分数的基本性质教案
作为一名人民教师,就不得不需要编写教案,借助教案可以让教学工作更科学化。那么优秀的教案是什么样的呢?下面是小编为大家整理的分数的基本性质教案,欢迎阅读,希望大家能够喜欢。
分数的基本性质教案 篇1
教学目的
1.使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题.
2.培养学生观察、分析、思考和抽象、概括的能力.
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.
教学过程
一、谈话.
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.
二、导入新课.
(一)教学例1.
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.
1.分别出示每一个圆,让学生说出表示阴影部分的分数.
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4 幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4 幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).
4.观察、分析相等的分数之间有什么关系?
(1)观察 转化成 , 的分子、分母发生了什么变化?
( 的分子、分母都乘上了2或 的分子、分母都扩大了 2倍.)
(2)观察
(二)教学例2.
出示例2:比较 的大小.
1.出示图:我们在三条同样的数轴上分别表示这三个分数.
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.
(1)这三个分数从形式上看不同,但是它们实质上又都相等.
(教师板书: )
(2)你们分析一下, 、 各用什么样的方法就都可以转化成 了呢?
三、抽象概括出分数的基本性质.
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
(板书:“基本性质”)
4.谁再说一遍什么叫分数的基本性质?
教师板书字母公式:
四、应用分数基本性质解决实际问题.
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.
2.分数基本性质的应用:
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解
决一些有关分数的问题.
3.教学例3.
例3 把 和 化成分母是12而大小不变的分数.
板书:
教师提问:
(1) ?为什么?依据什么道理?
( ,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以, )
(2)这个“6”是怎么想出来的`?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)
(3) ?为什么?依据的什么道理?
( ,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以, )
(4)这个“2”是怎么想出来的?
(这样想:24÷?=12,24÷“2”=12.也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)
五、课堂练习.
1.把下面各分数化成分母是60,而大小不变的分数.
2.把下面的分数化成分子是1,而大小不变的分数.
3.在( )里填上适当的数.
4. 的分子增加2,要使分数的大小不变,分母应该增加几?你是怎样想的?
5.请同学们想出与 相等的分数.
规律:这个分数的值是 ,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个.
六、课堂总结.
今天这节课我们学习了什么知识?懂得了一个什么道理?分数的基本性质是什么?这是学习分数四则运算的基础,一定要掌握好.
七、课后作业.
1.指出下面每组中的两个分数是相等的还是不相等的.
2.在下面的括号里填上适当的数.
分数的基本性质教案 篇2
教学内容:
人教版数学五年级下册第57页例1、例2。
教学目标:
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
(3)培养学生的观察、比较、归纳、总结概括能力
(4)鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质
教学重点:探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:自主探究、归纳概括分数的基本性质。
教学过程:
一、情境设置,引入新课:
唐僧师徒四人去西天取经,有一天路过女儿国,国王给了他们师徒四人一块饼。唐僧说:“咱们把这块饼平均分成四块,每人一块吧。”猪八戒听了,急忙说:“一块太少了,师傅我吃得多,就多分给我一块吧”。唐僧看了看贪吃的徒弟,不知道怎么办好。孙悟空说:“师傅,那就把这块饼平均分成八块给他两块吧。”唐僧笑了笑说,“你这个猴子,真狡猾。”
问1:从上面的故事中,你能用学过的知识,表示出他们每人吃了多少饼吗?
问2:猪八戒有没有多吃到饼了?
二、探究新知,解决问题
1、师:到底谁的猜想是正确的呢?
(1)让我们一起来看一个小视频(播放微课),并回答问题:谁吃得多?也就是谁大?为什么?
(2)学生汇报
(3)得出结论:1/4=2/8
2、初步概括分数基本性质
(1)师:这两个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?
提示:从左到右观察,这两个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢?
师板书:分数的分子分母同时乘相同的数,
分数的大小不变。
(2)师:谁来举一个例子。师板书,并问:同时乘以了几?
(3)师:这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往左观察,你们又会发现什么呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。
师板书:或者除以
3、理解运用分数基本性质
(1)师:根据分数的这一变化规律,你认为这个式子对吗?为什么?(课件出示下列式子)
学生回答,并说明理由。
(2)师:分数的分子、分母都乘以或除以相同的'数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?我们一起来看这样一个分数。
(课件出示式子:)这个式子成立吗?
生:因为在分数当中分母乘就等于0,分母不能为0。
师:我再说一个式子,我不乘以0了,我除以0,这个式子成立吗?
