高二数学教案

时间:2023-11-28 13:22:29 教案 我要投稿
  • 相关推荐

高二数学教案

  作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?以下是小编帮大家整理的高二数学教案,仅供参考,希望能够帮助到大家。

高二数学教案

高二数学教案1

  教学目标:

  1.理解平面直角坐标系的意义;掌握在平面直角坐标系中刻画点的位置的方法。

  2.掌握坐标法解决几何问题的步骤;体会坐标系的作用。

  教学重点

  体会直角坐标系的作用。

  教学难点

  能够建立适当的直角坐标系,解决数学问题。

  授课类型:

  新授课

  教学模式:

  启发、诱导发现教学.

  教 具:

  多媒体、实物投影仪

  教学过程:

  一、复习引入:

  情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

  情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景图案,需要缺点不同的画布所在的位置。

  问题1:如何刻画一个几何图形的位置?

  问题2:如何创建坐标系?

  二、学生活动

  学生回顾

  刻画一个几何图形的位置,需要设定一个参照系

  1、数轴 它使直线上任一点P都可以由惟一的实数x确定

  2、平面直角坐标系

  在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的.实数对(x,y)确定。

  3、空间直角坐标系

  在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P都可以由惟一的实数对(x,y,z)确定。

  三、讲解新课:

  1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:

  任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

  2、确定点的位置就是求出这个点在设定的坐标系中的坐标

  四、数学运用

  例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

  变式训练

  如何通过它们到点O的距离以及它们相对于点O的方位来刻画,即用”距离和方向”确定点的位置

  例2 已知B村位于A村的正西方1公里处,原计划经过B村沿着北偏东60的方向设一条地下管线m.但在A村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W周围100米范围划为禁区.试问:埋设地下管线m的计划需要修改吗?

  变式训练

  1一炮弹在某处爆炸,在A处听到爆炸的时间比在B处晚2s,已知A、B两地相距800米,并且此时的声速为340m/s,求曲线的方程

  2在面积为1的中,,建立适当的坐标系,求以M,N为焦点并过点P的椭圆方程

  例3 已知Q(a,b),分别按下列条件求出P 的坐标

  (1)P是点Q 关于点M(m,n)的对称点

  (2)P是点Q 关于直线l:x-y+4=0的对称点(Q不在直线1上)

  变式训练

  用两种以上的方法证明:三角形的三条高线交于一点。

  思考

  通过平面变换可以把曲线变为中心在原点的单位圆,请求出该复合变换?

  五、小 结:本节课学习了以下内容:

  1.平面直角坐标系的意义。

  2. 利用平面直角坐标系解决相应的数学问题。

  六、课后作业:

高二数学教案2

  一、教学目标:

  1、知识与技能目标

  ①理解循环结构,能识别和理解简单的框图的功能。

  ②能运用循环结构设计程序框图解决简单的问题。

  2、过程与方法目标

  通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

  3、情感、态度与价值观目标

  通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。三、教法分析

  二、教学重点、难点

  重点:理解循环结构,能识别和画出简单的循环结构框图,

  难点:循环结构中循环条件和循环体的确定。

  三、教法、学法

  本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。运用多媒体,投影仪辅助。倡导“自主、合作、探究”的学习方式。

  四、 教学过程:

  (一)创设情境,温故求新

  引例:写出求 的值的一个算法,并用框图表示你的算法。

  此例由学生动手完成,投影展示学生的做法,师生共同点评。鼓励学生一题多解——求创。

  设计引例的目的是复习顺序结构,提出递推求和的方法,导入新课。此环节旨在提升学生的求知欲、探索欲,使学生保持良好、积极的情感体验。

  (二)讲授新课

  1、循序渐进,理解知识

  【1】选择“累加器”作为载体,借助“累加器”使学生经历把“递推求和”转化为“循环求和”的过程,同时经历初始化变量,确定循环体,设置循环终止条件3个构造循环结构的关键步骤。

  (1)将“递推求和”转化为“循环求和”的缘由及转化的方法和途径

  引例“求 的值”这个问题的自然求和过程可以表示为:

  用递推公式表示为:

  直接利用这个递推公式构造算法在步骤 中使用了 共100个变量,计算机执行这样的算法时需要占用较大的内存。为了节省变量,充分体现计算机能以极快的速度进行重复计算的优势,需要从上述递推求和的步骤 中提取出共同的结构,即第n步的结果=第(n-1)步的结果+n。若引进一个变量 来表示每一步的计算结果,则第n步可以表示为赋值过程 。

  (2)“ ”的含义

  利用多媒体动画展示计算机中累加器的工作原理,借助形象直观对知识点进行强调说明① 的作用是将赋值号右边表达式 的值赋给赋值号左边的变量 。

  ②赋值号“=”右边的变量“ ”表示前一步累加所得的和,赋值号“=”左边的“ ”表示该步累加所得的和,含义不同。

  ③赋值号“=”与数学中的等号意义不同。 在数学中是不成立的。

  借助“累加器”既突破了难点,同时也使学生理解了 中 的变化和 的含义。

  (3)初始化变量,设置循环终止条件

  由 的'初始值为0, 的值由1增加到100,可以初始化循环变量和设置循环终止条件。

  【2】循环结构的概念

  根据指定条件决定是否重复执行一条或多条指令的控制结构称为循环结构。

  教师学生一起共同完成引例的框图表示,并由此引出本节课的重点知识循环结构的概念。这样讲解既突出了重点又突破了难点,同时使学生体会了问题的抽象过程和算法的构建过程。还体现了我们研究问题常用的“由特殊到一般”的思维方式。

  2、类比探究,掌握知识

  例1:改造引例的程序框图表示①求 的值

  ②求 的值

  ③求 的值

  ④求 的值

  此例可由学生独立思考、回答,师生共同点评完成。

  通过对引例框图的反复改造逐步帮助学生深入理解循环结构,体会用循环结构表达算法,关键要做好三点:①确定循环变量和初始值②确定循环体③确定循环终止条件。

高二数学教案3

  课题:2。1曲线与方程

  课时:01

  课型:新授课

  一、教学目标

  (一)知识教学点

  使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法。

  (二)能力训练点

  通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力。

  (三)学科渗透点

  通过对求轨迹方程的常用技巧与方法的介绍,使学生掌握常用动点的轨迹,为学习物理等学科打下扎实的基础。

  二、教材分析

  1、重点:求动点的轨迹方程的常用技巧与方法。

  (解决办法:对每种方法用例题加以说明,使学生掌握这种方法。)

