理解比和除法的关系,学会灵活运用所学知识解决实际问题。

  3.练习十一第1题。

  (1)请学生独立完成,反馈交流时引导学生明确比的前项、后项是有顺序的,前项、后项所表示的量与数据之间必须一一对应;第(3)题请学生说说比值的具体含义是什么。(表示平均每人制作的模型数量。)

  (2)提问:你还可以写出哪几个比?说出它们的具体含义。(引导学生说出多个量的比。)

  【设计意图】在具体情境中,教师充分挖掘习题资源,引导学生从量与量的关系这一角度去认识比,明确两个量(多个量)的比表示的是它们之间的倍数关系,进一步加深对比的意义的理解,深化对比的认识。

  五、回顾总结,交流收获

  师:说说这节课我们学习了什么?你有什么收获或问题?

  【设计意图】通过回顾,理顺各个知识点,让学生明确学习了什么内容,反思自己知识掌握情况。

  六年级《比意义》教学设计 8

  知识点:

  理解比例的意义和基本性质。

  能够根据比的意义或者比的基本性质来判定两个比是否能组成比例。

  重点:

  比例的意义和基本性质。

  难点:

  应用比例的意义和基本性质判断两个数能否成比例。并能正确地组成比例。

  教学准备:

  课件

  教学过程:

  一.导入

  (课件中有《比的意义和基本性质》这一课题)看到这一题目时,有的同学可能会想比例是什么?比例和比有关系吗?如果有关系,会是什么关系呢?有什么区别吗?等等。这节课,我们就展开研究!

  二.探究新知

  1.教学比例的意义

  (1)课件出示“天安门广场升旗”图,同学们请看,这是在干什么?对,这是天安门广场庄严肃穆的升旗仪式,你知道这面国旗的长和宽各是多少吗?

  (2)出示数据:看到这两个数据.你能提出什么数学问题?(周长,面积,长宽的比)根据学生的回答板书:5:10/3(板书:比)

  (3)你还记得哪些关于“比”的知识。(求出比值)

  (4)同学请看,这是其它不同场合用到的国旗,请分别算出它们长和宽的比值。(汇报.师板书)

  (5)你有什么发现吗:(比值相同)这些国旗的大小相同吗?但比值相等,两个比也就相等,我可以用等式来表示:板书:5:10/3=2.4:1.6像这样两个比相等的式子,你还能写出几个吗?(汇报:板书)

  (6)像这样的式子就叫做比例:(板书:比例)哪位同学能说说什么叫做比例。(板书:表示两个比相等的式子叫做比例)这就是比例的意义,(板书:意义)

  (7)说起比例,它必须是各两个条件,一个是……另一个是……

  2.教学比例的判定

  (1)课件出示:下面就请同学们根据比例的意义来判断一下下面这四组,哪两个比可以组成比例?把组成的`比例写出来。

  (2)汇报:为什么20:5和1:4不能组成比例:要判断两个比能不能组成比例,关键看什么?

  (3)师小结:通过上面的学习,我们知道比例是由两个相等的比组成的……

  板书:1:2=():()

  师小结:像这样的比例能写完吗?只要比值是1/2就可以了。

  (4)“比”和“比例”的区别

  现在请同学们想一想,比例和比有什么区别。

  3.教学比例的基本性质

  (1)刚才,我们知道了,比例有4个项,我们把外边的两个叫做外项,把里面的两个叫做内项。

  (2)谁来说一说(1:2=6:12)这个比例的外项和内项。

  (3)现在把内项和外项分别相乘,看看会有什么发现?(汇报,板书:外项的积=内项的积)

  (4)检验

  (5)师总结:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(板书:基本性质。

  (7)根据比例的基本性质,判断是否成比例。

  (8)师:判断两个比是否成比例,我们既可以用比例的意义,也可以用比例的基本性质。

  (9)练习(用自己喜欢的方法来判断)

  12:6和10:51/2:1/3和6:4

  1.5:3和15:0.32/5和12/30

  汇报:

  (10)师:五分之二和三十分之十二相等吗:(板书:2/5=12/30)它是一个比例吗?说出你的理由?(指出这个比例的内项和外项)

  三.巩固练习

  在()里填上合适的数.(想一想,你填数的根据是什么?)

  1.5:3=():4()/40=9/60

  ():4=9:()

  四.课堂小结

  六年级《比意义》教学设计 9

  教学目标

  1. 使学生结合实例,理解比的意义,知道比的前项和后项,会正确地读、写两个数的比,会求比值。了解比和分数、除法之间的联系,会把比改写成分数的形式。

  2. 在解决实际问题的过程中,了解比在日常生活中的广泛应用,体会数学与生活的联系,培养对数学学习的兴趣。

  教学重点

  理解比的意义,比和分数、除法之间的联系。

  教学过程

  一、 创设问题情境,引入比

  电脑出示三幅长方形的画(标出每一幅的长和宽)。

  谈话:这里有三幅不同形状的画,你们觉得哪幅画的形状看起来最舒服、最美观?(学生都认为第二幅比较美观)三幅画画的都是美丽的海滨,为什么同学们都认为第二幅比较美观呢?(第一幅和第三幅画要么太长,要么太窄,长和宽的比例不合适)这三幅画长和宽的长度不同,所以给人的感觉就不一样,你知道可以怎样来表示每幅画长和宽的关系吗?(第一幅画长是宽的2倍,宽是长的1/2……)

  提问:还可以怎样表示它们的关系?

  过渡:是的,我们还可以用比来表示每一幅画长和宽的关系。今天这节课我们就来认识比。

  二、 自主活动,认识比

  1. 用比表示两个同类量的相除关系。

  (1)讲解:像第一幅画长是宽的2倍,也可以表示为:长和宽的比是2比1,记作2 ∶ 1,“∶”是比号。宽是长的1/2也可以表示为:宽和长的比是1 ∶ 2。你能说一说怎样用比表示第二幅画、第三幅画长和宽的关系吗?