生:不成立,因为除数不能为0
(3)小结:对,因为分数的分子、分母都乘0,则分数成为,在分数里分母不能为0,所以分数的分子、分母不能同时乘0,又因为在除法里0不能作除数,所以分数的分子、分母也不能同时除以0。所以这两个式子都是不成立的?我们刚才总结的分数的分子分母同时乘或者除以相同的数,要0除外。(师板书0除外)
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数。
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题:分数的基本性质)
师:如果猪八戒学会了分数的基本性质,那傻乎乎的被大师兄捉弄了,那咱们同学们千万不要犯它那样的错误了。下面让我们一起把分数的基本性质边读边记。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。我们一起来看例2.
三、知识运用
1、例2:把2/3和10/24化成分母是12而大小不变的分数。
(1)问:分子分母应怎样变化?变化的依据是什么?
(2)让生独立完成,完成后汇报你是怎样想的?
2.完成课件练习
3、拓展延伸:
你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?
有位老爷爷把一块地分给三个儿子.老大分到了这块地的1/3,老二分到了这块地的2/6.老三分到了这块的3/9.老大、老二觉得自己很吃亏,于是三人就大吵起来.刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵.
四、课堂小结
1、看到同学们也笑起来了,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?
五、板书设计
分数的基本性质
1/4 =2/8
分数的分子分母同时乘相同的数(0除外),
除以
分数的大小不变。
分数的基本性质教案 篇3
第一课时
一教学内容
分数的基本性质
教材第75页的例1,第76页”做一做“的第1题及第77页练习十四的第1一5题。
二教学目标
1.通过教学,使学生归纳概括出分数的基本性质,并能理解分数基本性质,运用分数基本性质解题。
2.培养学生的迁移类推能力、抽象概括能力和观察能力。
3.让学生体会到数学知识间的内在联系,感受学习数学知识的价值。
三重点难点
抽象概括出分数的基本性质。
四教具准备
每人3张同样的正方形或长方形纸片。
五教学过程
(一)导入
1。直接口答下面各题的商,说说是怎样想的?根据什么知识?
120÷20=(12O×3)÷(30×3)=(120÷10)÷(30÷10)=
(二)教学实施
1.教学教材第75页的例1。
让学生拿3张同样的正方形或长方形纸片,分别对折一次、两次、四次,平均分成2份、4份、8份,涂上颜色,分别用分数表示涂色部分。
提示:你发现了什么?板书:==为什么相等?2.引导学生观察它们的分子、分母各是按照什么规律变化的?学生以小组为单位讨论,请代表发言。
随着学生汇报,老师板书。
(从左往右观察)(从右往左观蔡)
3.提问:你还能举出这样的例子吗?
学生举例,老师分别板书出来。
4.观察以上例子,你得出什么结论?(学生讨论,汇报。)板书:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
提问:为什么0要除外?(学生讨论)
小结:分子和分母如果都乘上0,则分数成为,而分数的分母不能为O;又因为0不能作除数,所以分数的分子和分母也不能同时除以O。
5.提问:你能不能根据分数与除法的关系和商不变的`性质来说明分数的基本性质?
6.完成教材第76页”做一做“的第1题。说一说自己是怎样想的?学生根据分数的基本性质思考并说明思路。
7.完成教材第77页练习十四的第1题。
学生先独立涂色,然后比较大小并说明理由。
8.完成教材第77页练习十四的第2题。学生独立完成,说一说是怎样比较的?可以把化成,也可以把化成,再比较。
9.完成教材第77页练习十四的第3题。
学生两人一组,由一人说一个分数,另一个人说出一个相等的分数。
10.完成教材第77页练习十四的第4题。
引导学生先应用分数的基本性质,判断哪几个分数是相等的,然后在直线上把这个点画出来。
老师启发学生观察,推算出每个分数中分子与分母可以同时除以几,得到一个与原分数相等的分数。
11.完成教材第77页练习十四的第5题。
进行口答练习。
(四)思维训练
1.一个分数的分母不变,分子乘3,这个分数的大小有什么变化吗?如果分子不变,分母除以5呢?
2.在下面的括号里填上适当的数。
9÷15===6÷()=()÷6
(五)课堂小结
通过本节的学习,知道了什么是分数的基本性质,并会应用分数的基本性质解决一些简单的数学问题。
分数的基本性质教案 篇4
教学目标:
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
3、让学生在学习过程中养成互相帮助、团结协作的良好品德。
教学重点:从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:形成对分数基本性质的统一认知
教学准备:纸片、彩笔、各种卡片
教学过程:
一、导入新课。
出示例1种中的四幅图
提问:看图写出哪些分数?你是怎样想的?
