- 小学三角形教案 推荐度:
- 相关推荐
小学三角形教案
作为一位杰出的教职工,常常要写一份优秀的教案,借助教案可以有效提升自己的教学能力。怎样写教案才更能起到其作用呢?下面是小编收集整理的小学三角形教案,欢迎大家借鉴与参考,希望对大家有所帮助。
小学三角形教案1
教学目标
1。通过观察和操作认识三角形,掌握三角形的概念,理解三角形的含义;
2。从实例中感知三角形的稳定性以及三角形任意两边之和大于第三边,并能运用知识解决实际问题;
3。认识三角形的高,掌握三角形高的画法,能画出任意三角形的一条高。
教学重难点
重点:理解三角形的含义,掌握三角形的概念。
难点:掌握三角形高的画法,能画出三角形的高。
教学准备
课件、平行四边形和三角形的教具、三角尺。
主要教法选择:观察法、知识迁移法
教学设计
一、导入
请每位同学从你的抽屉里拿出两根小棒,试一试,你能摆出什么图形?
谁来说说自己摆出了什么图形?(指名说)
下面请每位同学再添上一根小棒,能摆成什么图形?(指名说)
用屏幕出示学生们可能摆出的图形,提问:你能说说自己摆的是什么图形吗?那么,在同学们摆出的图形中,那些是三角形?
今天,我们就来学习三角形的特性。(板书课题:三角形的特性)
二、学习新课
1、学习三角形的'定义及组成
⑴在我们的生活中,也有许多三角形,你能说出哪些物体上有三角形吗?(让学生充分发言)
同学们说了这么多,其实在我们的校园中也有许多的三角形,我们一起去看看吧!(播放录像)
⑵刚才我们一起观察了生活中的三角形,那么你能说说三角形有什么共同的特点吗?(有三条边,三个角,三个顶点等)
提问:那你能说一说什么样的图形叫做三角形吗?(三条线段围成的图形)你认为这句话中哪个词比较重要?(围成)为什么?(三角形是封闭图形)
那么这三条线段应该怎样去围呢?(每相邻的两条线段端点相连)
请学生互相说一说,什么是三角形。(同桌互说,再指名说)
2、学习两边之和大于第三边
⑴小组活动:请组长将本组的小棒分给组员,每人三根小棒,摆一个三角形,看谁摆得又对又快!
有学生发现自己的三根小棒摆不成三角形,这是怎么回事啊?
小组研究:为什么有的三根小棒摆不成三角形?
小组汇报,并总结:三角形任意两边的和大于第三边。
⑵利用所学知识解决实际问题
屏幕出示例3的图,让我们帮助小明解决一个问题:小明每天上学从哪条路走最近?为什么?(中间的这条路最近,两点之间直线距离最短;三角形两边之和大于第三边)
3、学习三角形的稳定性
⑴游戏
让我们来轻松一下,做个游戏,比一比谁的力气大。
游戏规则:每人一个图形,拉动这个图形,只要使它的形状发生变化,就算赢。
请学生推荐两名力气比较大的学生(一男一女),出示教具,一个三角形,一个平行四边形,先让女生选择一个图形,另外一个就是男生的。
请大家预测一下,男生和女生谁会赢?为什么?
得出结论:平行四边形容易变形,三角形具有稳定性。
⑵三角形具有稳定性,那么,要想使这个平行四边形也能够固定住,该怎么办呢?(加上一根木条,形成两个三角形。)
正是因为三角形具有稳定性,所以在生活中的运用也非常广泛。
⑶你瞧:这张桌子摇摇晃晃多危险啊!有什么办法加固它呢?
斜着钉两根木条,组成三角形。
4、学习三角形的高
⑴刚才我们知道了三角形有三个顶点,我们可以用大写字母来表示点,例如,我们可以给这三个点分别取名字为A、B、C,那么这个三角形就可以称为三角形ABC,三角形的三条边就可以分别称为AB、AC、BC,下面想请同学上来指一指,每一个顶点分别对应哪条边。
⑵教师边示范边讲解:从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
提醒注意:高要画成虚线,而且要画上垂直符号。
想一想:一个三角形中能画出几条高?为什么?(有三条高,因为每个三角形有三个顶点)
⑶学生练习
请每位学生在课本86页,练习十四第一题,请你画出第一个三角形的高。
提醒注意:三角形的高要画成虚线,并且要画上垂直符号。
你能画出几条高?那么,另外两个三角形的高你会画吗?试一试,好吗?
(让学生互相检查,并说说怎么检查)
三、全课总结
今天这节课,我们一起进一步认识了三角形,我们知道了三角形是由三条线段围成的图形,每相邻两条线段的端点相连;三角形有三条边,三个角,三个顶点,具有稳定性,而且三角形的任意两条边之和大于第三边。
我们还认识了三角形的高,并且学会了给三角形画高,不同的三角形所在位置不同,我们下一节课再继续研究。
小学三角形教案2
教学目的
1.使学生在理解的基础上掌握三角形的面积计算公式,能够正确地计算三角形的面积.
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生知道转化的思考方法在研究三角形面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力.
教具、学具准备
1.将下面复习中的图画在小黑板上.
2.将教科书第69页上面的3个三角形图画在黑板上.
3.用厚纸做完全相同的两个直角三角形、两个锐角三角形、两个钝角三角形.
4.学生将教科书137页上的三角形剪下来.
教学过程
一、复习
计算平行四边形的面积.
教师:前面我们学习了平行四边形面积的计算,今天我们来学习三角形面积的计算.板书:三角形面积的计算
二、新课
1.用数方格的方法计算三角形的面积.
教师:前面我们在学习长方形面积和平行四边形面积时,都曾经用过数方格的方法,下面我们再用数方格的方法来求三角形的面积.
出示教科书第69页上面的3个三角形图形.先让学生用数方格的方法求出这3个三角形的面积,图中每个方格仍代表1平方厘米,不满一格的按半格计算.然后指名说一说数得的结果.再引导学生仔细观察图中的3个三角形,提问:
“这3个三角形分别是什么三角形?每个三角形的底和高分别是多少?”
教师:这3个三角形的底相等,高也相等,它们的面积实际也相等.刚才大家用数方格的方法求出了3个三角形的面积,这种数方格的方法不准确又很麻烦,我们还是要寻求一种计算三角形面积的方法.大家想一想能不能仿照前一节求平行四边形面积的方法,把三角形转化为我们已学过的图形,然后再来计算它的面积.
2.通过操作总结三角形面积的计算公式.
(1)让学生用两个完全一样的直角三角形拼成一个已学过的图形.每个学生自己拼摆后,指定两名学生到黑板前拼摆.提问:
“他们用两个直角三角形拼成了三角形、长方形、平行四边形,这3种图形中哪些图形的面积我们会算?”
教师在黑板上画出用两个直角三角形拼成的长方形和平行四边形的图.
“每个直角三角形的面积和拼出的图形的面积有什么关系?”
学生回答后,教师肯定学生的回答并指出:每个直角三角形的面积是拼成的长方形或平行四边形面积的一半.
(2)让学生拿出两个完全一样的锐角三角形,提问:
“用两个完全一样的锐角三角形能不能拼成一个平行四边形?”让每个学生都动手拼一拼,或者同桌的两个学生一同拼摆.
