平行四边形教案范文合集十篇
作为一名教职工,就有可能用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。那么优秀的教案是什么样的呢?以下是小编整理的平行四边形教案10篇,欢迎大家分享。
平行四边形教案 篇1
【学习目标】
1、平行四边形性质(对角线互相平分)
2、平行线之间的距离定义及性质
【新课探究】
活动一:
如图,□ABCD的两条对角线AC、BD相交于点O.
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)想办法验证你的猜想?
(3)平行四边形的性质:平行四边形的对角线
几何语言:∵四边形ABCD是平行四边形(已知)
∴AO==AC,BO==BD()
活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.
(1)线段AC,BD有怎样的位置关系?
(2)比较线段AC,BD的长短.
(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.
【知识应用】
1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.
3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是
【当堂反馈(小测)】:
1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长
3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?
【巩固提升】
1.平行四边形的两条对角线
2、已知□ABCD的'两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是
4、下列性质中,平行四边形不一定具备的是()
A、对角互补B、邻角互补C、对角相等D、内角和是360°
5、下列说法中,不正确的是()
A、平行四边形的对角线相等B、平行四边形的对边相等
C、平行四边形的对角线互相平分D、平行四边形的对角相等
6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长
7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。
8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。
(1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对进行证明。
9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。
(1)多做几条这样的直线,看看它们有什么共同的特征
(2)试着用旋转的有关知识解释你的发现。
平行四边形教案 篇2
教学要求:
1.使学生在理解的基础上掌握平行四边形、三角形和梯形的面积计算公式,能够计算它的面积。
2.使学生初步学会使用简单的测量工具测定直线和沿着直线测量指定的距离;了解步测和目测的方法,能够计算常见的规则形状的土地面积。
教学重点:
1.引导学生运用转化的方法;在动手操作的基础上掌握三角形、平行四边形和梯形面积的计算公式;能正确地应用各种图形面积的计算公式,求它们的面积和解决有关面积的实际问题。
2.使学生认识常用的测量工具及其用途;掌握测定直线和沿直线测量指定距离的步骤和方法;初步学会测定直线和沿着直线测量指定的距离;了解步测和目测的方法,初步学会步测和目测。
3.使学生能够正确计算常见的规则形状的土地面积,并会解决有关土地面积的实际问题。
教学难点:
1.使学生知道三角形、平行四边形和梯形面积公式的推导过程;掌握各图形面积的计算公式并能灵活地应用它们解决有关面积的实际问题。
1.使学生初步掌握用简单的测量工具测定直线和沿着直线,测量指定距离的方法。
1.平行四边形面积的计算
第一课时
教学内容:平行四边形面积的计算(例题和做一做,练习十七第13题。)
教学要求:
1.使学生理解并掌握平行四边形面积的计算公式,能正确地计算平行四边形的面积。
2.通过操作,进一步发展学生思维能力。培养学生运用转化的方法解决实际问题的能力发展学生的空间观念。
3 . 引导学生运用转化的.思想探索规律。
教学重点:理解并掌握平行四边形面积的计算公式。
教学难点:理解平行四边形面积计算公式的推导过程。
教学过程:
一、激发
1.提问:怎样计算长方形面积?
板书:长方形面积=长宽
2.口算出下面各长方形的面积。
(1)长1。2厘米,宽3厘米。
(2)长0。5米,宽0。4米。
3.出示方格纸上画的平行四边形,提问:这是什么图形?什么叫平行四边形?指出它的底和高。
4.揭题:我们已经学会了长方形面积的计算,平行四边形的面积该怎样计算呢?这节课我们就学习平行四边形面积的计算(板书课题:平行四边形面积的计算)
二、尝试
1.用数方格的方法计算平行四边形面积。
(1)请大家打开书64页(指名读第2段)。
(2)指名到投影上数。边数边讲解:我先数,它是平方厘米;再数,它是平方厘米;两部分合起来是平方厘米。
(3)投影出示长方形。提问:数一数,这个长方形的长是多少?宽是多少?怎样计算它的面积。
(4)观察比较两个图形的关系,提问:你发现了什么?
引导学生明确:平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
2.通过操作,将平行四边形转化成长方形。
(1)自由剪、拼,进一步感知。
①每个平行四边形只准剪一下,试一试被剪下的两部分能拼成已学过的什么图形?学生自己剪、拼。
②互相讨论。提问:你发现了什么规律?