  2、难点:作相关点法求动点的轨迹方法。

  (解决办法:先使学生了解相关点法的思路,再用例题进行讲解。)

  教具准备:与教材内容相关的资料。

  教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神。

  三、教学过程

  (一)复习引入

  大家知道,平面解析几何研究的主要问题是:

  (1)根据已知条件,求出表示平面曲线的方程;

  (2)通过方程,研究平面曲线的性质。

  我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析。

  (二)几种常见求轨迹方程的方法

  1、直接法

  由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法。

  例1(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;

  (2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹。

  对(1)分析:

  动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0。

  解:设动点P(x,y),则有|OP|=2R或|OP|=0。

  即x2+y2=4R2或x2+y2=0。

  故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0。

  对(2)分析:

  题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数。由学生演板完成,解答为:

  设弦的中点为M(x,y),连结OM,则OM⊥AM。∵kOM·kAM=—1,

  其轨迹是以OA为直径的.圆在圆O内的一段弧(不含端点)。

  2、定义法

  利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法。这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。

  直平分线l交半径OQ于点P(见图2-45),当Q点在圆周上运动时,求点P的轨迹方程。

  分析:

  ∵点P在AQ的垂直平分线上,∴|PQ|=|PA|。

  又P在半径OQ上。∴|PO|+|PQ|=R,即|PO|+|PA|=R。

  故P点到两定点距离之和是定值,可用椭圆定义

  写出P点的轨迹方程。

  解:连接PA ∵l⊥PQ,∴|PA|=|PQ|。

  又P在半径OQ上。∴|PO|+|PQ|=2。

  由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆。

  3、相关点法

  若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程。这种方法称为相关点法(或代换法)。

  例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程。

  分析:

  P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系。

  解:设点P(x,y),且设点B(x0,y0)

  ∵BP∶PA=1∶2,且P为线段AB的内分点。

  4、待定系数法

  求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求。

  例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲

  曲线方程。

  分析:

  因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方

  ax2—4b2x+a2b2=0

  ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2—4b2x+a2b2=0应有等根。

  ∴△=16b4—4a4b2=0,即a2=2b。

  (以下由学生完成)

  由弦长公式得:

  即a2b2=4b2—a2。

  (三)巩固练习

  用十多分钟时间作一个小测验,检查一下教学效果。练习题用一小黑板给出。

  1、△ABC一边的两个端点是B(0,6)和C(0,—6),另两边斜率的

  2、点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是1∶2,求点P的轨迹方程,并说明轨迹是什么图形?

  3、求抛物线y2=2px(p>0)上各点与焦点连线的中点的轨迹方程。

  答案:

  义法)

  由中点坐标公式得:

  (四)、教学反思

  求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍。

  四、布置作业

  1、两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程。

  2、动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹。

  3、已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程。

  作业答案:

  1、以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4。

  2、∵|PF2|—|PF|=2,且|F1F2|∴P点只能在x轴上且x<1,轨迹是一条射线。

高二数学教案4

  一、教学目标

  1、把握菱形的判定。

  2、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

  3、通过教具的演示培养学生的学习爱好。

  4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

  二、教法设计

  观察分析讨论相结合的方法

  三、重点·难点·疑点及解决办法

  1、教学重点:菱形的判定方法。

  2、教学难点:菱形判定方法的综合应用。

  四、课时安排

  1课时

  五、教具学具预备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤

  复习提问

  1、叙述菱形的定义与性质。

  2、菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离?

  引入新课

  师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

  生答:定义法。

  此外还有别的两种判定方法,下面就来学习这两种方法。

  讲解新课

  菱形判定定理1:四边都相等的四边形是菱形。

  菱形判定定理2:对角钱互相垂直的平行四边形是菱形。图1

  分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。

  分析判定2:

  师问:本定理有几个条件?

  生答:两个。

  师问:哪两个?

  生答:(1)是平行四边形(2)两条对角线互相垂直。

  师问:再需要什么条件可证该平行四边形是菱形?

  生答:再证两邻边相等。

  (由学生口述证实)

  证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗?为什么?

  可画出图,显然对角线,但都不是菱形。

  菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

  注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的`题没条件都包含有平行四边形的判定条件。

  例4已知:的对角钱的垂直平分线与边、分别交于、,如图。

  求证:四边形是菱形(按教材讲解)。

  总结、扩展

  1、小结:

  (1)归纳判定菱形的四种常用方法。

  (2)说明矩形、菱形之间的区别与联系。

  2、思考题:已知:如图4△中,平分,交于。

  求证:四边形为菱形。

  八、布置作业

  九、板书设计

  十、随堂练习

  教材P153中1、2、3

高二数学教案5

  教学目的:

  1、掌握掌握平面与平面间距离的概念,并能求出它们的距离

  2、弄清平行平面之间的距离的定义;

  教学重点:平行平面的距离的求法教学难点:平行平面的距离的求法

  教学过程:

  一、复习引入:

  1、点到平面的距离:已知点是平面外的任意一点,过点作,垂足为,则唯一,则是点到平面的距离即:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离(转化为点到点的距离)结论:连结平面外一点与内一点所得的线段中,垂线段最短

  2、直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的`距离(转化为点面距离)

  二、讲解新课:

  1、两个平行平面的公垂线、公垂线段:

  (1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线

  (2)两个平面的公垂线段:公垂线夹在平行平面间的部分,叫做两个平面的公垂线段

  (3)两个平行平面的公垂线段都相等

  (4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长2、两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离

  三、讲解范例:

  例1如图,已知正三角形的边形为,点D到各顶点的距离都是,求点D到这个三角形所在平面的距离解:设为点D在平面内的射影,延长,交于,∴,∴即是的中心,是边上的垂直平分线,在中,即点D到这个三角形所在平面的距离是。

  四、课堂练习:

  五、课后作业:

高二数学教案6

  一、教学目标设计

  1. 了解利用科学计算免费软件--Scilab软件编写程序来实现算法的基本过程.