教师边说边演示拼的过程.先将两个锐角三角形重合放置,再按住三角形的右边顶点,使三角形时针运动相反的方向转动180°,到两个三角形的底边成一条直线为止,再把右边三角形向上沿着第一个三角形的右边平移,直到拼成一个平行四边形为止,并把拼成的平行四边形图画在黑板上.然后再带着学生规范地照上面的步骤做一遍,做时仍需边做边强调:先要把两个锐角三角形重合,再旋转,旋转时哪个点不动?旋转了多少度?平移时是沿着哪条直线移动的?学生学会把两个完全一样的锐角三角形拼成一个平行四边形后,教师再说明:平移是图上各点沿直线移动,旋转是一个点不动,其他的点都围绕着不动点转.提问:
“每个锐角三角形的面积和拼出的平行四边形的面积有什么关系?”
学生回答后,教师强调:每个锐角三角形是拼成的平行四边形面积的一半.
(3)让学生拿出两个完全一样的钝角三角形.提问:
“用这两个完全一样的钝角三角形能拼成一个我们学过的图形吗?自己拼一拼.”教师巡视,对有困难的学生给以帮助.
指定一名学生在黑板前用两个钝角三角形拼摆出一个平行四边形.
教师在黑板上画出用两个钝角三角形拼成的平行四边形的图.
“每个钝角三角形的面积和拼出的平行四边形的面积有什么关系?”
教师:每个钝角三角形的面积是拼成的平行四边形面积的一半.
(4)小结.
教师结合黑板上分别由两个完全相同的三角形拼成的平行四边形的图指出:通过上面的实验,两个完全一样的三角形,不论是直角三角形,锐角三角形,还是钝角三角形,都可以拼成一个平行四边形.提问:
“这个平行四边形的底和三角形的底有什么关系?”
“这个平行四边形的高和三角形的高有什么关系?”
“这个平行四边形的面积和其中一个三角形的面积有什么关系?”
“平行四边形的面积怎样求?一个三角形的面积是这个平行四边形面积的一半,那么这个三角形的.面积应该怎样求呢?”学生回答后,教师板书:
三角形的面积=底×高÷2
“为什么要除以2呢?”学生回答后,教师指出:因为平行四边形的面积是底乘高,而三角形的面积是这个平行四边形面积的一半,所以三角形的面积是底乘高再除以2.
(5)教学用字母表示三角形的面积公式.
教师:通常我们用字母a表示三角形的底,用字母h表示三角形的高,用字母S表示三角形的面积.提问:
“用字母怎样表示三角形的面积公式?”学生回答后,教师板书:
S=a×h÷2
(6)看前面用数方格的方法求三角形面积的图.提问:
“前面我们曾经说这三个三角形的面积相等,现在再来看一看它们的面积为什么相等?”学生回答后,教师边肯定学生的回答边说明:这三个三角形的底是相等的,高也是相等的,所以这三个三角形的面积必定是相等的.
3.应用总结出的面积公式计算三角形的面积.
(1)看教科书第71页上的例题,指名读题后,提问:
“这道题实际是求什么?怎样求?”让每个学生做在自己的练习本上,然后集体核对.
(2)完成教科书第71页“做一做”中的题目.
“说出第一个三角形的底是多少,高是多少.”接下来再分别说出第二和第三个三角形的底和高.
教师:求每个三角形的面积,做在自己的练习本上.教师注意巡视.集体核对时,教师可以结合学生做题中出现的错误进行有针对性地讲解.
三、巩固练习
做练习十七的第1、3题.
第1题,做题时先让学生读题,再让学生思考一下,然后再让学生回答.回答出画斜线的三角形的面积是6平方厘米后,再让学生说一说为什么.
第3题,先让学生量出每个三角形的底和高,然后再算出每个三角形的面积.在量三角形的底和高时,可以用厘米作单位.在量钝角三角形的底和高时,如果有的学生以短边为底边画高有困难时,教师可以告诉学生画高时以长边为底边,这样高在三角形内,画起来比较简便.
四、作业
练习十七的第2、4题.
小学三角形教案3
教学目标
1.使学生理解什么叫做三角形,掌握三角形的特征和特性,能按角的不同给三角形分类.
2.通过引导学生自主探索、动手操作、培养初步的创新精神和实践能力
教学重点:
理解三角形的意义及其分类. 教学难点:掌握三角形的分类.
教具:
三根木条、三根钉子、四边形和五边形木框各一个,三角形图片、小棒、皮筋若干。 教学过程
一、创设情境,导入新课.
1.让学生说说生活中见到的三角形.
2.出示下图,指出哪些是三角形:
3.导入新课.
教师导入:
看来生活中的三角形无处不在.关于三角形你还想了解它什么?今天我们就一起来认识三角形.(板书课题:三角形)
二、师生互动,引导探索.
1.教学三角形的意义.
(1)每个小组利用教师事先为其准备的三根小棒,把小棒看成一条线段,利用这三条线段摆一个三角形。比一比,看哪一个小组做得最快!
(提供的小棒有一组摆不成的。) 教师:它们是三角形吗? (2)思考讨论:
①三角形是几条线段围成的?
②什么样的图形叫三角形?
在讨论的基础上,引导学生概括:三角形是由三条线段围成的,由三条线段围成的图形叫做三角形.(教师板书)
(通过操作,进一步感知,建立空间观念。)
(3)练一练:图片中哪些是三角形?为什么?. 2.教学三角形的特征:
(1)自学:①三角形各部分名称叫什么?②三角形有几条边、几个角、几个顶点? (2)继续演示课件“三角形”出示三角形各部分名称.
教师提问:
什么叫三角形的边?三角形有几条边?
同桌讨论:这些三角形都有哪此共同的特征?
引导学生用一句话概括三角形的特征.
(3)让学生用准备好的木条、钉子每人做一个三角形,教师巡视指导。
3.三角形的特性
(1)出示自行车、屋檐、吊车等图片,为什么这些部位要用三角形? (2)用三角形木框实验.
教师拿出手中的`教具示范给孩子们看:拉动一下三角形与四边形,让学生看明白:三角形怎么拉也拉不动,四边形一拉就变形。这说明:三角形具有稳定性。三角形的稳定性在生活中广泛运用,引导学生把有关的数学应用到现实生活中。
4.三角形的分类
(1)让学生任意画一个三角形(或剪一个三角形)
(2)对三角形进行分类:
出示图形,组织学生观察并分组讨论:这些角有什么特点,可以分成几类?
教师引导学生明确:三个角都是锐角的三角形叫做锐角三角形;
有一个角是直角的三角形叫做直角三角形.
有一个角是钝角的三角形叫做钝角三角形. (3)三角形按边进行分类.
全班同学共同测量课本137页上部的三角形.
教师提问:通过测量你发现这些三角形边、角各有什么特点?
引导学生得出:每个三角形的三条边长度都相等,每个三角形的三个角都相等.
教师指出并板书:三条边都相等的三角形叫做等边三角形,又叫做正三角形.等边三角形的三个角都相等.
引导学生比较等边三角形与等腰三角形,使学生明确:等边三角形是特殊等腰三角形.
三、游戏: 把磁力板上的三角形拿下全部放在一个盒子里,分别只露出三角形的一个角或两个角让学生猜各是什么三角形?
四、巩固练习
1.判断.
①由三条线段组成的图形叫做三角形.()
②三角形有三条边、三个角、三个顶点.()
③三角形具有稳定性.()
④直角三角形只有一个直角.()
2.实践题.
小红家的椅子用了很多年了,有点摇摇晃晃了.请同学们帮她想想办法,该如何修理?
五、教师小结
通过学习,你掌握或学会了什么?