通过操作讨论得出:只有沿着平行四边形的高剪开,才能拼成一个我们会计算的图形长方形。这种剪法最简便。
(2)揭示转化规律
任何一个平行四边形都可以转化成一个长方形,在转化的过程中,怎样按照一定的规律来做呢?(教师边演示边讲述)
①沿着平行四边形的高剪下左边的直角三角形。(出示剪刀,闪动被剪掉的部分)。
②左手按住右手的梯形,右手抽拉剪下的直角三角形,沿着底边慢慢向右移动,直到两斜边重合为止。这样就得到一个长方形。
③学生根据刚才的演示模仿操作,体会平移的过程。
3.归纳总结公式
(1)比较变化前的两个图形,提问:你发现了什么?互相讨论,汇报讨论结果。根据讨论结果完成填空。
引导学生明确:你发现了什么?互相讨论,汇报讨论结果。
①平行四边形转化为长方形后,面积没有改变。即长方形面积等于平行四边形面积。(同时板书)
②这个长方形的长、宽分别与平行四边形的底、高相等。(同时板书)
(2)根据这些关系,你认为平行四边形的面积计算公式怎样推导出来?强化理解推导过程。
板书:平行四边形的面积=底高
4.教学字母公式
(1)介绍每个字母所表示的意义及读法。板书S=ah
(2)说明在含有字母的式子里,字母和字母中间的乘号可以记作,也可以省略不写。所以平行四边形面积的计算公式可以写成S=ah或S=ah。(同时板书)
(3)提问:计算平行四边形面积,需要知道哪些条件?
三、应用
1.P66页例题:一块平行四边形钢板(如下图),它的面积是多少?(得数保留整数)
3.5厘米
4.8厘米
①读题,理解题意。
②学生试做,指名板演。提醒学生注意得数保留整数。
③订正。提问:根据什么这样列式?
2.完成P.72页做一做第1、2题。
订正时提问:计算时注意哪些问题?
3.填空
任意一个平行四边形都可以转化成一个,它的面积与原平行四边形的面积。这个长方形的长与原平行四边形的相等。这个长方形的与原平行四边形的相等。因为长方形的面积等于,所以平行四边形的面积等于。
4.判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等
(2)平行四边形底越长,它的面积就越大
5.你能求出下列图形的面积吗?如果能,请计算出面积。(单位:厘米)
162015
20
6.练习十七第3题
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十六节第2题。
第二课时
教学内容:平行四边形面积计算的练习(P。74~75页练习十七第4~9题。)
教学要求:
1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。2.养成良好的审题习惯。
教学重点:运用所学知识解答有关平行四边形面积的应用题。
教学过程:
一、基本练习
1.口算。(练习十六第4题)
4。90。75。4+2。640。250。87-0。49
530+2703。50。2542-98612
2.平行四边形的面积是什么?它是怎样推导出来的?
3.口算下面各平行四边形的面积。
⑴底12米,高7米;
⑵高13分米,第6分米;
⑶底2。5厘米,高4厘米
二、指导练习
1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米?
⑴生独立列式解答,集体订正。
⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件?
②生独立列式,集体讲评:
先求这块地的面积:25078010000=1。95公顷,
再求共收小麦多少千克:70001。95=13650千克
⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想?
与⑵比较,从数量关系上看,什么相同?什么不同?
讨论归纳后,生自己列式解答:58500(250781000)
⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。
2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少?
1.6厘米
2.5厘米
⑴你能找出图中的两个平行四边形吗?
⑵他们的面积相等吗?为什么?
⑶生计算每个平行四边形的面积。
⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。)
3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。
28平方米
7米
分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。
三、课堂练习
练习十六第7题。
四、作业
练习十六第5、8、9、11题。
平行四边形教案 篇3
【实验目的】
验证互成角度的两个力合成时的平行四边形定则。
【实验原理】
等效法:使一个力F的作用效果和两个力F1、F2的作用效果都是让同一条一端固定的橡皮条伸长到某点,所以这一个力F就是两个力F1和F2的合力,作出F的图示,再根据平行四边形定则作出F1和F2的合力F的图示,比较F和F的大小和方向是否都相同。
【实验器材】
方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔。
【实验步骤】
⑴用图钉把白纸钉在水平桌面上的方木板上,并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。
⑵用两只弹簧测力计分别钩住细绳套,互成角度地拉像皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。
⑶只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。
⑷用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示。
⑸用刻度尺从O点按同样的标度沿记录的方向作出只用一只弹簧测力计的拉力F的'图示。
⑹比较一下,力F与用平行四边形定则求出的合力F的大小和方向是否相同。
锦囊妙诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。
交流与思考:每次实验都必须保证结点的位置保持不变,这体现了怎样的物理思想方法?若两次橡皮条的伸长长度相同,能否验证平行四边形定则?