  2. 了解并掌握Scilab中的基本语句,如赋值语句、输入输出语句、条件语句、循环语句;能在Scipad窗口中编辑完整的程序,并运行程序.

  3. 通过上机操作和调试,体验从算法设计到实施的过程.

  二、教学重点及难点

  重点: 体会算法的'实现过程,能认识到一个算法可以用很多的语言来实现,Scilab只是其中之一.

  难点:体会编程是一个细致严谨的过程,体会正确完成一个算法并实施所要经历的过程.

  三、教学流程设计

  四、教学过程设计

  (一)几个基本语句和结构

  1、赋值语句(=)

  2、输入语句 输入变量名=input(提示语)

  3、输出语句 print() disp()

  4、条件语句

  5、循环语句

  (二)几个程序设计

  建议:直接在Scilab窗口下编写完整的程序,保存后再运行;如果不能运行或出现逻辑错误

  可打开程序后直接修改,修改后再保存运行,反复调试,直到测试成功.

高二数学教案7

  第1课时算法的概念

  [核心必知]

  1.预习教材,问题导入

  根据以下提纲,预习教材P2~P5,回答下列问题.

  (1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?

  提示:分五步完成:

  第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③

  第二步,解③,得x=b2c1-b1c2a1b2-a2b1.

  第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④

  第四步,解④,得y=a1c2-a2c1a1b2-a2b1.

  第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.

  (2)在数学中算法通常指什么?

  提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.

  2.归纳总结,核心必记

  (1)算法的概念

  12世纪

  的算法指的是用阿拉伯数字进行算术运算的过程

  续表

  数学中

  的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤

  现代算法通常可以编成计算机程序,让计算机执行并解决问题

  (2)设计算法的目的

  计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.

  [问题思考]

  (1)求解某一个问题的算法是否是的?

  提示:不是.

  (2)任何问题都可以设计算法解决吗?

  提示:不一定.

  [课前反思]

  通过以上预习,必须掌握的几个知识点:

  (1)算法的概念:;

  (2)设计算法的目的:.

  [思考1]应从哪些方面来理解算法的概念?

  名师指津:对算法概念的三点说明:

  (1)算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确的和有效的,而且能够在有限步骤之内完成.

  (2)算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.

  (3)算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题中更具有条理性、逻辑性的特点.

  [思考2]算法有哪些特征?

  名师指津:(1)确定性:算法的每一个步骤都是确切的,能有效执行且得到确定结果,不能模棱两可.

  (2)有限性:算法应由有限步组成,至少对某些输入,算法应在有限多步内结束,并给出计算结果.

  (3)逻辑性:算法从初始步骤开始,分为若干明确的步骤,每一步都只能有一个确定的继任者,只有执行完前一步才能进入到后一步,并且每一步都确定无误后,才能解决问题.

  (4)不性:求解某一个问题的算法不一定只有的一个,可以有不同的算法.

  (5)普遍性:很多具体的问题,都可以设计合理的算法去解决.

  V讲一讲

  1.以下关于算法的说法正确的是()

  A.描述算法可以有不同的方式,可用自然语言也可用其他语言

  B.算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题

  C.算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果

  D.算法要求按部就班地做,每一步可以有不同的结果

  [尝试解答]算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或计算序列能够解决一类问题,故B不正确.

  算法过程要一步一步执行,每一步执行操作,必须确切,只能有结果,而且经过有限步后,必须有结果输出后终止,故C、D都不正确.

  描述算法可以有不同的语言形式,如自然语言、框图语言等,故A正确.

  答案:A

  判断算法的关注点

  (1)明确算法的含义及算法的`特征;

  (2)判断一个问题是否是算法,关键看是否有解决一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步内完成.

  V练一练

  1.(20xx?西南师大附中检测)下列描述不能看作算法的是()

  A.洗衣机的使用说明书

  B.解方程x2+2x-1=0

  C.做米饭需要刷锅、淘米、添水、加热这些步骤

  D.利用公式S=πr2计算半径为3的圆的面积,就是计算π×32

  解析:选BA、C、D都描述了解决问题的过程,可以看作算法,而B只描述了一个事例,没有说明怎样解决问题,不是算法.

  假设家中生火泡茶有以下几个步骤:

  a.生火b.将水倒入锅中c.找茶叶d.洗茶壶、茶碗e.用开水冲茶

  [思考1]你能设计出在家中泡茶的步骤吗?

  名师指津:a→a→c→d→e

  [思考2]设计算法有什么要求?

  名师指津:(1)写出的算法必须能解决一类问题;

  (2)要使算法尽量简单、步骤尽量少;

  (3)要保证算法步骤有效,且计算机能够执行.

  V讲一讲

  2.写出解方程x2-2x-3=0的一个算法.

  [尝试解答]法一:算法如下.

  第一步,将方程左边因式分解,得(x-3)(x+1)=0;①

  第二步,由①得x-3=0,②或x+1=0;③

  第三步,解②得x=3,解③得x=-1.

  法二:算法如下.

  第一步,移项,得x2-2x=3;①

  第二步,①式两边同时加1并配方,得(x-1)2=4;②

  第三步,②式两边开方,得x-1=±2;③

  第四步,解③得x=3或x=-1.

  法三:算法如下.

  第一步,计算方程的判别式并判断其符号Δ=(-2)2+4×3=16>0;

  第二步,将a=1,b=-2,c=-3,代入求根公式x1,x2=-b±b2-4ac2a,得x1=3,x2=-1.

  设计算法的步骤

  (1)认真分析问题,找出解决此题的一般数学方法;

  (2)借助有关变量或参数对算法加以表述;

  (3)将解决问题的过程划分为若干步骤;

  (4)用简练的语言将步骤表示出来.V

  练一练

  2.设计一个算法,判断7是否为质数.