六、布置作业
小学三角形教案4
一、教学内容
本单元具体例题安排如下表:
二、教学目标
1. 通过观察、操作和实验探索等活动,使学生认识三角形的特性,知道三角形任意两边之和大于第三边以及三角形的内角和是180?。
2. 通过分类、操作活动,使学生认识锐角三角形、直角三角形、钝角三角形和等腰三角形、等边三角形,知道这些三角形的特点并能够辨认和区别它们。
3. 联系生活实际并通过拼摆、设计等活动,使学生进一步感受三角形的特征及三角形与四边形的联系,感受数学的转化思想,感受数学与生活的联系,学会欣赏数学美。
4. 使学生在探索图形的特征、图形的变换以及图形的设计活动中进一步发展空间观念,提高观察能力和动手操作能力。
三、编写特点
1.关注学生的已有经验,强调数学知识与现实生活的密切联系。
儿童有一种与生俱来,以自我为中心的探索性学习方式,他们的知识经验是在与客观世界的相互作用中逐渐形成的,这些知识与经验是他们进一步学习的基础。为使儿童以一种积极的心态调动原有的知识经验,认识新问题,建构他们自己新的知识与经验,教材的编写注意从学生已有的经验出发,创设丰富多彩的与现实生活联系紧密的情境和动手实验活动,以帮助学生理解数学概念,构建数学知识。例如:对“三角形的分类”这一内容,教材根据学生已懂得了角的分类,能区分锐角、钝角、直角、平角与周角这一基础,设计了“给三角形分类”活动,放手让学生自己在“给三角形分类”的探索活动中了解和把握各种三角形的特征。
2.重视创设问题情景,让学生在动手操作、积极探索的活动过程中掌握知识。
几何初步知识无论是线、面、体的特征还是图形特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。基于这样的考虑,教材在提供大量形象的感性材料的同时,加强了数学问题情景、操作探索活动的设计。例如“三角形任意两边的和大于第三边”这一部分内容,创设了“我上学走中间这条路最近”“这是什么原因呢?”这种学生熟悉而有趣的问题情境,让学生去探索、去实验、去发现。从而让学生在动手操作积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力。
3.教学内容的呈现不但体现知识的形成过程,而且给学生留有充分自主探索和交流的空间。
经过第一学段的学习,学生已经具备一定的关于三角形的认识的直接经验,获得相应的知识和技能,为感受、理解抽象的概念,自主探索图形的性质打下了基础。为方便教师领会教材编写的理念与意图,开展有效的教学,更好地发展学生的空间观念、培养学生各种能力,教材在呈现具体教学内容时,不但重视体现知识形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活地组织教学提供了清晰的思路。这主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。例如,三角形三边之间的关系,三角形的内角和、三角形与四边形的联系等,均是让学生在操作、探索中发现,形成结论。
4.加强对图形之间的'关系的认识。
本单元增加了“图形的拼组”,让学生再次感受三角形的特征及三角形与四边形的联系与区别,从而了解数学知识之间的内在联系,进一步发展学生的空间观念和动手操作、探索能力。
四、具体编排
1.三角形的特性。
(1)情境图。
教材提供了一幅三角形在生活中应用的直观图,目的是让学生联系生活实际思考并说一说“哪些物体上有三角形?”激发学生学习三角形的兴趣,而且引起学生对三角形及其在生活的作用的思考。
(2)例1。
在“画三角形”的操作活动中进一步感知三角形的属性,抽象出概念。在已学的垂直概念的基础上,引入了三角形的底和高。最后,教材说明为了便于表述,如何用字母表示三角形。
(3)例2。
三角形的稳定性,在生活中有着广泛的应用。让学生对三角形有更为全面和深入的认识。设计思路是“情景、问题—实验、解释—特性应用”。
(4)例3。
通过学生熟悉的生活实例创设问题情境,引发学生对三角形边的关系的思考。然后让学生动手实验,探究规律。
2.例4。
教学三角形的分类。用集合图直观地表示出,三角形整个集合与锐角三角形、直角三角形、钝角三角形之间整体与部分的关系。三角形按边分类,教材不强调分成了几类,着重引导学生认识等腰三角形、等边三角形边和角的特征。
3.例5。
教学三角形的内角和。先通过让学生度量不同类型的三角形的内角度数,并分别计算出它们的和,使学生初步感知到它们的内角和是180?。在此基础上,教材再提出用实验的方法加以验证。
“做一做”应用这一结论解决问题。
4.图形的拼组。
(1)例6。
用同样大小的三角形拼四边形的活动,让学生体会三角形与四边形的关系。具体活动时,不一定只按教材提供的思路拼,可以让学生自主拼,看用同样的三角形可以拼出哪些四边形,并说一说是怎么拼摆的。
(2)例7。
用三角形拼出美丽图案的活动,进一步感受三角形与其他图形的关系,同时享受创作的快乐,感受数学美。
五、教学建议
1.适度把握本册关于“三角形的认识”的教学目标。
这一学段的学生已经积累了一些有关“空间与图形”的知识和经验,形成了一定程度的空间感。他们对周围事物的感知和理解的能力以及探索图形及其关系的愿望不断提高,具备了一定的抽象思维能力,可以在比较抽象的水平上认识图形,进行探索。因此,本册对三角形认识的教学目标与第一学段“获得对简单平面图形的直观经验”有所不同,应使学生通过观察、操作、推理等手段,逐步认识三角形。因此,在进行本单元的教学,如落实“了解三角形任意两边的和大于第三边”、“三角形内角和是180°”等内容的具体目标时,不仅要求学生积极参与各种形式的实践活动,而且要积极引导学生对活动过程和结果进行判断分析、推理思考和抽象概括,让学生在学习知识的过程中提高能力。
2.重视实践活动,让学生在探索中获取知识。
“数学学习的过程实际上是数学活动的过程”,学生对图形的认识是在活动中逐步建立起来的。回忆生活经验、观察实物、动手操作、推理想像等都是学习理解抽象的几何概念的重要手段,也是发展学生空间观念的途径。教学时,应从学生的生活实践出发,给予学生充分从事数学活动的时间和空间,让他通过观察、操作、有条理的思考和推理、交流等活动,经历从现实空间抽象出几何图形的、探索图形性质及其变化规律的过程,从而获得对图形的认识,发展空间观念。
3.注重教具、学具和现代教学手段的运用,加强教学的直观性。
几何图形的直观性为各种教学手段的运用提供了广阔的空间,利用各种教具、学具和现代教学技术,可以使学生认识和探索图形的过程更具有趣味性和挑战性,也是进一步发展学生空观念和实践能力的有效途径。但在运用各种教学手段时,要注意切合实际,易操作而有实效。一些农村学校由于经济困难,不能配备丰富多彩的教学具,教师必须因地制宜充分挖掘当地资源,积极发动学生制作。学生在制作过程中不但可以激发学习的兴趣而且可以加深对图形的认识。
小学三角形教案5
一、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
二、判断三条线段能否组成三角形。
abc(ab为最短的两条线段)
三、第三边取值范围:a-bc
四、对应周长取值范围
若两边分别为a,b则周长的取值范围是2a
如两边分别为5和7则周长的取值范围是14
初中数学学习方法:三角形知识点
五、三角形中三角的关系
(1)、三角形内角和定理:三角形的三个内角的和等于1800。
n边行内角和公式(n-2)
(2)、三角形按内角的大小可分为三类:
(1)锐角三角形,即三角形的三个内角都是锐角的三角形;
(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
(3)、判定一个三角形的形状主要看三角形中最大角的度数。
(4)、直角三角形的面积等于两直角边乘积的一半。
六、三角形的三条重要线段
(1)、三角形的角平分线:
1、三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
2、任意三角形都有三条角平分线,并且它们相交于三角形内一点。(内心)
(2)、三角形的中线:
1、在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。