  学生分别用比表示另外两幅画的长和宽的关系。

  (2)出示一瓶××牌洗洁液,用实物投影放大洗洁液的使用说明。

  谈话:在日常生活中,我们经常用比表示两个数量之间的关系。如:这瓶洗洁液,上面的使用说明就是用比来表示的。

  指说明中1∶4的图,提问:这里浅色部分和深色部分分别表示什么?你知道1 ∶ 4是表示什么意思吗?(表示洗洁液和水的比是1 ∶ 4,就是1份洗洁液要加4份水的意思,洗洁液的体积是水的1/4)

  再问:那么水和洗洁液的比是几比几?表示什么意思?

  师生共同讨论1 ∶ 8和1 ∶ 1的含义。

  2. 用比表示两个不同类量的相除关系。

  谈话:通过刚才的学习,同学们对比有了初步的认识。下面我们再看一幅图(出示图:一堆梨,下面标有2千克,共3元;一堆苹果,下面标有3千克,共6元)。

  提问:根据图中的信息,你知道梨的单价是多少元吗?

  根据学生回答,板书:单价=总价÷数量。

  讲解:像这样总价和数量之间的关系也可以用比来表示,梨的总价和数量的比是3 ∶ 2,表示总价除以数量。

  提问:你能用比来表示苹果的总价和数量之间的关系吗?

  这里的6 ∶ 3表示什么意思?(表示总价除以数量)

  3. 理解比的意义。

  谈话:根据上面的例子,你能说一说什么叫两个数的比吗?

  小结:两个数相除又叫做两个数的比。

  4. 自学课本。

  提问:关于比,你还想了解哪些知识?下面请同学们带着这些问题自学课本第53页,再和小组里的同学互相说一说,你知道了什么?

  反馈:通过自学,你又了解了哪些知识?

  师生共同讨论下面的问题:

  (1)比由哪几部分组成,分别叫什么?比的后项能为0吗?为什么?

  (2)什么叫比值?怎样求比的比值?

  (3)比和除法、分数有什么联系?

  (4)比还可以写成怎样的'形式?

  小结:(略)

  三、 巩固练习,深化理解

  1. 完成“练一练”第1、2题。

  学生完成填空后,让学生说一说每个比所表示的意思。

  2. 完成“练一练”第3题。

  学生改写后,再读一读,并分别指出每一个比的前项和后项。

  3. 小强和爸爸身高的比。

  出示:小强的身高是1米,他爸爸的身高是 173厘米。写出小强和他爸爸身高的比。

  学生练习后,组织交流,并说一说为什么小强和他爸爸身高的比不能写成1 ∶ 173。

  4. 糖水的甜度。

  出示:两杯糖水,并标出糖和水质量的比,第一杯是1 ∶ 20,第二杯是1 ∶ 25。

  提问:你知道哪杯水甜吗?为什么?

  出示:第三杯中糖4克,水100克。

  谈话:这杯糖水和刚才的哪一杯一样甜?先想一想,再和同桌说一说你是怎样比较的。

  提问:根据第一杯糖和水质量的比是1 ∶ 20,你能说出第一杯中糖和糖水质量的比吗?

  四、 课堂总结

  提问:今天我们共同学习了什么?你们有什么收获?还有什么问题吗?

  五、 课外延伸

  出示课始的三幅画,谈话:还记得我们一开始出示的三幅画吗?为什么大家都认为第二幅比较美观呢?你能算出这幅画长和宽的比值吗?(学生算出长和宽的比值大约是0.618)其实呀,这里面还藏着许多奥秘呢,同学们想了解吗?

  课件播放短片,介绍黄金比。

  谈话:其实,在我们的身边就有很多的黄金比,如我们经常见到的长方形纸的长和宽的比,等等。同学们如果有兴趣,可以在课后再去研究。

  六年级《比意义》教学设计 10

  素质教育目标

  (一)知识教学点

  1.使学生理解掌握比例的意义和基本性质。

  2.认识比例的各部分的名称。

  (二)能力训练点

  1.使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例。

  2.培养学生的观察能力、判断能力。

  (三)德育渗透点

  对学生进一步渗透辩证唯物主义观点的启蒙教育。

  教学重点:

  比例的意义和基本性质。

  教学难点:

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例。

  教具学具准备:

  小黑板、投影片、投影仪。

  教学步骤

  一、铺垫孕伏

  教师出示复习题,回忆有关比的知识。

  1.什么叫做比?

  2.什么叫做比值?

  3.求下面各比的比值:

  4.上面哪些比的比值相等?

  学生回答后,师说:4.5∶2.7和10∶6这两个比的比值相等,也就是说这两个比是相等的,因此它们可以用等号连接。(板书:4.5∶2.7=10∶6)

  二、探究新知

  1.比例的意义。

  出示例1:一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是______;

  第二次所行驶的路程和时间的比是______。

  这两个比的比值各是多少?它们有什么关系?

  (1)教师引导学生对上面的问题一一解答。使学生清楚地看到这两个比的比值都是40,所以这两个比相等。因此就可以写成这样的等式

  (2)由教师告诉学生:象4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例。(板书课题:比例的意义)

  师问:什么叫做比例:组成比例的关键是什么?

  生答:表示两个比相等的式子叫做比例。(板书)

  引导学生议论、交流后板书:表示两个比相等的'式子叫做比例。(在“两个比相等”下边划“”。)

  (3)做一做

  下面哪组中的两个比可以组成比例?把组成的比例写出来。

  ①6∶10和9∶15

  ②20∶5和1∶4

  第①题由教师引导学生完成,思路如下:

  所以:6∶10=9∶15

  其余各题分组讨论后由学生独立完成。

  (4)填空

  ①如果两个比的比值相等,那么这两个比就()比例。

  ②一个比例,等号左边的比和等号右边的比一定是()的。

  2.比例的基本性质。

  (1)师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。(边叙述边板书如下)

  (2)让学生看下面这些比例,说出它的外项和内项是多少?