  解:第一步,用2除7,得到余数1,所以2不能整除7.

  第二步,用3除7,得到余数1,所以3不能整除7.

  第三步,用4除7,得到余数3,所以4不能整除7.

  第四步,用5除7,得到余数2,所以5不能整除7.

  第五步,用6除7,得到余数1,所以6不能整除7.

  因此,7是质数.

  V讲一讲

  3.一次青青草原草原长包包大人带着灰太狼、懒羊羊和一捆青草过河.河边只有一条船,由于船太小,只能装下两样东西.在无人看管的情况下,灰太狼要吃懒羊羊,懒羊羊要吃青草,请问包包大人如何才能带着他们平安过河?试设计一种算法.

  [思路点拨]先根据条件建立过程模型,再设计算法.

  [尝试解答]包包大人采取的过河的算法可以是:

  第一步,包包大人带懒羊羊过河;

  第二步,包包大人自己返回;

  第三步,包包大人带青草过河;

  第四步,包包大人带懒羊羊返回;

  第五步,包包大人带灰太狼过河;

  第六步,包包大人自己返回;

  第七步,包包大人带懒羊羊过河.

  实际问题算法的设计技巧

  (1)弄清题目中所给要求.

  (2)建立过程模型.

  (3)根据过程模型建立算法步骤,必要时由变量进行判断.

  V练一练

  3.一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?

  解:法一:算法如下.

  第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.

  第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.

  法二:算法如下.

  第一步,把9枚银元平均分成3组,每组3枚.

  第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.

  第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.

高二数学教案8

  教学目标

  (1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.

  (2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.

  (3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.

  (4)掌握直线和圆的位置关系,会求圆的切线.

  (5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.

  教学建议

  教材分析

  (1)知识结构

  (2)重点、难点分析

  ①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.

  ②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.

  教法建议

  (1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.

  (2)在解决有关圆的.问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.

  (3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.

  (4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.

  教学设计示例

  圆的一般方程

  教学目标:

  (1)掌握圆的一般方程及其特点.

  (2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.

  (3)能用待定系数法,由已知条件求出圆的一般方程.

  (4)通过本节课学习,进一步掌握配方法和待定系数法.

  教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.

  (2)用待定系数法求圆的方程.

  教学难点:圆的一般方程特点的研究.

  教学用具:计算机.

  教学方法:启发引导法,讨论法.

  教学过程:

  【引入】

  前边已经学过了圆的标准方程

  把它展开得

  任何圆的方程都可以通过展开化成形如

  ①

  的方程

  【问题1】

  形如①的方程的曲线是否都是圆?

  师生共同讨论分析:

  如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得

  ②

  显然②是不是圆方程与是什么样的数密切相关,具体如下:

  (1)当时,②表示以为圆心、以为半径的圆;

  (2)当时,②表示一个点;

  (3)当时,②不表示任何曲线.

  总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.

  圆的一般方程的定义:

  当时,①表示以为圆心、以为半径的圆,

  此时①称作圆的一般方程.

  即称形如的方程为圆的一般方程.

  【问题2】圆的一般方程的特点,与圆的标准方程的异同.

  (1)和的系数相同,都不为0.

  (2)没有形如的二次项.

  圆的一般方程与一般的二元二次方程

  ③

  相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.

  圆的一般方程与圆的标准方程各有千秋:

  (1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.

  (2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.

  【实例分析】

  例1:下列方程各表示什么图形.

  (1) ;

  (2) ;

  一、教学内容分析

  向量作为工具在数学、物理以及实际生活中都有着广泛的应用.

  本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.

  二、教学目标设计

  1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.

  2、了解构造法在解题中的运用.

  三、教学重点及难点

  重点:平面向量知识在各个领域中应用.

  难点:向量的构造.

  四、教学流程设计

  五、教学过程设计

  一、复习与回顾

  1、提问:下列哪些量是向量?

  (1)力(2)功(3)位移(4)力矩

  2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

  [说明]复习数量积的有关知识.

  二、学习新课

  例1(书中例5)

  向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看

  例2(书中例3)

  证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.

  证法(二)向量法

  [说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)

  例3(书中例4)

  [说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.

  二、巩固练习

  1、如图,某人在静水中游泳,速度为km/h.

  (1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?

  答案:沿北偏东方向前进,实际速度大小是8 km/h.

  (2)他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?

  答案:朝北偏西方向前进,实际速度大小为km/h.

  三、课堂小结

  1、向量在物理、数学中有着广泛的应用.

  2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.

  四、作业布置

  1、书面作业:课本P73,练习8.4 4

高二数学教案9

  平面向量共线的坐标表示

  前提条件a=(x1,y1),b=(x2,y2),其中b≠0

  结论当且仅当x1y2-x2y1=0时,向量a、b(b≠0)共线

  [点睛](1)平面向量共线的坐标表示还可以写成x1x2=y1y2(x2≠0,y2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;

  (2)当a≠0,b=0时,a∥b,此时x1y2-x2y1=0也成立,即对任意向量a,b都有:x1y2-x2y1=0?a∥b.

  [小试身手]

  1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)

  (1)已知a=(x1,y1),b=(x2,y2),若a∥b,则必有x1y2=x2y1.()

  (2)向量(2,3)与向量(-4,-6)反向.()

  答案:(1)√(2)√

  2.若向量a=(1,2),b=(2,3),则与a+b共线的向量可以是()

  A.(2,1)B.(-1,2)C.(6,10)D.(-6,10)

  答案:C

  3.已知a=(1,2),b=(x,4),若a∥b,则x等于()

  A.-12B.12C.-2D.2

  答案:D

  4.已知向量a=(-2,3),b∥a,向量b的.起点为A(1,2),终点B在x轴上,则点B的坐标为________.

  答案:73,0

  向量共线的判定

  [典例](1)已知向量a=(1,2),b=(λ,1),若(a+2b)∥(2a-2b),则λ的值等于()

  A.12B.13C.1D.2

  (2)已知A(2,1),B(0,4),C(1,3),D(5,-3).判断与是否共线?如果共线,它们的方向相同还是相反?