学生回答后,教师导入新课。进一步研究分数方面的知识。
二、师生探究。
1、教学例1、
观察一下这个式子,4个分数有什么不同?你知道其中那几个分数是相等吗?
追问:你是怎样知道这几个分数相等的?和它们相等的分数还有没有?
2、教学例2
1、谈话:请同学们拿出课前准备好的一张正方形的'纸,指出:这些正方形纸都一样大。提问:你能先对折,并涂出它的吗?
2、学生折纸。涂色。
交流后,追问:你能通过继续对折,找出和相等的其他分数吗?
3、学生操作。组织交流。
在学生交流时,注意让对折方法不同的学生充分展示,引导发现:只有对折次数相同,平均分的份数就相同,涂色部分就是相等的。
4、引导观察:请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?
学生观察、思考,完成课本上的填空,再在小组内交流。
5、学生交流后,教师集中指导观察。
(1)先从左往右看,是怎样变为与它相等的的?
(分母乘2,分子乘2。)
根据分数的意义,”“表示把单位”1“平均分成2份,取其中的1份,而现在把单位”1“平均分成4份,也就是把原两份中的每一份又平均分成2份,所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]
即原来把单位”1“平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。
(2)由到,分子、分母又是怎样变化的?(把分平均的份数和取的份数都扩大了4倍。)
(3)谁能用一句话说出这两个式子的变化规律?
再从右往左看
是怎样变化成与之相等的的?
又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)
谁能用一句话说出这两个式子的变化规律?
6、综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?
7、这就是今天我们所学的”分数的基本性质“(板书课题,出示”分数的基本性质“)。
8、谈话:你能根据分数的基本性质,再写出一组相等的分数?
引导辨析:所写的分数是否相等?你是怎样想的?
提出要求:根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
三、练习。
1、练一练的第1题。
2、练一练的第2题
3、练习十一第3题
分数的基本性质教案 篇5
教材分析:
《分数的基本性质》是义务教育课程标准实验教材人教版五年级下册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系、整数除法中商不变的规律这些知识为基础的。分数的基本性质是建立在分数大小相等这一概念基础之上的。而两个分数的大小相等,并不意味着两个分数的分子、分母分别相同。分数的基本性质又是约分和通分的基础,而约分和通分则是分数四则混合运算的重要基础,因此,理解分数的基本性质显得尤为重要。
教学目标:
1.知识与能力:经历分数基本性质的建构过程,归纳概括并掌握分数的.基本性质,能运用分数的基本性质解决有关的数学问题。
2.过程与方法:培养学生观察、分析、比较、归纳、概括及动手实践的能力,进一步发展学生的思维。
3.情感、态度与价值观:让学生体会数学来自生活实际的需要,感受数学与生活的联系,激发学生对数学的兴趣。
教学重点:
探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点:
自主探究、归纳概括分数的基本性质。
教具准备:
课件
教学过程:
一、复习导入
1.说出下列各分数的意义,分数单位和它包含有几个这样的分数单位。
2.商不变规律。
(1)计算:120÷30 12÷3 40÷5 400÷50
(2)说一说,你有什么发现?
(被除数和除数都缩小或扩大相同的倍数,商不变。)
二、新课讲授
1.教学例1。
(1)动手操作:拿3张同样的正方形纸片,分别对折一次,两次,三次,平均分成2份,4份,8份,涂上颜色,分别用分数表示涂色部分。
提示:你发现了什么?板书:(为什么相等?)
(2)小组交流:观察它们的分子,分母各是按照什么规律变化的?
(3)汇报:随着学生汇报,老师板书。
(4)观察以上例子,你能得出什么结论?
分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
提问:为什么0要除外?
小结:分子和分母如果都乘上0,则分数成为,而分数的分母不能为0;又因为0不能作除数,所以分数的分子和分母也不能同时除以0。
(5)提问:你能不能根据分数与除法的关系和商不变性质来说明分数的基本性质?
2.教学例2。出示题目
独立完成,集体订正,订正时说一说根据什么。
三、巩固练习
1.练习十四习题
第1题:按要求涂色,并比较它们的大小。
第2题:比较每组中的分数大小是否相等。
第3题:同位合作完成。
2.作业:练习十四4、5题,选作13题。
四、全课总结
这节课我们学了哪些知识?分数的基本性质是怎样的?