2、三角形有三条中线,它们相交于三角形内一点。(重心)
3、三角形的中线把这个三角形分成面积相等的两个三角形
(3)、三角形的高线:(1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。(2)任意三角形都有三条高线,它们所在的直线相交于一点。(垂心)(3)注意等底等高知识的考试
七、相关命题:
1、三角形中最多有1个直角或钝角,最多有3个锐角,最少有2个锐角。
2、锐角三角形中最大的'锐角的取值范围是60≤X90。最大锐角不小于60度。
3、任意一个三角形两角平分线的夹角=90第三角的一半。
4、钝角三角形有两条高在外部。
5、全等图形的大小(面积、周长)、形状都相同。
6、面积相等的两个三角形不一定是全等图形。
7、能够完全重合的两个图形是全等图形。
8、三角形具有稳定性。
9、三条边分别对应相等的两个三角形全等。
10、三个角对应相等的两个三角形不一定全等。
11、两个等边三角形不一定全等。
12、两角及一边对应相等的两个三角形全等。
13、两边及一角对应相等的两个三角形不一定全等。
14、两边及它们的夹角对应相等的两个三角形全等。
15、两条直角边对应相等的两个直角三角形全等。
16、一条斜边和一直角边对应相等的两个三角形全等。
17、一个锐角和一边(直角边或斜边)对应相等的两个三角形全等。
18、一角和一边对应相等的两个直角三角形不一定全等。
19、有一个角是60的等腰三角形是等边三角形。
八、全等图形
1、两个能够重合的图形称为全等图形。
2、全等图形的性质:全等图形的形状和大小都相同。
九、全等三角形
1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。
2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。
十、全等三角形的判定
1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。
2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。
3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角角边”或“AAS”。
4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。
十一、做三角形(3种做法:已知两边及夹角、已知两角及夹边、已知三边、已知两角及一边可以转化为已知已知两角及夹边)。
十二、利用三角形全等测距离;
十三、直角三角形全等的条件:在直角三角形中,斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。
小学三角形教案6
教学目标
知识与能力:学生通过测量、撕拼的方法探索和发现三角形三个内角和是180°。
过程与方法:学生经历合理猜想和验证三角形内角度数和等于180°的过程,发展空间观念及分析推理能力。
情感态度和价值观:学生在活动中体验成功的喜悦,激发学生探索数学的愿望和兴趣。
重点难点
教学重点:
探究发现三角形的内角和是180度。
教学难点:
在猜想和验证三角形内角和的过程中发展空间观念。
教学过程
活动1【导入】理解内角、内角和概念
1、谜语引入:形状似座山,稳定性能坚,三竿首尾连,学问不简单,打一几何图形猜一猜是什么?
Q:结合谜面的信息来说一说三角形有什么特点?
2、介绍内角:这三个角都在三角形的里面,又叫内角。
Q:三角形有几个内角?
3、介绍内角和:把三个内角的度数加起来求和就是三角形的内角和。
引出课题:今天我们就来研究三角形内角和。
活动2【活动】观察图形
1、观察图形的变与不变
ppt依次出示
Q:这是锐角三角形,什么是它的内角和?
出示直角三角形,它的内角和是指?
出示钝角三角形,内角和是指?
质疑:哪个三角形的内角和最大?
预设1:钝角三角形内角和大。(说想法)
预设2:一样大。(说想法)
预设3:180度。
小结:三个三角形的样子不一样,大小也不一样,三个内角也不一样,但内角和是一样的。
(二)活动二:猜想内角和不变的度数
Q:这个一样的度数是多少?你是怎么知道的?
预设1:听说过,学过。
预设2:直角三角尺上三个角的度数和是180度。
预设3:等边三角形。
这两个都是我们知道度数的特殊的三角形,请你根据这个特殊的三角形来大胆的猜猜三角形内角和是多少度?那任意的一个三角形的内角和度数是不是180°呢?今天我们就来一起研究。
活动3【活动】测量验证
(一)思考量的方法和原因
过渡:你想怎么研究?(用量角器去量)
Q:谁来介绍介绍量的方法?
预设:要想研究内角和,只要把三个内角度数量出来再加起来看看是不是180度就可以了。
(二)动手测量
PPT:操作建议:
1、请你找到三角形的三个内角,用彩笔标序号1、2、3。
2、用量角器仔细测量后,记录角的度数。
3、列式计算出三角形内角和度数。
动手测量
(三)汇报交流:
学生1展示测量的过程。
Q:还有谁测量的这个锐角三角形,说一说?
追问:为什么同一个三角形内角和度数却不一样?
Q:你在测量的过程中遇到了什么困难?
Q:观察这些数据,虽然都不太一样,但是都很接近?
小结:测量确实可以帮助我们找到三个角的度数,加起来就可以求出内角和,但是测量有误差。
活动4【活动】拼角验证
(一)思考其它验证方法
Q:你还有其他的'方法吗?
预设1:学生没有反应。
师引导:说到180度,你想到什么角?(平角)
预设2:撕拼法
Q:怎么把三个内角拼在一起?
(生不撕,教师帮助突破,撕下三个内角。)
Q:你能在投影上拼一拼吗?
预设3:折叠法
你的方法也很好,你们听懂了吗?一会儿可以试试。
预设4:描画法
Q:怎么描?你能演示一下吗?
其他同学观察他在做什么?
引语:刚才说的方法都很好,下面我们自己来试一试。
(二)动手拼一拼
操作要求:
1、请你用彩笔在纸上随意画一个三角形,并剪下来。
2、用彩笔标出三个内角。
3、尝试操作。
动手操作
(三)汇报交流
Q:你是怎么研究的?发现了什么?
(四)小结
刚才每人的三角形是自己任意画出的,形状、大小都不一样。无论是撕拼、折叠、还是描画的方法,都是在把这三个内角拼在了一起,转化成一个平角,我们发现他们的内角和都是180度。
活动5【活动】几何画板验证
引:但我们时间有限,研究的三角形个数有限,是不是任意一个三角形的内角和都是180度呢?我们可以借助几何画板来看一看。
师:介绍:计算机能够帮助我们比较精确地测量出三个角的度数,并计算它们的和。
观察:老师拉动一个顶点,什么变了?什么没变?
小结:也就是,无论我们怎么改变三角形的形状,大小,虽然它的内角在变化,但三个内角和的却是不变的,都是180度。
活动6【练习】基础练习
1、三角形中∠1=55°,∠2=45°,∠3=?
2、直角三角形:我有一个锐角是40°,求另一个角?
3、说一说:在一个三角形中,能有两个直角吗?能有两个钝角吗?为什么?
4、拼三角形
师:两个180°不是360°吗?
小结:看来,组合以后的图形还要分清楚哪些是内角。
活动7【练习】拓展练习
(一)拓展练习
今天,我们通过自己的研究发现三角形内角和是180度。那四边形有没有内角和呢?它的内角和是多少度?
课件演示。
说说这节课你的收获?
小学三角形教案7
一、教学内容:
教材43—45页例题及想想做做
二、教学目标:
1、通过把长方形或正方形折、剪、拼等活动,直观认识三角形和平行四边形;知道它们的名称、初步知道这些图形在日常生活中的应用。
2、在折图形、剪图形、拼图形的活动中,使学生体会图形的变换,发展对图形空间想象能力。
三、教学重点:
准确辨认图形
教学难点:理解图形之间是可以联系和转换的
四、教具准备:
教学挂图或多媒体,小黑板
五、教学过程
自我加减
(一)导入新课。
上节课我们认识了正方形、长方形以及圆,今天我们将继续来认识一些理面图形。
(二)新授
1、认识三角形
(1)教师出示一张正方形纸,提问:这张纸是什么开头你能把一张正方形对折成一样的两部分吗?
学生活动,教师巡视,了解学生折纸的情况。
组织学生交流你是怎样折的,折出了什么图形?