  [解析](1)法一:a+2b=(1,2)+2(λ,1)=(1+2λ,4),2a-2b=2(1,2)-2(λ,1)=(2-2λ,2),由(a+2b)∥(2a-2b)可得2(1+2λ)-4(2-2λ)=0,解得λ=12.

  法二:假设a,b不共线,则由(a+2b)∥(2a-2b)可得a+2b=μ(2a-2b),从而1=2μ,2=-2μ,方程组显然无解,即a+2b与2a-2b不共线,这与(a+2b)∥(2a-2b)矛盾,从而假设不成立,故应有a,b共线,所以1λ=21,即λ=12.

  [答案]A

  (2)[解]=(0,4)-(2,1)=(-2,3),=(5,-3)-(1,3)=(4,-6),

  ∵(-2)×(-6)-3×4=0,∴,共线.

  又=-2,∴,方向相反.

  综上,与共线且方向相反.

  向量共线的判定方法

  (1)利用向量共线定理,由a=λb(b≠0)推出a∥b.

  (2)利用向量共线的坐标表达式x1y2-x2y1=0直接求解.

  [活学活用]

  已知a=(1,2),b=(-3,2),当k为何值时,ka+b与a-3b平行,平行时它们的方向相同还是相反?

  解:ka+b=k(1,2)+(-3,2)=(k-3,2k+2),

  a-3b=(1,2)-3(-3,2)=(10,-4),

  若ka+b与a-3b平行,则-4(k-3)-10(2k+2)=0,

  解得k=-13,此时ka+b=-13a+b=-13(a-3b),故ka+b与a-3b反向.

  ∴k=-13时,ka+b与a-3b平行且方向相反.

  三点共线问题

  [典例](1)已知=(3,4),=(7,12),=(9,16),求证:A,B,C三点共线;

  (2)设向量=(k,12),=(4,5),=(10,k),当k为何值时,A,B,C三点

  共线?

  [解](1)证明:∵=-=(4,8),

  =-=(6,12),

  ∴=32,即与共线.

  又∵与有公共点A,∴A,B,C三点共线.

  (2)若A,B,C三点共线,则,共线,

  ∵=-=(4-k,-7),

  =-=(10-k,k-12),

  ∴(4-k)(k-12)+7(10-k)=0.

  解得k=-2或k=11.

  有关三点共线问题的解题策略

  (1)要判断A,B,C三点是否共线,一般是看与,或与,或与是否共线,若共线,则A,B,C三点共线;

  (2)使用A,B,C三点共线这一条件建立方程求参数时,利用=λ,或=λ,或=λ都是可以的,但原则上要少用含未知数的表达式.

高二数学教案10

  教学目标

  1、知识与技能

  (1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.

  2、过程与方法

  通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的'关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.

  3、情态与价值

  通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.

  教学重难点

  重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.

  难点:终边相同的角的表示.

  教学工具

  投影仪等.

  教学过程

  【创设情境】

  思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25

  小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

  [取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.

  【探究新知】

  1.初中时,我们已学习了角的概念,它是如何定义的呢?

  [展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置OB,就形成角a.旋转开始时的射线叫做角的始边,OB叫终边,射线的端点o叫做叫a的顶点.

  2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?

  [展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

  8.学习小结

  (1)你知道角是如何推广的吗?

  (2)象限角是如何定义的呢?

  (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

  线上的角的集合.

  五、评价设计

  1.作业:习题1.1A组第1,2,3题.

  2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

  进一步理解具有相同终边的角的特点.

  课后小结

  (1)你知道角是如何推广的吗?

  (2)象限角是如何定义的呢?

  (3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

  线上的角的集合.

  课后习题

  作业:

  1、习题1.1A组第1,2,3题.

  2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

  进一步理解具有相同终边的角的特点.

高二数学教案11

  第06课时

  2、2、3 直线的参数方程

  学习目标

  1.了解直线参数方程的条件及参数的意义;

  2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

  学习过程

  一、学前准备

  复习:

  1、若由 共线,则存在实数 ,使得 ,

  2、设 为 方向上的 ,则 =︱ ︱ ;

  3、经过点 ,倾斜角为 的直线的普通方程为 。

  二、新课导学

  探究新知(预习教材P35~P39,找出疑惑之处)

  1、选择怎样的参数,才能使直线上任一点M的坐标 与点 的坐标 和倾斜角 联系起来呢?由于倾斜角可以与方向联系, 与 可以用距离或线段 数量的大小联系,这种方向有向线段数量大小启发我们想到利用向量工具建立直线的参数方程。

  如图,在直线上任取一点 ,则 = ,

  而直线

  的单位方向

  向量

  =( , )

  因为 ,所以存在实数 ,使得 = ,即有 ,因此,经过点

  ,倾斜角为 的直线的.参数方程为:

  2.方程中参数的几何意义是什么?

  应用示例

  例1.已知直线 与抛物线 交于A、B两点,求线段AB的长和点 到A ,B两点的距离之积。(教材P36例1)

  解:

  例2.经过点 作直线 ,交椭圆 于 两点,如果点 恰好为线段 的中点,求直线 的方程.(教材P37例2)

  解:

  反馈练习

  1.直线 上两点A ,B对应的参数值为 ,则 =( )

  A、0 B、

  C、4 D、2

  2.设直线 经过点 ,倾斜角为 ,

  (1)求直线 的参数方程;

  (2)求直线 和直线 的交点到点 的距离;

  (3)求直线 和圆 的两个交点到点 的距离的和与积。

  三、总结提升

  本节小结

  1.本节学习了哪些内容?