板书设计:
分数的基本性质
分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的基本性质教案 篇6
教学内容:教材第78~79页分数的基本性质和数的改写方法、“练一练”,练习十五第11—18题。
教学要求:
1.使学生加深理解分数的基本性质,认识分数与小数基本性质的联系,能比较熟练地应用分数的基本性质进行通分和约分。
2.使学生进一步掌握小数、分数和百分数互化的方法,能比较熟练地进行互化。
教学过程:
一、揭示课题
1.学生练习。
(1)下面各数有什么关系?为什么,0.3 O.30 O.300
学生回答后板书:0.3=O.30=O.300。指出;在小数的末尾添上。或去掉O,小数的大小不变。这是小数的性质。
(2)提问:分数与除法有什么关系?
谁来说一说除法的商不变规律是什么?
2.引入课题。
在除法里有商不变的规律,根据分数与除法的关系,在分数里也有类似的规律,这就是我们今天先要复习的分数的基本性质。(板书:分数的基本性质)
二、复习分数的基本性质
1.说明分数的基本性质。
提问;你能根据除法商不变的规律,说出分数的基本性质吗?(出示分数的基本性质)谁来用分数举例说出分数的基本性质?(根据回答板书分数等式)大家来把第78页上的例子填写完整。填写后集体校对。说明:这个例子也表示分数的分子、分母都乘或除以。以外的数,大小不变。
2.学生练习。
(1)做“练一练”第1题。
让学生填在课本上,然后集体校对。说明:根据分数的基本性质,可以把一个分数写成和原来分子、分母不同,但大小不变的分数。
(2)做练习十五第12题。
小黑板出示,指名口答,老师板书。
3.认识分数与小数性质的联系。
提问:大家思考一下,这里的O.3=O.30=0.300能不能改写成用分数表示?大家仔细观察,上面等式表示什么,下面等式表示什么,改写后得出的'这两个等式说明什么?为什么小数的性质和分数的基本性质会是一样的?指出:从上一节课我们知道,小数实际上是分母是10、100、1000……的分数的另一种表示形式,所以小数的性质和分数的基本性质是一致的。小数末尾添上O,实际上就相当于分子、分母同时乘l0,或100、1000……。这样的数,所以小数大小不变;小数末尾去掉O,实际上就相当于分子、分母同时除以10,或100、1000……这样的数,所以小数大小也不变。
4.复习通分和约分。
(1)提问:分数的基本性质有哪些应用?
(2)做“练一练”第2题。
指名两人板演,其余学生做在练习本上。集体订正。提问,通分和约分有什么联系?(都应用分数的基本性质)通分和约分有什么不同?
三、复习小数、分数和百分数互化
1.说明:我们已经复习了分数的基本性质及它的应用,接下来再复习小数、分数和百分数的改写。(板书:数的改写)
2.整理方法.
提问:小数和分数之间怎样互化?(照第79页图解板书)你能举出例子吗?(板书所举的例子)你明白为什么这样改写吗?(说明理由)小数和百分数之间怎样互化?(照图解板书)谁来举出小数和百分数互化的例子?(板书例子)说明:因为两位小数就是百分之几,所以两位小数的部分就是百分之几分子里的整数部分,而百分之几用小数表示,去掉百分号,就要把原来分子部分缩小100倍。分数和百分数怎样互化,(照图解板书)谁来举例说明?(板书例子)为什么分数和百分数要这样改写,3.做“练一练”第3题。
让学生做在课本上。小黑板出示,指名口答,老师板书。
4.学生练习。
(1)做练习十五第13题。
指名学生口答。
(2)提问:分数都能化成有限小数吗?怎样的分数可以化成有限小数?指出:根据小数、分数和百分数之间的联系,小数、分数和百分数之间是可以互化的。我们可以通过数的互化解决不同数的大小比较。
(3)思考练习十五第15题。
指名说一说每道题可以怎样比较大小。
四、综合练习
1.让学生把练习十五第16题做在课本上。
小黑板出示,学生口答,老师板书。
2.做练习十五第17题。
提问:你估计一下,摸出红铅笔的次数大约是多少?为什么?根据你的估计算一算,摸出红铅笔的次数大约占总次数的几分之几?还可以怎样想到大约占总次数的 ?
五、课堂小结
1.这节课复习了哪些内容?你有哪些收获?