板书:三角形
出示教材第43页第二组图,教师介绍:下面是生活中见到的三角形(想一想,你还见过哪些有三角形面的物体。)
出示教材40页积木拼搭,认出有三角形面的`积木,指一指哪个面是三角形的?
2、平行四边形
(1)拼一拼。
教学过程
自我加减
你能用两个完全一样的三角形拼成下面的图形吗?
板书:平行四边形
(2)出示教材44页例题说明:下面都是生活中见到的平行四边形,你能从这引起物体上找到平行四边形吗?并把图中的平行四边形涂上颜色。
想一想,你还见过哪些有平行四边形面的物体?
(三)巩固练习
完成想想做做第一题至第五题。(分小组比赛)
(四)全课小结
(五)作业布置
(六)教学反思
小学三角形教案8
【教学内容】
国标版四年级(下册)第22~25页。
【教学目标】
1.在观察、操作、分析、讨论等活动中,了解三角形的各组成局部,感受并发现三角形的三边关系;
2.在探索活动中提高观察能力、推理能力,并发展空间观念。
【教学重、难点】
理解三边关系。
【教学过程】
一、初步认识三角形。
1.举例:生活中哪些物体的面是三角形的?
2.认识三角形的各局部名称
(1)回忆:我们已经初步认识了三角形,关于三角形你已经知道了什么?
(2)补充:顶点
3.揭题:三角形还有什么特点呢?今天这节课我们就来深入地研究三角形。
二、探索三边关系。
1.理解“围成”的含义。
(1)提问:围一个三角形就要用到几根小棒?
(2)生围
(3)小结:相邻两根小棒的头和头相连了,就说是围成了三角形。
(4)质疑: 三根小棒是不是一定能够围成三角形呢?
(5)小组合作研究
(6)交流:有时三根小棒能围成三角形,有时不能围成三角形。
2.探究第一个条件:
(1)质疑:为什么有时能够围成三角形,有时却不能围成三角形呢?
(2)讨论:红、黄两边的长度要符合怎样的条件,才干和蓝边围成三角形?
(3)交流并检验
(2)小结:要围成一个三角形,红边和黄边的`长度和就必需要大于蓝边。
3.探究第2个条件。
(1)固化条件1:4组判断
(2)质疑:蓝边10厘米,红边3厘米、黄边15厘米能围成三角形吗?
(3)操作并得第2个条件:要围成三角形,红和黄的长度和要比黄边长。
4.探究得第3个条件:
(1)设疑:会不会有了这两个条件还不够?还要满足其他的条件?
(2)讨论并验证
(3)小结:还要符合第3个条件,黄边和蓝边的和要大于红边。
5.形成结论。
(1)问题:要围成一个三角形,三条边要同时满足几个条件?
(2)小结:三角形中任意两条边的长度和都大于了第三边。
6.优化判断
(1)固化结论:要围成三角形3边要符合什么条件?(2题)
(2)优化判断:
长边+短边>中边 长边+中边>短边 短边+中边>长边
a.问题:哪一个条件符合了?
b.判断说理
c.方法:只要算一次就能判断。只要短边之和大于长边这个条件符合了,就能围成三角形。
(3)巩固
三、全课总结。
四、解决实际问题。
路线判断。
五、拓展提高。
固定边7厘米、3厘米,配一条活动边。活动边可以是几厘米?
小学三角形教案9
教学内容:人教版第九册第三单元的《三角形面积的计算》,数学教案-三角形面积。
教学目的:(一)理解三角形面积计算公式的推导过程,掌握求三角形面积的计算方法。
(二)通过学生动手拼摆,渗透旋转、平移的数学思想,引导学生用多种方法推导公式,发散学生的思维,培养学生求异思维的能力。
教学重点:掌握三角形面积的计算方法。
教学难点:理解三角形面积计算公式的推导过程。
教具准备:用纸皮剪好的两个完全相同的直角三角形、锐角三角形、钝角三角形。。
教学过程:
一、复习:
提问:同学们,上节课我们学习了平行四边形面积的计算,谁能说说它的面积计算公式是怎样的?你知道它是通过什么方法推导出来的?
二、导入新课:
你们看,(屏幕出示三个三角形)这些是什么图形?那谁来说说看,哪个三角大?哪个三角小?(到底哪个大,哪个小呢?)要比较它们的大小,必须要知道这三个三角形的面积。那可以用什么方法知道这三个三角形的面积呢?
三、新课:
(一)好,我们就用数方格的方法来求这三个三角形的面积。同样每个方格表示1平方厘米。
下面,就请同学们拿出老师发给你们的方格纸,请你数出这三个三角形的面积,看谁数的又对又快。
小结:通过数方格,我们得到了这三个三角形的面积都是12平方厘米,因此,它们的面积是相等的。
那你们觉得用数方格的方法计算三角形的面积,方便吗?既不方便,又不精确。
像一块大的三角形土地,你能用数方格的方法求出它们的面积吗?那有没有更好的方法呢?(把三角形转化成已经学过的图形来计算面积)你真聪明
师:这才是最科学的方法。今天,我们继续用这种方法研究三角形的面积,小学数学教案《数学教案-三角形面积》。板书:三角形面积的计算
师:在研究之前,请同学们仔细观察,张老师把这一张长方形纸这样对折,对折出来的是什么图形?那么,折出的其中一个直角三角形是不是这张长方形纸的一半呢?(老师把它剪开,重叠)我们会发现这2个直角三角形是完全一样的,所以其中一个直角三角形就是这张长方形纸的一半。
(二)下面老师就请同学们拿出给你们准备的2个直角三角形 、2个钝角三角形,请分别把它们叠起来,发现什么?(重合)说明了什么?(2个直角三角形完全一样的,2个……)
那就请同学们想一想:用2个完全一样的三角形可以拼成哪些已学过的图形?
1、先用2个完全一样的直角三角形拼拼看?
(长方形、平行四边形、形状不同的三角形)的面积我们会计算吗?我们只会计算长方形和平行四边形的面积,那我们就请拼成平行四边形的同学来演示,说说你是怎样拼的?(同学演示)
我们一起来看一下电脑是怎样清楚地操作的?
2、看清楚了吗?好,我们可以用这种方法想一想,能把2个完全一样的锐角三角形、钝角三角形拼成一个平行四边形吗?开始操作,同桌可互相说说我是怎样拼的?分别请2个同学上台演示。(能吗?)说得真好
3、小结:通过刚才的操作我们把2个完全一样的直角三角形、锐角三角形、钝角三角形,都可以拼成一个什么图形?(平行四边形)谁能把这句话再概括一下,也就是,只要是(2个完全一样的三角形都可以拼成一个平行四边形)齐读 回答真好
4、接下来,老师要请同学们仔细观察,你们用2个完全一样的三角形拼成的一个平行四边形。
想一想:1、每个三角形的面积与拼成的平行四边形的面积有什么关系? 2、这个平行四边形的底和高分别与三角形的底和高有什么关系?
开始观察,观察好,同桌互相交流,后回答,屏幕演示。
反馈提问:“为什么要除以2?”