  答:1.了解直线参数方程的条件及参数的意义;

  2. 初步掌握运用参数方程解决问题,体会用参数方程解题的简便性。

  学习评价

  一、自我评价

  你完成本节导学案的情况为( )

  A.很好 B.较好 C. 一般 D.较差

  课后作业

  1. 已知过点 ,斜率为 的直线和抛物线 相交于 两点,设线段 的中点为 ,求点 的坐标。

  2.经过点 作直线交双曲线 于 两点,如果点 为线段 的中点,求直线 的方程

  3.过抛物线 的焦点作倾斜角为 的弦AB,求弦AB的长及弦的中点M到焦点F的距离。

高二数学教案12

  教学准备

  教学目标

  熟练掌握三角函数式的求值

  教学重难点

  熟练掌握三角函数式的求值

  教学过程

  【知识点精讲】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的.关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

  【例题选讲】

  课堂小结】

  三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形

  三角函数式的求值的类型一般可分为:

  (1)“给角求值”:给出非特殊角求式子的值。仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角

  (2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。找出已知角与所求角之间的某种关系求解

  (3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

  (4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。将已知式或所求式进行化简,再求之

  三角函数式常用化简方法:切割化弦、高次化低次

  注意点:灵活角的变形和公式的变形

  重视角的范围对三角函数值的影响,对角的范围要讨论

高二数学教案13

  教学目标

  1.使学生理解圆的旋转不变性,理解圆心角、弦心距的概念;

  2.使学生掌握圆心角、弧、弦、弦心距之间的相等关系定理及推论,并初步学会运用这些关系解决有关问题;

  3.培养学生观察、分析、归纳的能力,向学生渗透旋转变换的思想及由特殊到一般的认识规律.

  教学重点和难点

  圆心角、弧、弦、弦心距之间的相等关系是重点;从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的相等关系是难点.

  教学过程设计

  一、创设情景,引入新课

  圆是轴对称图形.圆的这一性质,帮助我们解决了圆的许多问题.今天我们再来一起研究一下圆还有哪些特性.

  1.动态演示,发现规律

  投影出示图7-47,并动态显示:平行四边形绕对角线交点O旋转180°后.问:

  (1)结果怎样?

  学生答:和原来的平行四边形重合.

  (2)这样的图形叫做什么图形?

  学生答:中心对称图形.

  投影出示图7-48,并动态显示:⊙O绕圆心O旋转180°.由学生观察后,归纳出:圆是以圆心为对称中心的中心对称图形.

  投影继续演示如图7-49,让直径AB两个端点A,B绕圆心旋转30°,45°,

  90°,让学生观察发现什么结论?

  得出:不论绕圆心旋转多少度,都能够和原来的图形重合.

  进一步演示,让圆绕着圆心旋转任意角度α,你发现什么?

  学生答:仍然与原来的图形重合.

  于是由学生归纳总结,得出圆所特有的性质:圆的旋转不变性.即圆绕圆心旋转任意一个角度α,都能够与原来的图形重合.

  2.圆心角,弦心距的概念.

  我们在研究圆的旋转不变性时,⊙O绕圆心O旋转任意角度α后,出现一个角

  ∠AOB,请同学们观察一下,这个角有什么特点?如图7-50.(如有条件可电脑闪动显示图形.)

  在学生观察的基础上,由学生说出这个角的特点:顶点在圆心上.

  在此基础上,教师给出圆心角的定义,并板书.

  顶点在圆心的'角叫做圆心角.

  再进一步观察,AB是∠AOB所对的弧,连结AB,弦AB既是圆心角∠AOB也是AB所对的弦.请同学们回忆,在学习垂径定理时,常作的一条辅助线是什么?

  学生答:过圆心O作弦AB的垂线.

  在学生回答的基础上,教师指出:点O到AB的垂直线段OM的长度,即圆心到弦的距离叫做弦心距.如图7-51.(教师板书定义)最后指出:这节课我们就来研究圆心角之间,以及它们所对的弧、弦、弦的弦心距之间的关系.(引出课题)

  二、大胆猜想,发现定理

  在图7-52中,再画一圆心角∠A′OB′,如果∠AOB=∠A′OB′,(变化显示两角相等)再作出它们所对的弦AB,A′B′和弦的弦心距OM,OM′,请大家大胆猜想,其余三组量与,弦AB与A′B′,弦心距OM与OM′的大小关系如何?

  学生很容易猜出:=,AB=A′B′,OM=OM′.

  教师进一步提问:同学们刚才的发现仅仅是感性认识,猜想是否正确,必须进行证明,怎样证明呢?

  学生最容易想到的是证全等的方法,但得不到=,怎样证明弧相等呢?

  让学生思考并启发学生回忆等弧的定义是什么?

  学生:在同圆或等圆中,能够完全重合的弧叫等弧.

  请同学们想一想,你用什么方法让和重合呢?

  学生:旋转.

  下面我们就来尝试利用旋转变换的思想证明=.

  把∠AOB连同旋转,使OA与OA′重合,电脑开始显示旋转过程.教师边演示边提问.

  我们发现射线OB与射线OB′也会重合,为什么?

  学生:因为∠AOB=∠A′OB′,

  所以射线OB与射线OB′重合.

  要证明与重合,关键在于点A与点A′,点B与点B′是否分别重合.这两对点分别重合吗?

  学生:重合.

  你能说明理由吗?

  学生:因为OA=OA′,OB=OB′,

  所以点A与点A′重合,点B与点B′重合.

  当两段孤的两个端点重合后,我们可以得到哪些量重合呢?

  学生:与重合,弦AB与A′B′重合,OM与OM′重合.

  为什么OM也与OM′重合呢?

  学生:根据垂线的唯一性.

  于是有结论:=,AB=A′B′,OM=OM′.

  以上证明运用了圆的旋转不变性.得到结论后,教师板书证明过程,并引导学生用简洁的文字叙述这个真命题.

  教师板书定理.

  定理:在同圆____中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.

  教师引导学生补全定理内容.

  投影显示如图7-53,⊙O与⊙O′为等圆,∠AOB=∠A′O′B′,OM与

  O′M′分别为AB与A′B′的弦心距,请学生回答与.AB与A′B′,OM与O′M′还相等吗?为什么?

  在学生回答的基础上,教师指出:以上三组量仍然相等,因为两个等圆可以叠合成同圆.(投影显示叠合过程)

  这样通过叠合,把等圆转化成了同圆,教师把定理补充完整.