  4.5∶2.7=10∶6

  6∶10=9∶15

  (3)让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明。(师边板书如下)

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  (4)由学生自己任选两三个比例,计算出它的外项积和内项积。从两个乘积的关系使学生进一步认识到,在每个比例里,两个外项的积都等于两个内项的积。

  (5)由教师明确:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。(板书)

  (板书课题:加上“和基本性质”,使课题完整。)

  (6)想一想:如果把比例写成分数形式,等号两端的分子和分母分别交*相乘的积有什么关系?为什么?

  指名回答后,师板书:

  (7)做一做

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例。

  6∶3和8∶50.2∶2.5和4∶50

  3.阅读课本第9、10页的内容并填空。

  三、巩固发展

  1.说一说比和比例有什么区别。

  讨论后指名说明:

  比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四个项。

  2.在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()×()=()×()。

  3.先应用比例的意义,再应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  (1)6∶9和9∶12

  (2)1.4∶2和7∶10

  4.下面的四个数可以组成比例吗?把组成的比例写出来。(能组几个就组几个)

  2、3、4和6

  四、全课小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组比例。

  五、布置作业练习一第3题。

  六年级《比意义》教学设计 11

  教材分析

  教材在安排比的意义的学习时,分为三个阶段:比的意义、比的各部分名称、比与分数及除法的关系。比的意义教材是从富有教育意义的神五飞天的例子中引出的,通过对具体例子的讨论,明确了比的`概念是建立在除法的意义基础之上的,揭示了比与除法之间的本质联系,是一种以“倍比”为基础的比较关系。教材在介绍比的各部分名称时提出了比值的意义,它既是一个知识点,又有助于进一步理解比的意义。比与分数、除法的关系是本节课的又一教学要点,理解它们之间的关系,对后继学习特别是综合应用各种知识解决问题具有重要意义,同时也是理解比的后项不能为0的认知基础。

  学情分析

  学生在已学过和掌握分数、除法的意义,及分数与除法的关系的基础上,进一步学习“比的意义”。虽然学生在生活中也接触到了一些“比”,但并不了解数学的比和生活中的“比”的内在联系和区别。

  教学目标

  一、知识与技能:

  1、理解比的意义,掌握比的读写法,认识比的各部分名称。

  2、理解比值的含义,知道求比值的方法,并能正确地求比值。

  3、理解并掌握比与分数、除法的关系。

  4、培养学生分析、比较、抽象概括、分析解决问题的能力和应用意识。

  二、过程与方法:

  1、通过自主学习,合作交流,使学生掌握一定的学习方法。

  2、利用多媒体课件沟通数学与生活的联系,培养学生的应用意识。

  3、引导学生加强知识间的联系,提高学生分析解决问题的能力。

  三、情感态度价值观:

  1、有机渗透爱国主义教育。

  2、引导学生探索知识间的内在联系,激发学生学习兴趣。

  3、通过课件演示,使学生感悟到数学知识内在联系的逻辑之美,增强审美意识。

  教学重点和难点

  1、教学重点:比与除法、分数的关系

  2、教学难点:理解比的意义

  六年级《比意义》教学设计 12

  教学目标:

  1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。

  2、弄清比与除法、分数的联系,明确比的后项不能为0的道理,同时懂得事物之间是相互联系的。

  3、通过主动发现的讨论式学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力,培养爱国主义情感。

  教学重点:

  比的意义

  教学准备:

  多媒体课件、 三支红粉笔、 五支笔

  教学流程:

  一、创设情境,理解意义

  1、师:同学们,我们刚刚过完国庆节,你知道今年10月1日是祖国几周岁的生日吗?56年前的10月1日,五星红旗第一次在广场上冉冉升起,让每一位中国人为之自豪。但你们知道吗,我们的国旗中还隐藏着很多有趣的数学问题呢!

  出示出一面国旗:

  3、判断:小强身高1米,他的爸爸身高173厘米,小强和爸爸身高比是1∶173。

  明确:同类量相比单位名称要相同。

  四、总结全课,拓展延伸

  1、去年奥运会中国女排在首场比赛中以3∶0击败了美国队,打出了我国的女排风采。这里的3∶0表示什么意思?它和我们今天学习的比相同吗?为什么?

  强调:这里的3∶0是表示两个队各赢了几局,不是相除关系,而今天学的比是指两个数的相除关系。

  2、通过今天的学习,你有什么收获?

  3、你知道吗?公元4世纪希腊数学家欧多克斯,利用线段找到了世界上最美丽的几何比——黄金分割,它的比值大约是0.618,比大约为2∶3。

  介绍:黄金割应用非常广泛,国旗的宽与长的比是2比3,接近黄金分割,现在你们知道五星红旗为什么这么美观了吧!

  生活中还有很多地方用到黄金分割:

  T型台上选模特也要求模特的身长与腿长的比符合黄金分割。

  理发师也将黄金分割运用到发型设计中去。

  ……

  课后同学们还可以去调查。

  教学内容:

  九年义务教育六年制小学数学课本第十一册“比的意义”。

  教学目标:

  1.掌握比的意义,会正确读、写比。

  2.记住比的各部分名称,会正确求比值。

  3.理解比与除法、分数之间的关系,明确比的后项不能为0的道理,同时懂得事物之间的相互联系性。

  4.通过自学讨论,激发学生合作学习的兴趣,培养学生分析、比较、抽象、概括和自学探究的能力。

  一、创设情境,诱发参与

  1、师:“2杯果汁”和“3杯牛奶”这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?可以提出什么问题,怎样列式解答?