5、翻书P76,填充,齐读,同样我们也可以用字母面积公式
板书:
等底等高
三角形的面积=平行四边形的'面积÷2 表示什么意思
=底×高÷2
s=ah÷2
(三)要求三角形的面积必须知道哪几个条件?然后根据(三角形的面积=底×高÷ 2)计算,注意千万不能忘记÷2,下面就利用三角形面积的计算公式来计算三角形的面积。
1、出示“想一想”:学生读要求,个别回答,校正,一样的举手,不一样的举手。
2、同样我们还可以利用三角形面积计算公式来计算物体表面是三角形的面积。
出示例:求的是什么?我们应根据什么?请同学们做在自备本上。
3、同学们做得真认真,下面老师就要考考同学们有没有掌握今天所学的知识。
请看第1个题目:
1、下面平行四边形的面积是12平方厘米,求出涂黄色部分的面积。
2、判断,说明理由:(请用手势表示)
2个三角形都可以拼成一个平行四边形。
三角形底是6cm,高是3cm,面积是18cm。
三角形底是8分米,高是40cm,面积是16平方分米。
三角形底是9米,高是4米,面积是18米。
从以上练习,你认为我们在计算三角形面积时应该注意些什么? 1、÷2
2、单位统一
3、面积单位
3、选择:
下列哪个三角形是4×3÷2=6平方cm。
单位:厘米
3 3
4 4
小结:我们在做求三角形面积时一定要注意……
一个三角形的底是20厘米,高是2.5分米,它的面积是( )
1、20×2.5÷2 2、20×2.5 3、20×25÷2
小结:你认为在做作业时注意( )
4、求每个三角形的面积(只列式不计算)
底是4.2米,高是2米。
底是3分米,高是20厘米。
高是6米,高比底短2米。
底是12米,高是底的一半。
四、总结:今天,同学们学得非常认真。谁来说说看,这节课,我们一起学习了什么?它的面积计算公式是怎样的?我们在计算它的面积时一定要注意别忘了÷2。
你们知道吗,大约在2000年前,我国数学名著《九章算术》就论述了“圭田术日,半广的乘正从”我们的祖先老早就研究出三角形的面积=底×高÷2你们说,他们是不是很了不起呀。
三角形的土地 一半 底 高
学了这些知识,有没有不懂的问题问老师了?或有什么想法问老师的?
小学三角形教案10
1、对于教材,我了解了什么?(我真正掌握教材了吗?)
“三角形分类”是新课程教材中“空间与图形”领域内容的一部分。学生在学习此内容之前,已经学习了三角形的认识,能够找出三角形,学习了角的知识,认识了常见的角,为学生研究三角形的特征,从角和边这两种角度对三角形进行分类做了有力的知识支撑。三角形是最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,学好这部分内容,为学习其他多边形积累了知识经验,为进一步学习三角形的有关知识打下了基础。
2、初读教材,我产生了哪些问题?如何解决了这些问题?(我的问题一定也是学习者的问题,我解决问题的方式也许会给学生提供启示。)
三角形有几种?课前收集资料
3、设想学生可能遇到的问题?(根据自己学生的情况,站在学生的角度,思考他们可能会遇到什么障碍?)
1.一个三角形,如果有两个内角是锐角,它就是锐角三角形吗?
2.等腰三角形一定是锐角三角形吗?
4、我认为的教材的重点和难点是什么?(不完全是教参里设定的教学重难点!)
重点:认识锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
难点:理解并掌握各种三角形的特征。
5、我要给学生传递什么信息?达到什么样的程度?(在掌握教材和其他课程资源的基础上才能做出决定!)
教学中以直观教学为主,运用观察、动手操作、分组讨论等多种方法,采用现代化教学手段结合教材,让学生在“想一想”“做一做”“说一说”的自主探索过程中发挥学生相互之间的作用,让学生自己在动脑、动手、动口中促进思维的发展,培养学生的动手操作能力、语言表达能力和自学能力。在教学中,首先把握新旧知识的`衔接点,由三角形的认识,引出课题“三角形分类”。接着引导学生自学课本,放手让学生动手操作,小组讨论交流,寻找三角形分类的方法。最后让学生各抒己见,归纳出各种三角形的特征,培养学生的抽象概括能力。
6、我要怎样布置预习?(有充分的预习,才有课堂的真正自主!)
三角形分几种?什么是等腰三角形?什么是等边三角形?
7、我有哪些资源、工具可以利用?(鼓励思考利用交互式电子白板的哪些功能解决问题。)
教学准备多媒体课件、彩色卡纸、三角形平面图、固体胶、剪刀等。
8、我预设的教学程序有哪些?(模块式主题,不用详述。)
(1)复习铺垫
(2)揭示课题
(3)探究新知动手操作
(4)巩固运用深化理解
(5)全课小结
小学三角形教案11
教材分析
本课通过实验来发现三角形任意两边的和大于第三边。
学生们知道“两点之间线段最短”,能对线段的长度进行基本的测量与计算。
教学目标
1、使学生知道三角形任意(较短)两边的和大于第三边。
2、让学生经历探索数学的过程,通过猜想—实验—结论的方式,感受数学在学习、生活中的作用。
3、通过学生动手操作、想像、猜测,进一步发展空间观念,提高观察能力和动手操作能力,培养学生的数学思维。
教学重点:通过实验发现三角形任意两边的和大于第三边。
教学难点:判定两条线段的和等于第三条线段时能不能组成三角形。
预设过程
一、引入:
1、把一根吸管任意剪成三段,再用电线穿在一起,(这电线穿在一起做什么用知道吗?)头尾相连,会得到什么图形?
2、首尾相连一定是三形吗?(举手表决)。刚才有的同学认为可能围成,有的认为可能围不成,那到底能不能呢?同桌合作,剪一剪,围一围。
二、展开:
1、学生操作:把一根吸管任意剪成三段,再用电线绕一绕。
2、反馈:
把具代表性的三种不同情况的贴在黑板上。为了便于研究,给标上序号。
(围成的贴三个、围不成的各一个,)
3、同桌讨论思考:假如我们把吸管看成三角形的三条边,也就是三条线段。同样的一根线段,任意剪成三段,为什么1、2、3号能围成三角形,而4、5号却围不成呢?课件演示.
4、交流并作第一次。板书:三角形两条边的和大于第三边。
5、尝试:出示4厘米、10厘米、5厘米的三条线段。
符合两边和大于第三边,能围成三角形吗?
6、第二次:板书:任意(较短)两边的和大于第三边。
7、自学:书上是怎样说三角形的'三边关系的,自学书本第82页。
三、巩固:
1、书上86页习题,在能围成三角形的各组小棒下面画钩。集体交流,能不能用刚才的算式来说明?有没有用简单的方法来判断或你认为哪个办法能快速判断?
2、对习题进行变式练习
①3厘米4厘米5厘米:观察边有什么特点?是不是所有的三个连续自然数都能围成三角形呢?举例:1、2、3或0、1、2或7、8、9。
想象一下,这三条线段围成的三角形是怎样的?(初中会学到勾三、股四、弦五)
②3厘米3厘米3厘米:三边有什么特点?围成的图形是怎样的?(正三角形或等边三角形)是不是所有的三条相等的线段都围成正三角形?
③2厘米2厘米6厘米:怎么变才能围成?怎样判断呢?
④3厘米3厘米5厘米:用手势表示一下围成的样子,知道是什么三角形吗?如果换掉其中5厘米的这条边,可以怎么换?讨论一下。
交流:为了研究方便,我们都以取厘米的数。
331:搭起来的三角形会是怎样的?用一个词来说:细细的、尖尖的。。。
332、333(这是什么三角形)、334、335。发现图形有什么变化?(扁了、胖了、矮了)
如果要换调3厘米的边,可以怎么换?