  然后,请同学们思考定理的条件和结论分别是什么?并回答:

  定理是在同圆或等圆这个大前提下,已知圆心角相等,得出其余三组量相等.请同学们思考,在这个大前提下,把圆心角相等与三个结论中的任何一个交换位置,可以得到三个新命题,这三个命题是真命题吗?如何证明?

  在学生讨论的基础上,简单地说明证明方法.

  最后,教师把这四个真命题概括起来,得到定理的推论.

  请学生归纳,教师板书.

  推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

  三、巩固应用、变式练习

  例1判断题,下列说法正确吗?为什么?

  (1)如图7-54:因为∠AOB=∠A′OB′,所以AB=.

  (2)在⊙O和⊙O′中,如果弦AB=A′B′,那么=.

  分析:(1)、(2)都是不对的.在图7-54中,因为和不在同圆或等圆中,不能用定理.对于(2)也缺少了等圆的条件.可让学生举反例说明.

  例2如图7-55,点P在⊙O上,点O在∠EPF的角平分线上,∠EPF的两边交⊙O于点A和B.求证:PA=PB.

  让学生先思考,再叙述思路,教师板书示范.

  证明:作OM⊥PA,ON⊥PB,垂足为M,N.

  把P点当做运动的点,将例2演变如下:

  变式1(投影打出)

  已知:如图7-56,点O在∠EPF的平分线上,⊙O和∠EPF的两边分别交于点A,B和C,D.

  求证:AB=CD.

  师生共同分析之后,由学生口述证明过程.

  变式2(投影打出)

  已知:如图7-57,⊙O的弦AB,CD相交于点P,∠APO=∠CPO,

  求证:AB=CD.

  由学生口述证题思路.

  说明:这组例题均是利用弦心距相等来证明弦相等的问题,当然,也可利用其它方法来证,只不过前者较为简便.

  练习1已知:如图7-58,AD=BC.

  求证:AB=CD.

  师生共同分析后,学生练习,一学生上黑板板演.

  变式练习.已知:如图7-58,=,求证:AB=CD.

  四、师生共同小结

  教师提问:

  (1)这节课学习了哪些具体内容?

  (2)本节的定理和推论是用什么方法证明的?

  (3)应注意哪些问题?

  在学生回答的基础上,教师总结.

  (1)这节课主要学习了两部分内容:一是证明了圆是中心对称图形.得到圆的特性圆的旋转不变性;二是学习了在同圆或等圆中,圆心角、圆心角所对的弧、所对的弦、所对的弦的弦心距之间的关系定理及推论.这些内容是我们今后证明弧相等、弦相等、角相等的重要依据.

  (2)本节通过观察猜想论证的方法,从运动变化中发现规律,得出定理及推论,同时遵循由特殊到一般的思维认识规律,渗透了旋转变换的思想.

  (3)在运用定理及推论解题时,必须注意要有“在同圆或等圆”这一前提条件.

  五、布置作业

  思考题:已知AB和CD是⊙O的两条弦,OM和ON分别是AB和CD的弦心距,如果AB>CD,那么OM和ON有什么关系?为什么?

  板书设计

  课堂教学设计说明

  这份教案为1课时.

  如果内容多,部分练习题可在下节课中处理.

  摘自《初中几何教案》

高二数学教案14

  教学目的:

  1、使学生理解线段的垂直平分线的性质定理及逆定理,掌握这两个定理的关系并会用这两个定理解决有关几何问题。

  2、了解线段垂直平分线的轨迹问题。

  3、结合教学内容培养学生的动作思维、形象思维和抽象思维能力。

  教学重点:

  线段的垂直平分线性质定理及逆定理的引入证明及运用。

  教学难点:

  线段的垂直平分线性质定理及逆定理的关系。

  教学关键:

  1、垂直平分线上所有的点和线段两端点的距离相等。

  2、到线段两端点的距离相等的所有点都在这条线段的垂直平分线上。

  教具:投影仪及投影胶片。

  教学过程:

  一、提问

  1、角平分线的性质定理及逆定理是什么?

  2、怎样做一条线段的垂直平分线?

  二、新课

  1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。

  2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生观察这两个值有什么关系?

  通过学生的观察、分析得出结果PA=PB,再取一点P'试一试仍然有P'A=P'B,引导学生猜想EF上的所有点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。

  定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。

  这个命题,是我们通过作图、观察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。

  例题:

  已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上

  求证:PA=PB

  如何证明PA=PB学生分析得出只要证RTΔPCA≌RTΔPCB

  :证明:∵PC⊥AB(已知)

  ∴∠PCA=∠PCB(垂直的定义)

  在ΔPCA和ΔPCB中

  ∴ΔPCA≌ΔPCB(SAS)

  即:PA=PB(全等三角形的对应边相等)。

  反过来,如果PA=PB,P1A=P1B,点P,P1在什么线上?

  过P,P1做直线EF交AB于C,可证明ΔPAP1≌PBP1(SSS)

  ∴EF是等腰三角型ΔPAB的顶角平分线

  ∴EF是AB的垂直平分线(等腰三角形三线合一性质)

  ∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。

  逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

  根据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的`距离相等的所有点的集合。

  线段的垂直平分线可以看作是和线段两个端点距离相等的所有点的集合。

  三、举例(用幻灯展示)

  例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。

  证明:∵点P在线段AB的垂直平分线上

  ∴PA=PB

  同理PB=PC

  ∴PA=PB=PC

  由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。

  四、小结

  正确的运用这两个定理的关键是区别它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。

  《教案设计说明》

  线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。

  在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探索。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生观察、讨论每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动积极的参与到教学中来,使学生通过作图、观察、量一量再得出结论。从而把知识的形成过程转化为学生亲自参与、发现、探索的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探索过程也是调动学生动脑思考的过程,只有学生动脑思考了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出如果有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的所有点的集合。这样可以帮助学生认识理论来源于实践又服务于实践的道理,也能提高他们学习的积极性,加深对所学知识的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避免用三角形全等来证。最后总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂掌握两个定理的灵活运用,让学生做87页的两个练习,以达到巩固知识的目的。

高二数学教案15

  教学目标

  1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;

  2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;

  3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;

  4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;

  5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.