2.让学生说一说常用数据的结果。
六、布置作业
课堂作业:练习十五第14、15题。
家庭作业:练习十五第18题。
分数的基本性质教案 篇7
教学目标
1、进一步理解通分的意义,
2、掌握通分的方法。能熟练的把异分母分数化成与它们相等的同分母分数。
3、能灵活的运用通分的方法进行分数的.大小比较。
教学重难点:运用通分的方法进行分数大小比较
教学准备:分数卡片
一、回顾
1、什么是通分?怎样通分?
2、我们可以在什么时候应用通分?
3、互动:相互出题练习相互交流(3分钟)
二、教学例5
出示例题:小芳和小明看一本同样的故事书。
学生提出问题。
分析解答。
师:谁看的页数多?
这个问题实质是什么?
生:比较两个分数的大小。
师:小组研究,比较两个分数的大小。
方法一:画图比较
方法二:通分比较
转化成同分母的分数
方法三:化成小数再比较
学生汇报,分类领悟比较的方法。
注意方法的规范。
你还有什么别的比较方法吗?
:通分的方法在比较分数大小中的运用
三、巩固练习
1.先通分,再比较下面各组分数的大小66页练一练
2、练习十二第五题
先明确题目的要求有两个。
4、自由练习
分小组编拟交换练习
四、全课
五、课堂作业:第7题,第8题
分数的基本性质教案 篇8
1、分数的基本性质-苏教版五年级下册数学教案
第1课时
分数的基本性质
教学内容:教科书第60~61页,例
1、例
2、练一练,练习十一第1~3题。教学目标:
1、使学生经历探索分数基本性质的过程,初步理解分数的基本性质。
2、使学生能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3、使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象,概括的能力,体现数学学习的乐趣。教学重点:让学生在探索中理解分数的基本性质。教学重点:在探索分数基本性质的过程中理解分数的基本性质。
教学难点:在探索分数基本性质的过程中,综合、抽象出分数的基本性质。教学准备:教学光盘,正方形纸。教学过程:
一、导入新课
1、我们已经学习了分数的有关知识,这节课在已经掌握的.知识基础上继续学习。
2、出示例1图。你能看图写出哪些分数?你是怎样想的?说出自己的想法。
二、教学新课
(一)教学例1。
(1)这四个分数,为什么分母不同呢?前两个分数的分子为什么都是1?(2)你知道其中哪几个分数是相等的吗?你是怎么知道这三个分数相等的?(3)演示验证。
(二)教学例2。
(1)取出正方形纸,先对折,用涂色部分表示它的1/2。学生操作活动。
(2)你能通过继续对折,找出和1/2相等的其它分数吗?
学生操作活动。交流汇报。对折后,正方形被平均分成了多少份?涂色部分有多少份,可以用什么分数表示?(板书)
(3)得到的这些分数与1/2相等吗?能不能再写一些与1/2相等的数?
(4)观察每个等式中的两个分数,它们的分子、分母是怎样变化的?观察、思考,试着完成填空。在小组中说说你有什么发现?
(5)小结。分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。板书课题:分数的基本性质。
(6)讨论分数基本性质中你认为哪些词语比较关键?为什么要“0”除外呢?
(7)你能根据分数的基本性质,写出一组相等的分数吗?学生尝试完成。
(三)比较分数基本性质与除法中商不变性质。
根据分数和除法的关系,你能用整数除法中商不变的规律来说明分数的基本性质吗?在小组中说一说。
三、巩固练习
1、完成练一练。
(1)完成第1题。
涂色表示已知分数,再在右图中涂出相等部分。说说怎么想的?
(2)完成第2题。
独立完成,汇报想法。5到15乘了几?1怎么办?先看哪个数?(分子9)9到1除以几?分母18怎么办?
2、完成练习十一(1-3)第1题。
平均分成了多少份?表示多少份?涂色表示。涂色部分还表示几分之几?第2题。
独立完成,交流想法。第3题
学生独立完成填空,集体订正。
四、布置作业:
《补充练习》第44页第1、2、3、4、5题。拓展题:
五、总结
今天有了什么收获?你认为学习了分数的基本性质有什么作用?在什么时候可能会用到它?