四、拓展
1、哪条路最近?请用今天所学知识来解释。
2、抽象出三角形:用字母表示三角形三边关系
3、根据三角形的三边关系剪三段围成三角形中的奥秘解析
4、。
小学三角形教案12
教学目标:
1、掌握三角形的面积计算公式,并能正确计算三角形的面积。
2、经历探索三角形计算公式的过程,培养观察、比较、推理和概括能力,渗透转化思想,发展空间观念。
3、能运用三角形的面积计算公式解决简单的实际问题,在解决问题的过程中,感受数学和实际生活的密切联系,体会学数学、用数学的乐趣。
教学重点:探索并掌握三角形的面积公式,能正确计算三角形的面积。
教学难点:理解三角形面积公式的推导过程。
教学准备:每小组各两个完全一样的直角三角形、锐角三角形、钝角三角形,每小组各一个长方形、正方形和平行四边形的纸模型;一条红领巾;多媒体课件。教学过程:
一、动手操作,发现规律
1、游戏导入:用长方形、正方形和平行四边形,在每个图形上折一次,使折痕两边的形状、大小完全一样,先思考或讨论有几种折法,再开始折,并用彩色笔画出折痕。
2、小组学生代表上台汇报操作结果。
3、师根据汇报有选择地在黑板上贴出以下四种折法:
4、引出课题。
师:看来今天我们班的同学很乐意表现自己,老师真为你们而高兴。如果我们从桌子上任意取一个三角形,(师拿起任意一个三角形模型)这个三角形的面积怎样求呢?这就是我们今天要学习研究的内容。
二、探索三角形面积计算公式
1、玩游戏,小组内交流问题。
师:刚才同学们玩了一次折一折的游戏,想不想再继续玩?(想)好,现在我们再来玩一个。请听好要求:拿出信封里面的学具,从中找出两个形状、大小完全一样的三角形拼一拼,看你能发现了什么?同时在拼时要思考以下几个问题:
(课件出示以下问题)
A、两个完全一样的三角形能拼出什么图形?
B、拼成图形的面积你会算吗?
C、拼成的图形与原来每一个三角形有什么联系?(学生在小组里动手拼一拼,并相互交流以上问题)
2、学生代表上台演示汇报(2名学生,1人汇报,1人演示)(生1边演示)生2边汇报:我们用2个完全一样的锐角三角形拼成了一个平行四边形,拼成的平行四边形的面积=底×高,每一个锐角三角形的面积是这个平行四边形面积的一半,所以一个三角形的面积=底×高÷2。
师:哦!原来是这样!同学们,你们明白了吗?请把掌声送给刚才这两位小老师。
师:刚才这个小组是用两个完全一样的锐角三角形来拼组的。你们还有其他新的发现吗?
(点用直角三角形拼组的小组代表汇报)(学生汇报的过程略)
师:汇报得真好!还有吗?
(点用直角三角形拼组的小组代表汇报)(学生汇报的过程略)
(注明:每一种拼组学生汇报后都贴在黑板上。在老师小结时,故意把其中的一个三角形拿掉,并用画虚线表示。)
3、根据学生的汇报,老师小结。
师:看来不管是锐角三角形、直角三角形,还是钝角三角形,只要两个完全一样的三角形就能拼成一个平行四边形,大家都说其中一个三角形的面积是平行四边形面积的一半。师追问:是不是任意一个三角形面积是任意一个平行四边形面积的一半?
(师任意拿起一个三角形和不等底等高的平行四边形的纸板,让学生对比进行引导)
销售汇报:三角形的底和高必须与平行四边形的底和高相等时才对。
同学们现在说的很有道理,我们再来回忆一下刚才大家拼图形的过程。
老师板书:
三角形的面积是这个等底等高的平行四边形面积的一半。(板书)
师:看来,我们通过玩一玩,拼一拼,知道了怎样求一个三角形的面积了。那谁来说一说三角形的面积的计算公式是什么?
生:三角形的面积=底×高÷2(老师板书)
师追问:同学们,老师有点不明白,为什么写这个公式时用三角形的底乘高呢?“底×高”表示什么意思?为什么要“÷2”?
生:“底×高”表示用两个完全一样的三角形拼成的平行四边形的面积;因为一个三角形的面积是拼成的平行四边形面积的一半,所以要“÷2”。(学生加深对三角形面积计算公式的理解后,让学生齐读公式)师:同学们,如果用a表示三角形的底,h表示三角形的高,s表示三角形的面积,三角形面积的.字母公式是什么?
生:s=ah÷2(板书)
4、介绍数学知识。
师:同学们,你们知道吗?今天我们一起动手推导出来的三角形的面积计算公式,很早以前,我们的祖先就已经发现了,请看屏幕。(多媒体出示P85页的数学知识)
师:同学们,我国古代数学家固然伟大。但是,老师觉得你们更了不起!他们年纪很大了才发现的,而咱们年纪轻轻的不也找到三角形面积的计算方法了吗?来,把热烈的掌声送给咱们自己!(响起掌声)好,接下来我们是不是更有信心继续展示自我?(是)
三、学以致用,解决问题。
师:同学们,我们已经推导出了三角形面积计算公式,现在我们就用三角形的面积计算公式解决一些实际问题,好吗?(好)
1、
计算生活中的三角形的面积(1)计算红领巾的面积
师:老师这里有一条红领巾,(举起实物)如果想求它的面积有多少?需要知道什么条件?
生:需要三角形的底和高。(课件出示例2)
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
师:请同学们算一算。(学生练习后讲评订正)(2)计算三角形标志牌的面积
师:我们经常见到类似以下标志的标志牌(课件出示,注明:“4.8分米”是边提问边出示),你知道这个标志牌的面积吗?谁口算一下。
生:3×4÷2=6(平方分米)
师:都是这样做的吗?为什么不用3×2.5÷2呢?
生:因为2.5分米不是3分米对应的高。
师:如果与2.5分米对应的底边是4.8分米(课件出示)还可以怎样列式?
生:2.5×4.8÷2
师:通过这道题的解答,你明白了什么?
生:我们要计算三角形的面积时必须找准相对应的底和高,才利用三角形面积的计算公式来计算。
(3)认识道路交通警示标志。
师:请看屏幕。(多媒体出示)
师:你们认识这些交通警告标志吗?
(学生回答后,老师边小结,课件边出示板书)
向右急转弯
注意危险
减速慢行
注意行人
师:同学们,我们学校门口到人民路口这段路,在放学时经常出现交通混乱,为了改变这种状况,交警大队准备用铁皮制作其中两块这样警示牌,你能算出需要多少铁皮吗?(课件同时出示标有底是9分米,高7.8分米的数据的图形)
(学生练习后讲评订正,订正时主要关注”用简便方法解答”的小结。)
(4)画面积相等的三角形。
师:看到同学们这么积极,小精灵也给大家带来了问题,请大家看屏幕(课件出示)
师:上图中哪两个三角形的面积相等?你还能画出和它们面积相等的三角形吗?
(学生打开书87页,在书中画一画,完成第6题)
师:你画出了几个面积相等的三角形?如果给你足够的时间你能画出多少个这样的三角形?
生:无数个
师:通过画这样的三角形,你发现了什么?
生:三角形的面积与底和高有关,与形状无关。
四、课堂小结
师:本节课你学到了什么新知识?你觉得计算三角形面积时应注意什么?