提示:每次实验保证结点位置保持不变,是为了使合力的作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法。由于力不仅有大小,还有方向,若两次橡皮条的伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则。
【误差分析】
⑴用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这样两个测力计的水平分力的实际合力比由作图法得到的合力小。
⑵结点O的位置和两个测力计的方向画得不准,造成作图的误差。
⑶两个分力的起始夹角太大,如大于120,再重做两次实验,为保证结点O位置不变(即保证合力不变),则变化范围不大,因而测力计示数变化不显着,读数误差大。
⑷作图比例不恰当造成作图误差。
交流与思考:实验时由作图法得到的合力F和单个测力计测量的实际合力F忘记标注而造成错乱,你如何加以区分?
提示:由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F,不共线的合力表示由作图法得到的合力F。
【注意事项】
⑴不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置。
⑵使用弹簧秤前,应先调节零刻度,使用时不超量程,拉弹簧秤时,应使弹簧秤与木板平行。
⑶在同一次实验中,橡皮条伸长时的结点位置要相同。
⑷被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。
⑸读数时应正对、平视刻度。
⑹两拉力F1和F2夹角不宜过小,作力的图示,标度要一致。
交流与思考:如何设计实验探究两力合力随角度的变化规律?如何观察合力的变化规律?
提示:保持两力的大小不变,改变两力之间的夹角,使两力的合力发生变化,可以通过观察结点的位置变化,判断合力大小的变化情况,结点离固定点越远,说明两力的合力越大。
【正确使用弹簧秤】
⑴弹簧秤的选取方法是:将两只弹簧秤调零后互钩水平对拉,若两只弹簧在对拉过程中,读数相同,则可选;若读数不同,应另换弹簧,直至相同为止。
⑵弹簧秤不能在超出它的测量范围的情况下使用。
⑶使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差)。
⑷被测力的方向应与弹簧秤轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。
⑸读数时应正对、平视刻度。
平行四边形教案 篇4
教学目标:
1、通过观察、比较等方法,初步认识平行四边形,初步感知平行四边形的特征。
2、参与对图形的围、拼、折等实践活动,体会图形的变换,发展空间观念。
3、在学习活动中积累对数学的兴趣,培养交往、合作意识。
教学重点:认识平行四边形。
教学难点:感悟平行四边形的特征。
教学过程:
一、情境导入
同学们,上节课我们知道了什么是四边形以及它的特点,今天,老师又给你们带来了一位新朋友(出示平行四边形图),你们见过它吗?这节课我们就来认识这位新朋友。
二、自主探究
同学们在生活中见过这样的图形吗?在哪见过?
看,这是教师在生活中见到的四边形,你知道这是什么吗?
课件出示:教材第14页例2图
第一幅图是挂衣服的架子,第二幅图是围起来的篱笆墙,第三幅图是楼梯的'扶手。
你能用两块完全一样的三角尺拼出这样的平行四边形吗?它跟长方形、正方形有什么区别和联系呢?试一试。
学生动手操作,尝试拼平行四边形,教师巡视指导。
组织交流,展示学生拼图结果,并让学生说说发现了什么?
(它们的对边一样长,长方形、正方形和平行四边形都是四边形,长方形、正方形的四个角都是直角,平行四边形的角不是直角)
老师边画平行四边形边指出:像这样的四边形叫做平行四边形。
三、巩固练习
1.“想想做做”第1题。学生独立完成,分小组讨论, 汇报。
2.“想想做做”第2题。组织学生想一想,再围一围。
3.“想想做做”第3题,学生在书上描一描,教师巡视检查。
4.“想想做做”第4题,学生动手完成。
5. “想想做做”第5题,学生在家长的帮助下完成。
三、全课总结
提问:今天这节课你有什么收获?
课后反思: 文 章
平行四边形教案 篇5
教学过程
一、课堂引入
1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?