在巩固练习部分增加以下练习:
(1)把下面各分数化成分母是6而大小不变的分数。
1/2
8/24
10/30
(2)把下面各分数化成分子是1而大小不变的分数。
4/16
5/15
7/35
(3)把下面的数按要求填到指定的括号里。
60/84
4/6
14/21
20/28
15/21
30/45
15/35
10/12
与5/7相等的分数();与2/3相等的分数()。
分数的基本性质教案 篇9
分数的基本性质
教学目标:
知识与技能:
初步理解分数的基本性质,会应用分数的基本性质进行分数的改写。
过程与方法:
结合趣味故事和填数活动,经历认识分数的基本性质的过程。
情感态度与价值观:
积极参与数学活动,发展学生数学思维,感受分数基本性质的合理性和确定性。
教学重点:
会应用分数的基本性质进行分数的改写。
教学难点:
理解分数的基本性质。
教学过程:
一、故事引入
同学们,你们爱看《西游记》吗?唐僧、孙悟空、猪八戒、沙和尚在去西天取经的过程中,路过了很多地方,虽然经历了很多磨难,但是也得到了很多人的帮助。下面我们来欣赏一下《西游记》的动画片。
二、探求新知
1、课件出示配乐故事和相应画面。
唐僧师徒四人去西天取经,有一天,路过女儿国,国王给了他们师徒四人一块饼。唐僧说:"咱们把这块饼平均分成四块,每人一块吧。"猪八戒听见了,急忙说:"一块太少了,师傅,我吃得多,就多分给我一块吧。"唐僧看了看这贪吃的徒弟,不知道怎么办好,孙悟空说:"师傅,那就把这块饼平均分成八块,给他二块吧。"唐僧笑了笑说:"你这个猴子,真狡猾。"
[上课时先看一段故事,学生一定非常乐意,并会立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。]
师:从上面的故事中,你了解到那些数学信息,想到了什么问题?
生1:唐僧要把饼平均分成四块,每人一块,很公平。
生2:孙悟空说把饼平均分成八块,给猪八戒两块。
生3:我知道猪八戒没有多吃到饼。
师:你们同意他的说法吗?让学生讨论:八戒到底有没有多吃到饼。
引导学生小组合作想办法证实自己的想法。
[分组讨论问题充分体现了学生合作学习的良好氛围,激发了他们的求知欲,学生在激烈的讨论中思维能力得到进一步的提升。]
汇报:
生:我们组用画图的方法证明猪八戒没有多吃到饼。
展示了本小组的图
师:非常好,清楚明白,还有其他的方法吗?
学生们都认同他们组的做法
师:想一想我们上节课学得分数与除法的`关系,能不能把分数转化成除法进行证明?
生:14=1÷4,1和4都同时扩大2倍,变成2÷8,商不变。2÷8写成分数形式是。
〔师进一步引导,培养学生知识的迁移能力。〕
最后得出结论:等于,八戒没有多吃到饼。
2、看图填数让学生用分数表示图中的涂色部分,填完后汇报。
师:观察上面的图和分数,说一说你发现了什么?
生:这几个分数都相等。
3、议一议
让学生仔细观察,看一看分数的分子和分母怎样变化,分数的大小不变?和同桌讨论一下。
学生试着归纳:分数的分子和分母都乘或除以相同的数,分数的大小不变。
师:"根据同学们的回答,老师也进行了总结 。"
师出示分数的基本性质贴在黑板上,指名学生读,学生自由读。
师告诉学生这就是分数的基本性质。
对照分数基本性质,让学生说说我们自己总结的比分数的基本性质少了什么?
生:我发现少了"零除外"
师:想一想:为什么性质中要规定"零除外"?
生:分数的分母不能为零,所以分母不能乘或除以零。
[新知识力求让学生主动探索,逐步获取。"孙悟空分饼"和看图填数得出的三组相等的分数为学生探索新知提供了材料,议一议是学生探求新知、独立思考的指南,引导学生逐步展开的充分的讨论,帮助学生一步步得出结论。]
三、试一试
1、把34化成分母是12而大小不变的分数。
思考:要把34化成分母是12而大小不变的分数,分子、分母怎么变化?变化的依据是什么?
2、讨论:猴子运用什么规律来分饼的?如果猪八戒要三块,猴子怎么分才公平呢?如果要四块呢?
[总结出分数的基本性质后,再让学生说出孙悟空的想法,并回答如果猪八戒要三块饼、四块饼,孙悟空怎么办?既前后照应,又让学生在帮孙悟空想办法的过程中,运用新知解决实际问题。]
四、多层练习,巩固深化
以游戏的方式完成,教师说分母或分子,学生说出相应的分子或分母,使组成的分数与给定的分数相等。
[练习设计由易到难,由浅入深,既巩固新知,又发展思维。]
分数的基本性质教案 篇10
教学目标
进一步理解掌握分数基本性质在通分中的运用,能熟练而灵活地运用通分的方法进行分数的大小比较。
教学重难点
旋择适当的方法进行分数的.大小比较。
教学准备 分数卡片
教学过程
一、基本练习
学生自由练习
互相说一个分数,再通分。
学生汇报 纠错
二、集中练习
教师出示:比较下面各组分数的大小
1、 和 和
2、 和 和
请同学评讲
课本练习68页第九题 把下面分数填入合适的圈内。
比 大的分数有:
比 小的分数有:
师生讨论:怎样快速的分类?