  教学建议

  教材分析

  1. 知识结构

  2.重点难点分析

  重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.

  椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.

  (1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.

  另外要注意到定义中对“常数”的限定即常数要大于 .这样规定是为了避免出现两种特殊情况,即:“当常数等于 时轨迹是一条线段;当常数小于 时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.

  (2)根据椭圆的定义求标准方程,应注意下面几点:

  ①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.

  ②设椭圆的焦距为 ,椭圆上任一点到两个焦点的距离为 ,令 ,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.

  ③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.

  ④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程 “而没有证明,”方程 的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.

  (3)两种标准方程的椭圆异同点

  中心在原点、焦点分别在 轴上, 轴上的椭圆标准方程分别为: , .它们的相同点是:形状相同、大小相同,都有 , .不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.

  椭圆的焦点在 轴上 标准方程中 项的分母较大;

  椭圆的焦点在 轴上 标准方程中 项的分母较大.

  另外,形如 中,只要 , , 同号,就是椭圆方程,它可以化为 .

  (4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.

  教法建议

  (1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.

  为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。

  例如,我们生活的地球每时每刻都在环绕太阳的轨道——椭圆上运行,太阳系的其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运动的速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵循这个原理.相对于一个物体,按万有引力定律受它吸引的另一个物体的运动,不可能有任何其他的轨道.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式,另外,工厂通气塔的外形线、探照灯反光镜的轴截面曲线,都和圆锥曲线有关,圆锥曲线在实际生活中的价值是很高的.

  (2)安排学生课下切割圆锥形的事物,使学生了解圆锥曲线名称的来历

  为了让学生了解圆锥曲线名称的来历,但为了节约课堂时间,教学时应安排让学生课后亲自动手切割圆锥形的萝卜、胶泥等,以加深对圆锥曲线的.认识.

  (3)对椭圆的定义的引入,要注意借助于直观、形象的模型或教具,让学生从感性认识入手,逐步上升到理性认识,形成正确的概念。

  教师可从太阳、地球、人造地球卫星的运行轨道,谈到圆萝卜的切片、阳光下圆盘在地面上的影子等等,让学生先对椭圆有一个直观的了解。

  教师可事先准备好一根细线及两根钉子,在给出椭圆在数学上的严格定义之前,教师先在黑板上取两个定点(两定点之间的距离小于细线的长度),再让两名学生按教师的要求在黑板上画一个椭圆。画好后,教师再在黑板上取两个定点(两定点之间的距离大于细线的长度),然后再请刚才两名学生按同样的要求作图。学生通过观察两次作图的过程,总结出经验和教训,教师因势利导,让学生自己得出椭圆的严格的定义。这样,学生对这一定义就会有深刻的了解。

  (4)将提出的问题分解为若干个子问题,借助多媒体课件来体现椭圆的定义的实质

  在教学时,可以设置几个问题,让学生动手动脑,独立思考,自主探索,使学生根据提出的问题,利用多媒体,通过观察、实验、分析去寻找解决问题的途径。在椭圆的定义的教学过程()中,可以提出“到两定点的距离的和为定值的点的轨迹一定是椭圆吗”,让学生通过课件演示“改变焦距或定值”,观察轨迹的形状,从而挖掘出定义的内涵,这样就使得学生对椭圆的定义留下了深刻的印象。

  (5)注意椭圆的定义与椭圆的标准方程的联系

  在讲解椭圆的定义时,就要启发学生注意椭圆的图形特征,一般学生比较容易发现椭圆的对称性,这样在建立坐标系时,学生就比较容易选择适当的坐标系了,即使焦点在坐标轴上,对称中心是原点(此时不要过多的研究几何性质).虽然这时学生并不一定能说明白为什么这样选择坐标系,但在有了一定感性认识的基础上再讲解选择适当坐标系的一般原则,学生就较为容易接受,也向学生逐步渗透了坐标法.

  (6)推导椭圆的标准方程时教师要注意化解难点,适时地补充根式化简的方法.

  推导椭圆的标准方程时,由于列出的方程为两个跟式的和等于一个非零常数,化简时要进行两次平方,方程中字母超过三个,且次数高、项数多,教学时要注意化解难点,尽量不要把跟式化简的困难影响学生对椭圆的标准方程的推导过程的整体认识.通过具体的例子使学生循序渐进的解决带跟式的方程的化简,即:(1)方程中只有一个跟式时,需将它单独留在方程的一边,把其他各项移至另一边;(2)方程中有两个跟式时,需将它们放在方程的两边,并使其中一边只有一项.(为了避免二次平方运算)

  (7)讲解了焦点在x轴上的椭圆的标准方程后,教师要启发学生自己研究焦点在y轴上的标准方程,然后鼓励学生探索椭圆的两种标准方程的异同点,加深对椭圆的认识.

  (8)在学习新知识的基础上要巩固旧知识

  椭圆也是一种曲线,所以第七章所讲的曲线和方程的知识仍然使用,在推导椭圆的标准方程中要注意进一步巩固曲线和方程的概念.对于教材上在推出椭圆的标准方程后,并没有证明所求得的方程确是椭圆的方程,要注意向学生说明并不与前面所讲的曲线和方程的概念矛盾,而是由于椭圆方程的化简过程是等价变形,而证明过程较繁,所以教材没有要求也没有给出证明过程,但学生要注意并不是以后都不需要证明,注意只有方程的化简是等价变形的才可以不用证明,而实际上学生在遇到一些具体的题目时,还需要具体问题具体分析.

  (9)要突出教师的主导作用,又要强调学生的主体作用,课上尽量让全体学生参与讨论,由基础较差的学生提出猜想,由基础较好的学生帮助证明,培养学生的团结协作的团队精神。

【高二数学教案】相关文章:

高二06-19

人在高二 高二作文900字06-19

高二抒情作文 高二优秀作文06-19

高二遐想06-27

高二随想06-19

高二毕业06-19

我高二06-27

走在高二06-19

高二情怀06-19