2.你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)
图中有几个平行四边形?你是如何判断的?
二、例习题分析
例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.
分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.
方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)
方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
定义:连接三角形两边中点的线段叫做三角形的中位线.
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的`中位线与第三边有怎样的关系?
(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)
三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。
平行四边形教案 篇6
一、教学目标:
1、让学生知道平行四边形面积公式的推导过程,以平行四边形与长方形关系为基础,引导学生通过动手操作和观察、比较,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积或是解决一些简单的实际问题。
2、培养学生想象力、创造力,及用转化的方法解决新的问题的能力。
3、培养学生自主学习的能力。
4、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。
二、教学重点:
平行四边形面积的计算公式的推导及计算。
三、教学难点:
平行四边形面积计算公式的'推导过程。
四、教学用具:
长方形、平行四边形硬纸片、剪刀、直尺
教学过程:
一、引出主题:
师:大家知不知道我们学校正在将操场隔壁的地方改造为校园一角,专门留出两个空地作为我们同学们的学农小基地(在黑板上贴出两个图案,一块是长方形——甲地,一块是平行四边形——乙地)。下面我们就看一下这两块空地是什么形状的?学校啊,又决定将甲地分给四年级,乙地分给五年级负责除草,那么大家知道哪一个年级负责地方要大一点呢?
师:现在我们先看一下甲地。我们要求这块长方形地的面积,只要量出什么啊?
生:长方形的长和宽(点出长、宽)。
师:现在老师已经量出来长15米、宽10米,那么它的面积是什么?
生:(计算)150平方米。(要求学生回忆起长方形的面积公式,并运用公式计算出这个长方形的面积。)(板书:长方形面积公式)
师:同学们现在都能很熟练地计算出长方形的面积啦!那么,这块平行四边形地的面积是多少啊?我们该怎样计算呢?这就是今天我们要一起探讨的问题啦!(板书:平行四边形的面积)
二、动手操作(得出公式):
师:以前我们是用面积器量数出长方形有多少个小格子或是得出长方形的长和宽来用面积公式来算出了长方形的面积。那我们可不可以运用以前的知识或是我们的经验,想出计算这个平行四边形的面积的方法呢?有哪位同学已经想到办法来?
生:用剪刀沿着平行四边形的高剪,再拼成长方形,再用尺子量出底(长)18厘米,高(宽)10厘米。面积是180平方厘米。(让学生把操作展示给全班同学看)
师:这位同学很聪明,他是沿着高来剪,再拼成一个长方形。那老师现在再问你一个问题,你为什么要剪拼成长方形?
生:因为长方形的长和宽与原来平行四边形的底和高相等,而长方形面积我们会求。
三、得出结论:
师:沿着这条垂线把平行四边形剪成了一个三角形和一个梯形,把三角形移到梯形的一边,就变成了长方形。拼成的长方形的长与平行四边形的底相等,宽与平行四边形的高相等。因为长方形面积=长×宽(板书),所以我们推导出平行四边形面积=底×高(板书)。我们称这种方法为“割补法”(板书)。如果我们用s来表示平行四边形的面积,a来表示平行四边形的底,h来表示平行四边形的高,你能自己写出平行四边形的字母公式吗?
生:s=a×h
师:我们还可以将这条公式缩写为:s=a·h或者是s=ah。
四、巩固提高:
练习:一块平行四边形钢板,底为4.8厘米,高为3.5厘米。
它的面积是多少?(结果保留整数。)
解答:4.8×3.5=16.8(平方厘米)≈17(平方厘米)
五、小结:
面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。
平行四边形教案 篇7
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的`夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形及其性质
教学目标
1、知识目标
(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.
2、能力目标
(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标
渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.
教学重点、难点
重点:平行四边形的概念及其性质.
难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用
教学方法:讲解、分析、转化
教学过程设计
一、利用分类、特殊化的方法引出平行四边形的概念
1.复习四边形的知识.
(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.
(2)将四边形的边角按位置关系分为两类:
教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.
2.教师提问:四边形中的两组对边按位置关系分为几种情况?
引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.
3.对比引出平行四边形的概念.
(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.
(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).
(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.
(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.
①∵ABCD,∴AD∥BC,AB∥CD.(平行四边形的定义)
②∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.(平行四边形的定义)
练习1(投影)
如图4-13,DC∥EF∥AB,DA∥GH∥CB,图中的平行四边形共有__个,它们是__.