  生1:牛奶比果汁多1杯。

  生2:果汁比牛奶少1杯。

  生3:果汁的杯数相当于牛奶的

  生4:牛奶的杯数相当于果汁的

  师:2÷3是哪个量和哪个量比较?

  生:果汁的杯数和牛奶的杯数比较。

  师:3÷2求得又是什么,又可以怎样说?

  生:牛奶的杯数和果汁的杯数比较。

  2、师述:用新的一种数学比较方法,可以说成果汁和牛奶杯数的比是2比3。今天这节课我们学习用一种新的方法对两种量进行比较。(板书:比)

  3、师:那么这节课你想学习比的哪些知识呢?

  (什么叫比,谁和谁比……)

  二、自学探究新知

  1.探究比的概念

  教师指着板书问:2÷3求的是什么?是哪个量和哪个量的比?

  生:2÷3求的是果汁是牛奶的几分之几,是果汁和牛奶的比。

  师:对!2÷3求的是果汁是牛奶的几分之几,也可以说成果汁和牛奶的比是2比3。

  (板书:果汁和牛奶的比是2比3,学生齐读。)

  师:照这样,牛奶是果汁的几分之几也可以说成牛奶和果汁的比。

  生:牛奶是果汁的几分之几也可以说成牛奶和果汁的比是3比2。

  (板书:牛奶和果汁的比是3比2)

  师:都是果汁和牛奶的比较,为什么一个是2比3,而另一个却是3比2呢?

  生:因为2比3是果汁和牛奶的比,而3比2是牛奶和果汁的比。

  师:对,研究两个数量的比较,谁和谁比,谁在前,谁在后,是不能颠倒的。

  出示试一试。

  师:1:8表示什么意思?

  生:1和8表示洗洁液1份,水8份。

  师:怎样表示容液里洗洁液与水体积之间的关系?

  生:先求出体积再比较。

  课件出示:走一段900米长的山路,小军用了15分钟,小伟用了20分钟。让学生填表。

  师:小军和小伟的速度是怎样求出来的?900:15表示什么?900:20又表示什么?

  师:说说900米和15分钟的意义。

  生:900米和15分钟分别是小军走的路程和时间。

  师:那么小军的速度又可以说成哪两个量的比?

  生:小军的速度可以说成路程和时间的比。

  师:什么叫比?(同桌互相说一说,然后汇报。)

  生1:除法叫比。

  生2:两个数相除叫比。

  师:两个数相除,以前叫除法,今天就叫做比。多了一种叫法,你觉得“比”字前面加上一个什么字比较妥当?

  生1:加上“又可以”。

  生2:加上“又”字。

  师:两个数相除又叫做两个数的比。想一想这个比表示的是两个数之间的什么关系?

  (随着学生的回答,教师在“相除”下面加上着重号,学生齐读比的概念。)

  2.自学探究比的各部分名称等知识。

  师:请同学们自学课本第68~69页。把自己认为重要的知识画出来,自学完后同桌互相说说“我自学到了什么”。

  (学生同桌相互说完后,集体汇报探究。)

  生:我学会了比的写法。

  (老师指着2比3,让学生到黑板上写出2∶3。)

  师:2、3中的符号“∶”是什么呀?

  生:这是比号。(板书:比号)

  师:写比号时,上下两个小圆点要对齐放在中间。(让学生同桌互相看看比号写得是否正确,并接着汇报。)

  生:我知道了比号前面的数叫做比的前项,比号后面的数叫做比的后项。

  师(指着2∶3)问:前项后项各是几呀?(学生答后接着汇报。)

  生:我知道了比的读法。

  (教师指着2∶3,指名学生试读2比3,然后学生齐读2比3。)

  师:我们已经知道比的读法、写法,以及各部分的名称,想一想,你还学到了什么知识?

  一、教材及学生情况分析:

  “比的意义”是小学六年级第十一册教材中教学重点之一。它在教材中起着承上启下的.重要作用。通过对这部分内容的教学,不仅可以使学生对已有的两个数相比的知识得以升华,同时也能够对学生进一步学习比的性质、比的应用和比例的相关知识打下坚实的基础。“比的意义”这部分知识内容繁杂,学生缺乏原有感知、经验、不易理解和掌握。针对知识内容特点和学生的认知规律,在教学过程中,我采用组织学生围绕“比”的问题,自主、探究、合作交流、分析、概括、比较、总结的教学方法,突出了传统的教学模式,实现学生自主学习。在教学过程中,培养了学生的创新精神。

  2、教学目标:

  “从知识与技巧”、“过程与方法”、“情感态度与价值观”三个维度确定以下目标。

  (1)理解并掌握比的意义,会正确读与写。记住比各部分的名称,并会正确求比值。

  (2)通过主动发现的讨论式学习,激发合作意识,理解并正确掌握比与除法、分数之间的联系,明确比的后项不能为零的道理。同时懂得事物之间是互相联系的。

  (3)培养学生比较、分析、抽象、概括和自主学习的能力。培养他们在生活中发现数学问题,提出问题的意识。

  3、教学重点难点:

  理解掌握比的意义,比与分数、除法之间的联系。

  二、教学方法的设计

  1、用创设情境法,激发学生对比的知识的研究兴趣。

  2、从日常生活中,培养学生能够发现数学问题。

  3、改变学生的学习方式,让学生在自主探究、合作交流中提高解决问题能力。

  4、当堂巩固,当堂反馈练习, 练习形式多样,使学生从多种学习方式的活动中理解比的意义。

  5、采用激励、评价等多种有效的方法,鼓励学生多比较、多思考,善于探究与协作交流,培养学生养成良好的学习数学的习惯。

  三、教学过程的活动与安排

  (一)创设情境,导入新课

  利用一则消息引起学生对比的知识的研究兴趣,学生对这则消息进行讨论、交流时,不但可以受到思想教育获得情感体验,同时能发现比在生活中的应用,从中培养学生在生活中发现数学问题、提出问题的意识。