自由说一个比 的分数。并说出理由。
三、解决实际问题的练习
小明:我10步走了6米,
小红:我7步走了4米。
问:谁的平均步长长一些?
小组讨论,明确解题步骤。
小明:6÷10= =
小红:4÷7=
因为 = = >
所以 >
答:小明的平均步长长一些。
四、拓展练习:
下面3名小棋手某一天训练的成绩统计
总盘数赢的盘数赢的盘数占总数的几分之几
张129
李107
赵138
谁的成绩最好?
小组合作集体解决题型。
三个分数的大小比较,怎样比较较好?
五、课堂作业
68页第11题
分数的基本性质教案 篇11
教学目标
1、进一步理解分数的基本性质;并能初步运用分数的基本性质进行约分。
2、掌握约分的含义和约分的一般方法,学会约分的书写形式,认识最简分数。
3、在知识的运用中体验数学价值。
教学准备:分数卡片图片课件
一、复习
1、说一说:分数的基本性质
2、想一想:学习分数的基本性质有什么作用?
3、写一写:请你写出和相等的分数
在学生交流反馈后,引导学生对相等的.分数做比较:分子分母都比原来大的,分子分母都比原来小的。
二、教学例3
出示例3:你能写出和相等,而分子、分母都比较小的分数吗?
学生尝试自主思考。
汇报:你是怎样想的?先在小组里交流。
教学约分的含义。
师:把一个分数化成同它相等,但分子分母都比较小的分数,叫做约分。
教师指出:约分要注意两点,一是约分后得到的分数要与原来的分数相等;二是约分后得到的分数的分子分母都要比原来的分数小。
教学约分的书写形式
师:分子分母都要同时除以几呢?
生:分子分母同时除以2、3或者6。
方法一:先分别除以12和18的公因数2、再分别除以6和9的公因数3。
方法二:分别除以12和18的最大公因数6。
规范:画斜线的方向和商的书写位置
提示:熟练以后,约分可以直接写成=
师:约分到什么时候就不要继续除呢?
生:除到分子、分母只有公因数1为止。
教学最简分数。
像的分子分母只有公因数1,这样的分数叫做最简分数。约分时,通常要约成最简分数。
三、课堂练习
同步练习1:说出一个最简分数
同步练习2:把约成最简分数。
1、指出下面的哪些分数是最简分数。
(练一练62页第一题)
2、分别说出下面各分数的分子分母有没有公因数2、3、5。
3、分组练习(指名板演)
练一练第二题
练习十一第5题
四、课堂总结
(略)
五、课堂作业:
练习十一第7题
分数的基本性质教案 篇12
教学目标
1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。
2、培养学生的观察能力、动手操作能力和分析概括能力等。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:形成对分数基本性质的统一认知
教学准备:圆形纸片、彩笔、各种卡片
一、导入新课
出示例1种中的四幅图
提问:看图写出哪些分数?你是怎样想的?
学生回答后,教师导入新课。进一步研究分数方面的知识。
二、发现概括
1、教学例1、
观察一下这个式子,4个分数有什么不同?你知道其中那几个分数是相等吗?板书:==
追问:你是怎样知道这几个分数相等的?和它们相等的分数还有没有?
2、教学例2
谈话:请同学们拿出课前准备好的一张正方形的纸,指出:这些正方形纸都一样大。提问:你能先对折,并涂出它的吗?
学生折纸。涂色。
交流后,追问:你能通过继续对折,找出和相等的其他分数吗?
学生操作。组织交流。
在学生交流时,注意让对折方法不同的学生充分展示,引导发现:只有
对折次数相同,平均分的份数就相同,涂色部分就是相等的。
三、沟通联系
引导观察:请大家观察每个等式中的两个分数,它们的分子。分母是怎样变化的?
学生观察、思考,完成课本上的填空,再在小组内交流。
学生交流后,教师集中指导观察。
先从左往右看,是怎样变为与它相等的的?