二、探索平行四边形的性质并证明
1.探索性质.
启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:
(3)对角线
⑤对角线互相平分(性质定理3)
教师注意解释并强调对角线互相平分的含义及表示方法.
2.利用化归的方法对性质逐一进行证明.
(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.
(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.
(3)写出证明过程.
3.关于“两条平行线间的平行线段和距离”的教学.
(1)利用性质定理2
导出推论:夹在两条平行线间的平行线段相等.
①提问:在图4-14中,l1∥l2,AB∥CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.
②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.
③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.
练习2
(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.
(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.
练习3
在图4-15(d)中,
①点A与点C的距离是线段__的长;
②点A到直线l2的距离是线段__的长;
③两条平行线l1与l2的距离是线段__或__的长;
④由推论可得:两条平行线间的距离__.
三、平行四边形的定义及性质的应用
1.计算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,则ABCD的周长为__,∠B=__,∠C=__,∠D=__;
(2)在ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C=200°,则∠A=___,∠B=__;
(3)已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;
(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.
2.证明.
例2 已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∥CF.求证(1)BE=DF;(2)EF过BD的中点.
分析:
(1)尽量利用平行四边形的定义和性质,避免证三角形全等.
(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE⊥BC于E,CF⊥AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.
例3已知:如图4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求证:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的顶点分别是△B′C′A′各边的中点.
着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.
例4 已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.
分析:
(1)引导学生证明以OE,OF为边的两个三角形全等,如证△AOE≌△COF或证△BOE≌△DOF.
(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.
(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
3.供选用例题.
(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?
(2)如图4-19,在△ABC中,AD平分∠BAC,过D作DE∥AC交AB于E,过E作EF∥DC交AC于F.求证:AE=FC.
(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC⊥FD.
四、师生共同小结
1.平行四边形与四边形的关系.
2.学习了平行四边形哪些方面的性质?
3.两条平行线的距离是怎样定义的?有什么性质?
五、作业
课本第143页第2,3,4,5,6题.
课堂教学设计说明
本教学设计需2课时完成.
这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.
平行四边形教案 篇8
(一)教学目标
1.使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。
2.使学生掌握平行四边形和梯形的特征。
3.通过多种活动,使学生逐步形成空间观念。
(二)教材说明和教学建议 教材说明
本单元是在学生学习了角的度量的基础上教学的,内容包括:同一平面内两条直线的特殊位置关系,即垂直与平行;平行四边形和梯形的认识。学生在前面已经学习了有关四边形的知识,对平行四边形也有了初步的认识,这里着重给出的是平行四边形的特征以及与正方形、长方形的关系。梯形在这里是第一次正式出现,教材除教学梯形的特征外,还注意说明与平行四边形的联系和区别。
例题
具体内容及要求
垂直与平行
例1
认识同一平面内两条直线的特殊位置关系:平行和垂直。
例2
学习画垂线,认识“点到直线的距离”。
例3
学习画平行线,理解“平行线之间的距离处处相等”。
平行四边形和梯形
例1
把四边形分类,概括出平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。
例2
认识平行四边形的不稳定性,认识平行四边形的底和高,及梯形的的.各部分名称。
学习画高。
教学建议
1.关注学生已有的生活经验和知识基础,把握教学的起点和难点。
教学的任务是解决学生现有的认识水平与教育要求之间的矛盾,为学习而设计教学,是教学设计的出发点,也是归宿。这一单元中涉及的知识点:平行与垂直,平行四边形与梯形等,一方面这些几何图形在日常生活中应用广泛,学生头脑中已经积累了许多表象;另一方面,经过三年的数学学习,也具备了一定的知识基础。这些都是影响学生学习新知最重要的因素。为此,教师必须关注学生已有的生活经验和知识基础,从学生出发,把握教学的起点和难点,根据学生的实际情况,增加或补充一些内容。