五:布置作业:
小学三角形教案13
1、知道三角形高、中线、角平分线的定义
2、会做任意三角形高、中线、角平分线
重点
会做任意三角形高、中线、角平分线
难点
会做任意三角形高、中线、角平分线
教学方法
讲练结合、探索交流课型新授课教具投影仪
一、三角形的高
1、复习:过点A做BC的垂线,垂足为D
2、在黑板上做△ABC,过点A做对边BC
的垂线,垂足为D,我们
就将线段AD称为△ABC的高
3高的定义:在三角形中,从一个顶点向它的对边所在的直线做垂线,顶点与垂
足之间的线段称为三角形的高
例如在上图中,我们从△ABC的一个顶点出发,向它对边BC所在
的直线作垂线,垂足为D,线段AD就是三角形的高
注:1)三角形的高必为线段
2)三角形的高必过顶点垂直于对边
3)三角形有三条高
为了将这三条高加以区别,我们把AD称为BC边上的高
例:做出下列三角形的三条高
1锐角三角形:
可由教师先做示范,然后再让学生自行画出
其余两个
2直角三角形
由于∠C等于900,说明AC⊥BC,那么BC
边上的高即为AC,AC边上的`高即为BC,
3钝角三角形
二,三角形的角平分线
1引入:一知△ABC,做∠A的平分线AD交BC与点E,线段AE就称为△ABC的角平分线
2定义:在三角形中,一个内角的平分线与它的对边相交,,这个角的顶点与交点间的线段称为三角形的角平分线
3注:1)三角形的角平分线必为线段,而一个角的角平分线为一条射线
2)三角形的角平分线必过顶点平分三角形的一内角如上所示,△ABC的角平分线AE平分∠A,即∠BAE=∠CAE=∠BAC
3)三角形有三条角平分线
为了将这三条角平分线加以区别,我们把AE称为∠BACD的角平分线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形
钝角三角形
三,中线
1引入:如右所示,取BC的中点F,连结AF,那么线段AF就称为△ABC的中线
2定义:在三角形中,连结一个顶点与它对边中点的线段,叫做三角形的中线
如上所示,线段AF就是△ABC的中线
31)三角形的中线必为线段
2)三角形的中线必平分对边如上所示,线段AF是△ABC的中线
必有:BF=CF=BC
3)三角形有三条中线
例:做出下列三角形的三条角平分线
教师先做示范,然后再让学生自行画出其余两个
锐角三角形
直角三角形:
钝角三角形
素材A:
1在△ABC中,AD是角平分线,
BE是中线,∠BAD=400,则
∠CAD=,
若AC=6cm,则AE=
素材B:
2下列说法正确的是()
A三角形的角平分线、中线、高都在三角形的内部
B直角三角形只有一条高
C三角形的三条至少有一条在三角形内
D钝角三角形的三条高均在三角形外
答案:1400、6㎝2C
小学三角形教案14
教学内容:
p.24、25
教材简析:
这节课教学三角形的高,三角形的高和底的概念是有关三角形的重要概念,是学习三角形面积计算的基础。例题首先通过量人字梁的高,引导学生初步联系现实生活感知三角形的高,然后通过图示介绍三角形的高和底的意义,建立三角形的高和底的概念。
教学重点:
认识三角形的高,并正确地画高。
教学目标:
1、让学生知道三角形的高和底的意义,了解底和高的对应关系,会用三角尺画三角形的高(只限三角形内部的高)
2、让学生通过阅读资料,了解三角形的稳定性及其在生活中的应用,进一步体会数学与显示生活的联系。
3、让学生在学习活动中进一步发展空间观念和自主探索、合作交流的意识。
教学准备:
三角尺、学具盒等
教学过程:
一、复习
1、在作业本上分别的画三种情况:(图略)(1)a+bc
明确:只有当两条边的长度和大于第三边的时候,这样的三条边才能围成三角形;一般判断的时候只要把最短的`两条边加起来和最长的比就可以了。
2、画一个类似于人字梁的三角形(只要外面的三条边)
说说三角形的组成:三条边、三个角、三个顶点
二、认识三角形的底和高
1、我们刚才说到三角形有三条边,这节课我们将要来认识关于这个三角形神秘的第四条线段,你猜是什么?(高)
板书:高
由高你联想到了什么?(垂直、直角标记)
2、示范画高的方法
边画边说:以这条边为底,现在要找它的高。板书:底
用三角板的直角边和它重合,(不断移动)说说它的垂线有多少条?(无数条)
其中只有一条很特殊,你能说说是哪一条吗?(从对面的顶点画下来的这条垂线)用虚线画一画。
指出:从三角形的一个顶点到对边的垂直线段是三角形的高,这条对边是三角形的底;画的这条线段用虚线表示,画完后还要画出直角标记和高(或用字母h表示)
学生在作业本上,模仿板书也画一画。
小学三角形教案15
认识三角形
教学目标:
1、通过观察、想象、推理、交流等活动,发展空间观念、推理能力和有条理地表达能力;
2、能证明出“三角形内角和等于180”,能发现“直角三角形的两个锐角互余”;
3、按角将三角形分成三类.
教学重点:
1、角平分线的概念;
2、三角形的中线.
教学难点:
会角平分线的概念.即判别哪两个角相等.
教学过程:
一、探索练习:
1.任意画一个三角形,设法画出它的一个内角的平分线.
2.你能通过折纸的方法得到它吗?
学生可以用量角器来量出这个角的大小的方法画出这个角的平分线.也可以用折纸的方法得到角平分线.
在学生得到这条角平分线后,教师应该引导学生观察这三条线之间的位置关系,并且在交流的基础上得到结论:
三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线.简称三角形的角平分线.
教师应该规范学生的书面表达,给出下面的示范书写:
如图:∵AD是三角形ABC的角平分线,
∴∠BAD=∠CAD=∠BAC,
或:∠BAC=2∠BAD=2∠CAD.
请你画出△ABC(锐角三角形)的所有角平分线,并且观察这些角平分线有什么规律?对于钝角三角形呢?直角三角形呢?它们的角平分线也有这样的规律吗?
一个三角形共有三条角平分线,它们都在三角形内部,而且相交于一点.
例题:△ABC中,∠B=80∠C=40,BO、CO平分∠B、∠C,则∠BOC=______.
活动二:1、任意画一个三角形,设法画出它的.三条中线,它们有怎样的位置关系?小组交流.
2、你能通过折纸的方法得到它吗?
画中线时,学生可以用刻度尺通过测量的方法来得一边的中点.也可以用折纸的方法得到一边的中点.
在学生得到这条中线后,教师应该引导学生观察这当中的线段之间的大小关系,并且在交流的基础上得到结论:
连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线.简称三角形的中线.
教师应该规范学生的书面表达,给出下面的示范书写:
如图:∵AD是三角形ABC的中线,
∴BD=DC=BC,
或:BC=2BD=2DC.
请你画出△ABC(锐角三角形)的所有中线,并且观察这些中线有什么规律?对于钝角三角形呢?直角三角形呢?它们的中线也有这样的规律吗?
学生通过自己的动手操作,观察.应该比较快得到下面的结论:
一个三角形共有三条中线,它们都在三角形内部,而且相交于一点.
已知,AD是BC边上的中线,AB=5cm,AD=4cm,▲ABD的周长是12cm,求BC的长.
巩固练习:
1、AD是△ABC的角平分线(D在BC所在直线上),那么∠BAD=_______=______.
△ABC的中线(E在BC所在直线上),那么BE=___________=_______BC.
2、在△ABC中,∠BAC=60,∠B=45,AD是△ABC的一条角平分线,求∠ADB的度数.
小结:(1)三角形的角平分线的定义;
(2)三角形的中线定义.
(3)三角形的角平分线、中线是线段.
作业:
课本P125习题5.3:1、2.
教学后记:
学生基本上能明白三角形的角平分线、中线的定义,但是在较复杂一点的题目中也会出现以下错误:
(1)已知AD是三角形ABC的角平分线,则∠B=∠C;
(2)有部分生会把三角形的角平分线和三角形的中线混淆.
如:AD是三角形ABC的角平分线,则BD=CD.
对角平分线、三角形的中线的运用有待真正的提高.
【小学三角形教案】相关文章:
小学三角形教案08-20
认识三角形教案08-01
三角形的认识教案05-20
全等三角形的教案08-11
三角形小班教案07-15
《三角形的分类》教案10-23
三角形的性质教案08-06
《三角形的认识》教案04-16
《三角形的面积》教案10-19
认识三角形教案07-30