  (二)自主探究,合作交流

  1、“比的意义”教学。

  第一步给出班级男生人数与女生人数两个条件,请学生提出问题并列式,根据学生列的除法算式,明确是男生和女生两个量在比,启发学生思维,除了用以前学的除法知识对两个量进行比较外,还可以用一种新的方法进行比较。然后展开“比的意义”教学活动,说成男生人数与女生人数的比是多少比多少。第二步看算式,运用新知识说说。(说明:从学生身边的数量中提取数学问题,从而引出新知识。运用旧知识进行传递,轻松快乐。)第三步,出示表格(填表)使学生初步知道两个不同类的数量之间的关系也可以用比来表示。在上面两个例子的基础上,让学生概括出比的意义。

  2、比的读法与写法、各部分的名称、求比值的方法的教学。

  教师引导学生掌握比的读法和写法,在小组合作学习中,自主探究比的各部分名称和求比值的方法。然后组织同学们汇报学习成果,引导学生介绍求比值的方法。知道后,并引导学生运用方法,能够写出几个比的实例,计算出比值,从而达到巩固知识的目的。在汇报过程中,寻找比值的规律,即可以是分数、整数,也可以是小数。

  3、比与除法、分数之间的关系,比的后项为什么不能为零?

  通过引导学生看板书,合作交流能够比较出“比”、“除法”、“分数”之间有什么联系,填写出表格,再通过“相当于”这一词的理解,明确他们的区别。

  (三)、总结、归纳引导学生谈学习感受。

  通过本节课学习,同学们学到了那些知识,请把你的收获告诉大家好吗?在学生汇报中,使本节课的知识点得以巩固。

  (四)、多层次练习,巩固新知识。

  练习形式多样,既巩固本节课的知识,又增加了乐趣,特别是培养学生养成了独立思考的习惯。

  六年级《比意义》教学设计 13

  教学目标:

  1、理解并掌握比的意义,掌握比的读、写,认识比各部分名称。

  2、掌握求比值的方法,并能正确求出比的比值。

  3、理解比和除法、分数的关系。

  4、向学生渗透转化思想,培养学生抽象、概括能力。

  教学重点:

  理解比的意义,掌握求比值的方法。

  教学难点:

  理解比的意义,建立比的概念。

  课前准备:

  制作教学课件。

  教学过程:

  一、复习铺垫,导入新课。

  1、口答:78= 135= =( )( ) =( )( )

  指名说出分数与除法的关系。

  2、师:在日常生产和生活中,常常需要把两个数量进行比较。比较的方法我们已经学过两种,即比较两个数量之间相差关系用减法;比较两个数量之间的倍数关系用除法。下面请大家看这个例子(出示P52的例如):一个镜框长5分米,宽3分米。谁能提出关于长和宽的倍数关系的问题?

  根据学生提出的问题板书:

  长是宽的几倍?53= 宽是长的几分之几?35=

  师:刚才,我们用除法来表示两个数或数量之间的关系,也就是两个数相除(板书:两个数相除),有时我们也把这样两个数量的关系换一种说法。这也就是我们今天这堂课要研究的问题比的意义。

  板书课题。

  二、教学新知,初步感知。

  1、揭示比的意义。

  师:例如,长是宽的 倍我们可以这样说,长和宽的比是5比3。(板书:长和宽的比是5比3)(学生跟着老师练说)那么,按照这种说法,宽是长的 还可以怎样说?同坐试着说,再指名说。(板书:宽和长的比是3比5)

  师:我们再来看一个例子(出示P52的又如,一辆汽车2小时行驶90千米)路程和时间的关系可以用速度(也就是每小时行多少千米)来表示。怎样列式?(学生回答,教师板书:902=45)谁能用比来表示路程和时间的关系?(板书:路程和时间的比是90比2)

  引导学生观察板书、归纳比的意义。提问:什么叫做比?(学生可通过或讨论、或看书得出比的意义,教师接着两个数相除后面板书:又叫做两个数的比。)

  练一练。

  (1)、有5个红球和8个白球,红球和白球个数的比是 比 ,白球和红球个数的比是 比 。

  (2)、 一个美术兴趣小组有男生15人, 女生8人, 男生和女生人数的比是 比 。男生和美术兴趣小组总人数的比是 比 。

  2、通过自学,掌握比各部分的名称和求比值的.方法。

  (1)出示自学提纲:

  ①用数学方法如何写比,如何读呢?

  ②比的各部分的名称分别叫什么?

  ③比和除法、分数的关系各是什么?填入表中。

  ④比的后项为什么不能为零?

  (2)学生自学课本或分组讨论。

  (3)集体讨论第①个问题并板书:5:3 3:5 90:2

  师:比还有一种写法,你知道是怎样写的吗?(教学比的分数形式)

  在学生讨论的基础上教师叙述:两个数的比还可以写成分数形式,例如:5:3也可以写成 ,仍读作5比3。请大家把3:5、90:2改写成分数形式。

  (4)集体讨论第②个问题并板书:

  (5)根据上面式子,指名说说比和除法、分数的关系及求比值的方法。

  在学生讨论的基础上出示下面关系表:

  名称 联系 区别

  比 前项 :比号 后项 比值 一种关系

  除法 被除数 除号 除数 商 一种运算

  分数 分子 分数线 分母 分数值 一种数

  指名说说,比的后项为什么不能是零?

  辨析:在亚洲女足锦标赛中, 中国女足健儿努力拚博,夺得了金牌,为祖国争得了荣誉,其中,中国队以1:0战胜了日本队,那么为什么这个比的后项可以是0呢?

  师说明:因为各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,不是相除的关系。

  问:怎样求比值呢?