2.理清知识之间的内在联系,突出教学的重点。
由于数学知识的系统性和严密的逻辑性,决定了旧知识中孕育着新内容,新知识又是原有知识的扩展。教学时,要善于理清知识间的联系,根据教学目标来确定内容的容量、密度和教学的重点,有机地联系单元、全册,乃至整个年级、整个学段的教学内容加以研究。如果把“平行与垂直”这一内容放到整个教材体系中,就不难发现它的学习既需要直线及角的知识做基础,同时又是认识平行四边形和梯形的基础。
3.注重学用结合,就地取材,充实教材内容。
尽管教材在素材的选材上尽可能地提供一些现实背景,设计了一些学以致用的习题,如借助于运动场景里的一些活动器材引出垂直与平行的内容,要求学生思考和讨论怎样测定立定跳远的成绩、怎样修路最近等。但由于教材的容量有限,还需要教师在教学过程中做必要的充实和拓展,使学生理解和认识数学知识的发生和发展过程,进一步认识和体会数学知识的重要用途,增强应用意识。
4.加强作图的训练和指导,重视作图能力的培养。
这一单元涉及到许多作图的内容,如画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高等,对四年级学生来说,这些都有一定的难度,教学时要加强作图的训练和指导,重视作图能力的培养。
5.本单元可用6课时完成。
平行四边形教案 篇9
教学目标:
知识技能:认识平行四边形,能在方格纸上画平行四边形。
过程方法:在对简单图形分类的过程中,经历认识平行四边形的过程。
情感态度:鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用。
教学过程:
一、 创设情境
1、认识平行四边形
(1)出示下图,认真观察。94页的一组图形,让学生仔细观察,然后提出分类的要求。
(2)在交流的基础上,让学生了解什么样的图形叫做平行四边形。
(3)引导学生从自动拉门、篱笆中找出平行四边形。
2、感悟平行四边形的'特征
⑴学会画平行四边形。
教师掩饰在方格纸上画一个平行四边形。
⑵引导学生找到平行四边形的不稳定性。
二、实践与应用
1.下面哪些图形是平行四边形?把它涂上色。
2.在方格纸上画一个大一点的平行四边形。
三、全课小结
学生汇报本节课的收获。
平行四边形教案 篇10
教学目标:
1.使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积.
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.
3.对学生进行辩诈唯物主义观点的启蒙教育.
教学重点:理解公式并正确计算平行四边形的面积.
教学难点:理解平行四边形面积公式的推导过程.
学具准备:每个学生准备一个平行四边形。
教学过程:
1、什么是面积?
2、请同学翻书到80页,请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?
二、导入新课
根据长方形的面积=长×宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
三、讲授新课
(一)、数方格法
用展示台出示方格图
1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)
2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
2、请同学看方格图填80页最下方的表,填完后请学生回答发现了什么?
:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法
1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?
2、然后指名到前边演示。
3、教师示范平行四边形转化成长方形的过程。
刚才发现同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部。右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导。)
4、观察(黑板上在剪拼成的长方形左面放一个原来的平行四边形,便于比较。)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么样的关系?
③这个长方形的宽与平行四边形的高有什么样的关系?
教师归纳:任意一个平行四边形都可以转化成一个长方形,它的面积和原来的平行四边形的面积相等,它的长、宽分别和原来的.平行四边形的底、高相等。
5、引导学生平行四边形面积计算公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高。)
6、教学用字母表示平行四边形的面积公式。
板书:S=a×h,告知S和h的读音。
说明在含有字母的式子里,字母和字母中间的乘号可以记作“”,写成ah,也可以省略不写,所以平行四边形面积的计算公式可以写成S=ah,或者S=ah。
(6)完成第81页中间的“填空”。
7、验证公式
学生利用所学的公式计算出“方格图中平行四边形的面积”和用数方格的方法求出的面积相比较“相等”,加以验证。
条件强化:求平行四边形的面积必须知道哪两个条件?(底和高)
(四)应用
1、学生自学例1后,教师根据学生提出的问题讲解。
3、判断,并说明理由。
(1)两个平行四边形的高相等,它们的面积就相等()
(2)平行四边形底越长,它的面积就越大()
4、做书上82页2题。
四、体验
今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?
五、作业
练习十五第1题。
六、板书设计
平行四边形面积的计算
长方形的面积=长×宽 平行四边形的面积=底×高
S=a×hS=ah或S=ah
课后反思:
【平行四边形教案】相关文章:
平行四边形的认识教案07-30
平行四边形教案范文09-30
《认识平行四边形》教案08-26
平行四边形面积教案07-20
平行四边形优秀教案09-11
平行四边形教案4篇05-25
平行四边形和梯形教案05-14
平行四边形面积的计算教案07-23
精选平行四边形教案3篇05-25
精选平行四边形教案9篇05-26