(分母乘2,分子乘2。)
根据分数的意义,”“表示把单位”1“平均分成2份,取其中的1份,而现在把单位”1“平均分成4份,也就是把原两份中的每一份又平均分成2份,所以现在平均分成了2×2=4(份),现在要得跟原来的同样多,必须取几份?[1×2=2(份)]==
即原来把单位”1“平均分成2份,取1份,现在把平均分的份数和取的份数都扩大2倍,就得到。与的大小相等,分数值没变。
(2)由到,分子、分母又是怎样变化的?(把平均分的份数和取的份数都扩大了4倍。)==
(3)谁能用一句话说出这两个式子的变化规律?
再从右往左看
是怎样变化成与之相等的的?==
又是怎样变成的?(把平均分的份数和取的份数都缩小了4倍。)==
谁能用一句话说出这两个式子的变化规律?
综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗?(不能同时乘或除以0)为什么?
这就是今天我们所学的”分数的基本性质“(板书课题,出示”分数的基本性质“)。
谈话:你能根据分数的基本性质,再写出一组相等的分数?
引导辨析:所写的分数是否相等?你是怎样想的?
提出要求:根据分数与除法的关系,你能用商不变的规律来说明分数的基本性质吗?
四、巩固练习
练一练的第1题。
练一练的第2题
啄木鸟诊所。(请说出理由)
分数的`分子和分母同时乘或者除以相同的数,分数的大小不变。()
分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。()
分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。()
小结:从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?
五、课堂总结
这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?
课堂作业
六、练习十一第3题
分数的基本性质教案 篇13
教学目标:使同学进一步熟悉分数的基本性质,能正确地应用分数的基本性质,把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数。
教学重点:应用分数基本性质,把一个分数化成指定分母(或分子)做分母(或分子),而大小不变的分数
教学难点:能正确应用分数基本性质解决有关的问题。
教学课型:新授课
教具准备:课件
教学过程:
一,迁移类推,导入新课
1,口答:什么是分数的`基本性质
2,在下面的括号内填上适当的数。 [课件1]
3/4=( )/8 1/2=( )/10 6/( )=2/7
2/3=( )/18=16/24 12/24=( )/( )
二,探求新知,提高能力
教学P108 。例 2: 把2/3和10/24化成分母是12而大小不变的分数。
提问:A,怎样使2/3的分母变成12
B,根据分数的基本性质,要使分数2/3的大小不变,分子应怎样变化
板书: 2/3=2×4/3×4=8/12
C,怎样使10/24的分母变成12
D,根据分数的基本性质,要使分数10/24的大小不变,分子应怎样变化
板书: 10/24=10÷2/24÷2=5/12
补充例题: 把2和3/7,5/8化成分母是它们的最小公倍数而大小不变的分数。
分析: A,想想,它们的最小公倍数是几
B,2是个整数,怎样化成分数呢 以多少做分母,分子又是多少呢
※ P108 。做一做1,2
三,巩固练习,强化提高
1,P109 。2
2,P109 。4
3,P110 。10
提问:这道题是在什么情况下份数的大小发生变化这个变化有没有规律呢
述:一个分数的分母不变,分子扩大(或缩小)若干倍,分数大小也扩大(或缩小)相同的倍数;假如分子不变,分母扩大(或缩小)若干倍,分数大小反而缩小(或反而扩大)相同的倍数。即:一个分数的分母不变,分子乘以3,这个分数就扩大3倍;假如分子不变,分母除以5,这个分数就扩大5倍。
2,P110 。11
§ 要根据分数和除法关系,把分数的基本性质和除法中商不变的性质联系起来考虑,进行填空。
3,P110 。考虑题
§ 先用5升水桶量出5升水,倒入7升水桶中;再用5升水桶量出5升水,倒满已装入5升的7升水桶,这时5升水桶里剩下3升水;将7升水桶中的水倒掉,把5升水桶中的3升水倒入7升水桶中;再用5升水桶量出5升水,倒满已装3升的7升水桶,剩下的就是1升水。
四,家作
P110 。7,8,9
【分数的基本性质教案】相关文章:
分数的基本性质教案01-20
《分数的基本性质》教案08-13
分数的基本性质的教案02-26
分数的基本性质教案15篇03-21
分数的基本性质说课稿07-26
关于《分数的基本性质》说课稿01-06
《分数的基本性质》教学反思07-02
《分数的基本性质》教学反思07-15
分数的基本性质教案模板集锦6篇09-23
分数的基本性质说课稿15篇01-17