  学生回答后小结:求比值用比的前项除以后项。比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  练习:求比值:4:5 0.8:0.4 :

  三、巩固练习,深化认识。

  1、完成P53练一练。

  2、完成练习十二第1题。

  3、完成练习十二第2题。

  四、综合练习,提高技能。

  1、口答:白兔的只数是黑兔的4倍,

  白兔只数与黑兔只数的比是( )

  黑兔只数与白兔只数的比是( )

  黑兔只数与总只数的比是()

  总只数只数与黑兔的比是()

  白兔只数与总只数的比是()

  总只数与白兔只数的比是()

  2、动脑筋根据题目中提供的信息,寻找合适的量,自己提出各种问题,并说说这些量之间的比

  小龙今年12岁,是六(1)班学生,该班共有45个学生,小龙爸爸今年39岁,在保险公司上班,每月工资1800元;小明妈妈每月工资1400元,她所在单位有职工28人。

  五、全课总结,释疑解惑。

  这节课,你学会了那些知识?还有哪些问题需要探讨的吗?

  六、作业:完成练习十二第3-5题。

  六年级《比意义》教学设计 14

  设计说明

  本节课的内容是在学生学过分数与除法的关系,分数乘、除法的意义,分数乘、除法应用题的基础上进行教学的,结合教材特点,教学按以下4个层次进行:

  1.由倍数关系引出同类量的比。

  结合两面长方形小旗的数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比。

  2.由倍数关系引出非同类量的比。

  结合飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出路程与时间这两个非同类量的比。

  3.概括比的意义。

  以引出的几个比为例,说出比的意义,读、写法及比的各部分名称,并由计算比值的实例,引出“比值通常用分数表示”。

  4.明确比与除法、分数的关系。

  根据分数与除法的关系,引导学生归纳出比、除法、分数三者之间的关系。

  课前准备

  教师准备:PPT课件、学情检测卡

  教学过程

  ⊙复习铺垫

  1.某车间有男工5人,女工8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?

  2.分数与除法有什么关系?(分数的分子相当于被除数,分母相当于除数)

  设计意图:在结合生活实际复习两个同类量之间的倍数关系的基础上,进一步复习分数与除法的关系,为新知的学习做好铺垫。

  ⊙讲授新课

  1.教学比的意义。

  (1)教学同类量的比。

  ①用除法表示同类量之间的关系。

  a.课件出示:杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。这两面旗都是长15cm,宽10cm。

  b.讨论:怎样用算式表示这两面旗的长和宽的关系?(引导学生说出:可以求长是宽的几倍,或求宽是长的几分之几)

  ②用比表示同类量之间的关系。

  a.引入比的概念:两面旗的长和宽的.倍数关系还可以用“比”来表示。长÷宽=15÷10,宽÷长=10÷15,也可以说长和宽的比是15比10,宽和长的比是10比15。

  b.简介同类量的比:不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,所以两面旗的长和宽的比属于同类量的比。

  (2)教学非同类量的比。

  ①用除法表示非同类量之间的关系。

  a.课件出示:“神舟”五号进入运行轨道后,在距地350km的高空做圆周运动,平均90分钟绕地球一周,大约运行42252km。

  b.讨论:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(42252÷90)

  ②用比表示非同类量之间的关系。

  对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,因为这里的42252km与90分钟是两个非同类的量,所以比也可以表示非同类量之间的关系。

  六年级《比意义》教学设计 15

  教材简析:

  这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的意义,并主动探索比与分数、除法的关系。

  练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。

  可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。

  教学目标:

  1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的`各部分名称,会求比值。

  2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

  3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。

  重点:理解比的意义

  难点:理解比与分数、除法的关系

  教学准备:多媒体课件、挂图、小黑板

  教学过程:

  一、谈话导入

  1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)

  2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?

  设计意图:

  开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。

  教学反思:

  本节课的内容是在学生学习除法的意义、分数的意义,以及分数与除法的关系,掌握了分数乘除法的计算方法,会解答分数乘法实际问题的基础上进行教学的。

  1、加强知识间的内在联系

  比、除法和分数之间有着一定的联系,在除法中,比的前项相当于除法中的被除数,比的后项相当于除数,比号相当于除号;在分数中,比的前项相当于分数的分子,比的后项相当于分母,比号相当于分数线。在教学中,我首先出示一道除法算式2÷3=2/3,然后指出这个算式也可以写成2:3=2/3,从而直观地让学生观察到除法、比和分数之间的关系。在此基础上再联系除法和分数的意义,如:2÷3表示2是3的几分之几或3是2的几倍;3小时行60千米,算式60÷3既表示每小时行多少千米,又表示路程和时间的比是60:3;男生的人数是女生的2/3,也表示男生和女生人数的比是2:3。通过这样的教学,只有了解学生已有的知识经验,才能让学生把新旧知识联系起来,有效地促进学生对知识的掌握。

  2、加强对比

  使学生明确足球比赛中的3:2与我们所学比的知识的区别。知道比赛中的比是相差关系,而我们所学的比是相除的关系。不足之处:在教学比的意义时,对谁是谁的几倍或几分之几也可以说成谁和谁的比,强调的还不够,使学生的对两个数相除也可以说成两个数的比的感悟不深刻,导致个别同学出现比的顺序颠倒的现象。

  六年级《比意义》教学设计 16

  教学目标:

  1、知识与技能:

  ⑴理解比的意义,学会比的读写法,掌握比的各部分名称和求比值的方法。

  ⑵弄清比同除法、分数之间的关系。

  2、过程与方法:

  ⑴使学生经历“问题情景——建立模型——解释应用与拓展”这一过程,牢固掌握比的意义。

  ⑵通过自学和学生之间的合作学习,掌握比的各部分名称和求比值的方法,通过讨论与合作学习弄清楚比、除法和分数之间的联系。

  ⑶联系生活实际,增强学生对数学与实际生活联系的感受。

  3、情感、态度、价值观:

  ⑴培养学生对美的感受能力,学到有价值的数学。

  ⑵通过教学,培养学生分析能力和初步的逻辑思维能力,帮助他们在自主探索和合作交流的过程中掌握基本知识和技能、数学思想和方法。

  ⑶通过对国情的了解,增强对祖国的热爱之情,提高忧患意识,培养主人翁精神。

  教学重、难点:

  1 、意义的理解,比同分数、除法的关系。

  2 、在现实生活中发现比、感受比。

  教具准备:

  投影仪、课件,练习纸,学生准备生活中找到的比的例子。

  教学过程:

  一、情景引入,导入新课:

  1 、我们六(1)班有男生29人,女生27人。

  师:根据这两条信息你能想什么办法对六(1)班男生、女生人数进行比较?

  ⑴男生人数比女生多多少人?

  ⑵女生人数比男生少多少人?

  ⑶男生人数是女生的多少倍?

  ⑷女生人数是男生的几分之几?

  请同学口头列式,教师板书。

  师:从同学们对六(1)班男生和女生的比较中可知,比较的方法主要有两种:一种是什么?(求一个数量比另一个数量多多少或少多少),是差比关系。用什么方法?(减法)。另一种是什么?(求一个数量是另一个数量的几倍或几分之几),是倍比关系。用什么方法?(除法)。

  2、师:在日常的工作和生活中,我们常常把两个数量进行比较。如黑板上方是一面长3分米、宽2分米的国旗,比较这面国旗的长和宽的关系,请你提出用除法计算的问题?

  二、探究新知

  l 、教学比的意义。

  、师:求一个数量是另一个数量的几倍或几分之几用除法。今天这节课,我们要在对两个数量用除法比较的基础上,来学习一种新的数学比较方法——比。

  师:比表示什么意义呢?它怎么读,怎么写?它的各部分名称是什么?比又和除法、分数有什么关系呢?这些都是我们这节课要学习的内容。下面我们先学习比的意义。

  师:用新的.一种数学比较方法,求长是宽的几倍,又可以说成长和宽的比是3比2 。(板书:长和宽的比是3比2)

  扶放启发:请同学们想一想,仿上例(指3:2),那么2:3又可以怎么说呢?

  (生说后师板书:宽和长的比是2比3)

  2 、小结:从求国旗的长和宽的倍比关系知道:谁是谁的几倍或几分之几,又可以说成谁和谁的比。应注意的是:两个数量进行比较要弄清谁和谁比。谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。(如3比2是长和宽的比,2比3是宽和长的比。)

  师:同学们真聪明,很快就学会了用“除法”和“比”的方法对红旗的长、宽进行了比较,请同学们再看下面一个例子。

  “杨利伟承载的神舟五号进入运行轨道后,在距地350千米的高空作圆周运动,平均90分钟绕地球一周,大约运行42252千米。”

  教师提出如下几个问题启发学生思考:

  (1)求神舟五号运行的速度应怎样计算?

  (2)题中的42252千米是神舟五号行驶的什么?90分钟呢?(路程、时间)

  (3)神舟五号的速度又可以说成哪个量和哪个量的比,是几比几?

  学生回答后教师板书:路程和时间的比是42252比90 。

  3、引导学生总结出比的意义:

  师启发:从上面两个例子可以看出,比较两个数量的倍比关系可以用什么方法?(用除法)又可以用什么方法?(比的方法)那么表示两个数的相除关系又可以怎样说呢?板书:两个数相除又叫做两个数的比。

  4、我们今天学的比跟下面讲的比一样吗?

  (1)第47届世乒赛,王励勤以4 ∶ 3战胜对手,夺得冠军。

  (2)篮球比赛甲队以3:0打败乙队。比赛中的比只是借用比的形式记分的一种方式,而不是表示的相除关系。

  5、自学比的读写法、比各部分的名称、比值。

  (1)说明比的各部分名称及求比值的方法。

  (2)根据上式,帮助学生弄清比同除法的关系、同分数的关系。

  师指着上式启发学生观察比较得到:比的前项相当于被除数,比号相当于除号,后项相当于除数,比值相当于商。

  6、接着帮助学生深化理解比的意义(提出如下问题启发):

  (3)两个数的比是表示两个数之间的什么关系?(相除关系)

  (4)两个例中的各个比有什么不同点?(第一个例子中的比是同类量的比,第二个例子中的比是不同类量的比。不同类量比,得到的是一种新的量,如路程和时间的比表示的意义是速度。)

  三、练习提高:

  找出下面各比,说一说它的意义。

  我国人口和世界人口的比是1:5 。

  我国国土面积和英国国土面积的比是40:1 。

  **年中国人均和世界人均耕地面积的比是2:5 。

  了解到了这些信息,你有什么感受?

  四、联系生活实际,找到身边的比。

  1、我们找到了这么多的比,在我们的身边有比吗?给大家展示一下你的发现。能解释一下这个比的意义吗?

  2、在我们人体之中也存在许多有趣的比,介绍比在生活中的作用。

  (将拳头翻滚一周,它的长度与脚的长度的比大约是1∶1;身高与双臂平伸长度的比大约也是1∶1;身高与胸围长度的比大约是2∶1,脚长与身高的比大约是1∶7……知道这些有趣的比有什么用处呢?比如,你到商店买袜子只要将袜底在你的拳头上绕一圈。就会知道这双袜子是否合脚,如果你长大是一个侦探,只要发现罪犯的脚印,就可估计出罪犯身高……)

  3、你知道在人体中还存在哪些有趣的比吗?给大家介绍一下。

  4、你知道黄金分割吗?1:0、618,这是一个很有意思的比。出示图片:芭蕾舞演员模特……

  5、有什么感受?运用黄金分割这个比可以创造出很多更加美好的事物,除此以外,生活中还有一些很有趣的比,同学们以后可以慢慢的感受和发现。

  6、联系实际设计的开放题:看谁会动脑筋?

  题目:小明今年12岁,是六(1)班学生,该班共有42个学生;小明爸爸今年38岁,在保险公司上班,年薪15000元;小明妈妈每月工资800元,她所在单位有职工24人。(看谁会动脑筋,能根据题目中提供的信息,寻找合适的量,自己提出多种多样的问题,并说说这些量之间的比。)

  [年龄比,年薪比,人数比,月薪比等]

  四、课堂归纳总结

  今天我们学习的是课本第55~56页的内容,同学们都学会了哪些知识?

  然后让学生质疑问难。

  五、布置作业。

  六年级《比意义》教学设计 17

  教学目标:

  1、使学生在自主探究的学习过程中理解比的意义。

  2、掌握比的各部分名称,以及比与除法、分数的关系,会求比值。明确比的后项不能为零的道理。

  3、引导学生探索知识间的内在联系,培养学生敢于质疑问难,勇于探索的精神。

  教学重点:

  理解并掌握比的意义,会求比值。教学难点:理解比与除法、分数的关系。

  教学关键:

  理解一个比中各部分量的关系。

  教具准备:

  小黑板

  教学过程:

  一、提出问题

  1、导语:神话总是在人们期待中变成现实,2003年10月15日,我国第一艘载人飞船“神舟五号”顺利升空,那精彩的一幕至今让人记忆犹新。请同学们把书轻翻到第43页看书中的插图。此时画面中航天英雄杨利伟向人们展示联合国国旗和中华人民共和国国旗。

  师:这两面国旗都是长375px、宽250px,根据这两个条件怎样用算式表示它们长和宽的关系呢?

  生自由汇报:①15÷10表示长是宽的几倍。②10÷15表示宽是长的几分之几。

  ③15-10表示长比宽多多少?或宽比长少多少?

  教师小结:表示这样的两个数量关系可以用减法,也可以用除法。在用除法来表示两个量之间的.关系时还可以用比的方式。怎么表示呢?这就是我们今天要学的新知识。板书:比的意义

  2、出示学习目标:⑴理解比的意义。

  ⑵掌握比的各部分名称,以及比与除法、分数的关系,会求比值。⑶明确比的后项不能为零的道理。

  二、解决问题

  (一)、出示自学提示:

  ⑴看书自学第43----44页,思考:什么是比?你能结合书中的例子谈谈你对比的意义的理解吗?

  ⑵比的各部分名称是什么?怎样求比值呢?用序号①②③……标出你学会的内容。

  ⑶比与除法、分数之间的联系与区别是什么?

  (二)、学生自学汇报

  1、师:15÷10表示什么?(长是宽的几倍),也可以说成长和宽的比是15比10。 10÷15表示什么?也可以说成谁与谁的比呢?生:10÷15表示宽是长的几分之几,也可以说成宽和长的比是10比15.教师小结:长和宽表示长度,是同类量。同类量可以比,不同类量可以比吗?

  2、出示“神舟五号”进入运行轨道后在离地面350千米的高空作圆周运动,平均90分钟绕地球一周,大约运行km。师边说边板书:km 90分钟

  师:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米呢?

  生1:÷90表示是飞船速度。(用除法算式)

  生2:速度可以用路程÷时间表示

  生3:我们也可以用比来表示路程和时间关系

  生4:÷90也可以说成路程和时间的比是比90。

  教师小结:长和宽的比是两个长度比,即同类量的比,表示两个数之间倍数关系。而路程和时间的比是两个不同类量的比,但它们是有关联的量,两个不同类量的比可以表示出一个新的量。它们相除时都可以用比来表示。

  3、归纳概括

  师:观察上面这些例子,你能试着概括什么叫比吗?自说,同桌互议。生:两个数相除又叫做两个数的比。(师板书)

  教师小结:我们把除法形式,可以说成两个数的比,所以两个数相除又叫做两个数的比。

  4、比的各部分名称是什么?怎样求比值呢?(生继续汇报)生1:比号像冒号“:”

  师说明:比有自己的书写形式,写比时把比号写在两数字中间,读作谁比谁,如10﹕15读作10比15生2:比各部分名称(生举例说明)15﹕10= 15 ÷ 10 = =︱︱︱︱︱

  前项比号后项用前项除以后项商比值生3:求比值是用比的前项除以比的后项

  生4:比值表示方法有三种:小数、分数、整数师出示练习题求比值:10:25:

  (指三名学生到黑板板演,其他学生在本上完成,汇报,总结)生5:比值与比的联系与区别

  比值是一个数,是比的前项除以后项所得的商,它可以用分数、小数、整数来表示。而比是表示两个数的关系,可以用分数表示,但不能读作分数,更不能用小数、整数表示。(即比是由两个数和一个比号组成)

  练习:p44 1题做一做(填空汇报)

  生6:比与除法、分数之间的联系与区别(师下发表格,小组同学共同完成)学生汇报填写下表:

  比前项:比号后项比值一种关系除法被除数÷除号除数商一种运算

  分数分子—分数线分母分数值一个数讨论:

  ①为什么是“相当于”而不是是或等于呢?

  ②比的后项为什么不能是0呢?

  ③能否用字母表示出它们三者关系呢?a÷b= a/b = a:b(b≠0)

  三、归纳概括

  1、这节课你有什么收获?

  2、你怎样获取知识的?

【六年级《比意义》教学设计】相关文章:

比的意义教学设计09-22

比的意义教学设计03-16

方程的意义教学设计07-21

分数的意义教学设计07-09

(推荐)比的意义教学设计12-17

比例的意义教学设计08-25

分数的意义教学设计09-09

比的意义教学设计及反思06-24

《比的意义》教学设计及反思07-24