平行四边形教案锦集十篇
在教学工作者开展教学活动前,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。那么教案应该怎么写才合适呢?以下是小编帮大家整理的平行四边形教案10篇,仅供参考,欢迎大家阅读。
平行四边形教案 篇1
教材分析:
平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。教材以平行四边形的面积计算为重点,先用数方格方法计算图形的面积,帮助学生进一步理解面积和面积单位的含义,为推导平行四边形的面积计算公式提供感性材料。再是通过割补实验,把一个平行四边形转化为一个与它面积相等的长方形,把新旧知识联系起来,使学生明确图形之间的内在联系,便于从已经学过的图形面积计算公式推导出新的图形面积计算公式,使学生明确面积计算公式的意义和。在引导学生动手操作的.基础上,初步培养学生的空间想象力和思维能力。使他们从“学会”到“会学”,培养学生良好的学习习惯和学习品质。教学中以长方形的面积公式为基础,通过学生比一比、看一看、动一动、想一想得出平行四边形的面积公式,并来在实际生活中用一用。
几何初步知识的教学是培养学生抽象概括能力、思维能力和发展空间观念的重要途径。本节教学中向学生渗透了平移旋转的思想,为将来学习图形的变换积累一些感性认识。
教学目标:
1、通过剪、拼、摆等活动,让学生主动探究平行四边形的面积计算公式。
2、掌握平行四边形面积计算公式并能解决实际问题。
3、培养学生初步的空间观念。
4、培养学生积极参与、团结合作、主动探索的精神。
教学重点:平行四边形面积的计算。
教学难点:平行四边形面积公式的推导过程。
教学准备:学具。
教学过程:
一、质疑引新
1、显示长方形图
长方形的面积怎样求?
2、电脑展示长方形变形为平行四边形。
原来的长方形变成了什么图形?它的面积怎样求呢?
二、引导探究
(一)、铺垫导引
出示第42页三幅图,先让学生说出一个小正方形的边长是几厘米,然后数出它们的面积。
小结:用数方格的方法求面积比较麻烦,用什么方法可以很快求出它们的面积呢?
实验、操作(小组合作):把后两幅图转化成长方形
电脑在学生感到有困难的时候提示,利用闪烁功能,先把两个小长方形比较,表明两个小长方形形状相同。根据学生讨论结果,演示剪、移、拼过程。
集体交流,重点讨论第二幅图的多种剪、移、拼方法(根据学生回答电脑演示不同的剪拼过程)
讨论:
剪拼前后,图形的形状变了没有?面积有没有变?
做了这个实验你想到了什么?
(二)、实验探索
刚才用剪、移、拼的方法解决一个求图形面积的问题,用这样的方法,你能不能探索出平行四边形面积的计算方法呢?
学生实验操作
1、提出实验要求:在平行四边形上找到一条线段,沿这条线段剪开,移一移、拼一拼,把它拼成一个长方形。
2、分小组实验操作,把实验结果填在书上表格内,鼓励多种剪拼法。
3、集体交流,展示不同的剪拼结果。根据学生的回答,电脑分别演示不同的剪拼过程。
结合学生发言提问:
你在平行四边形上沿哪条线段剪开的?
这条线段实际上是平行四边形的什么?
在学生回答的基础上小结:沿着平行四边形底边上的任意一条高,都可以把一个平行四边形剪拼成一个长方形。
(三)总结归纳
问:
1、平行四边形剪拼成长方形后,两种图形的面积有什么关系?
2、剪拼成的长方形的长和宽分别与平行四边形的底和高有什么关系?(电脑演示比较长方形的长与平行四边形的底的长度、长方形的宽分别与平行四边形的高的长度。)
得出:平行四边形面积=底×高
追问:要求平行四边形的面积,必须知道哪两个条件?
用字母表示公式
学生自学P44~P45有关内容
集体交流:S=a×h
S=a·h
S=ah
教师强调乘号的简写与略写的方法
三、深化认识
1、验证公式
学生利用公式计算P43表格平行四边形的面积,看结果是否和实验结果一样。
2、应用公式
a) 例题
学生列式解答,并说出列式的根据。
b) 做练一练
四、巩固练习
1、求下列图形的面积是多少?
底5厘米,高3。5厘米 底6厘米,高2厘米
2、计算下面图形的面积哪个算式正确?(单位:米)
3×8 3×6 4×8 6×8 3×4 4×6
3、求平行四边形的高是多少?
面积:56平方厘米
底:8厘米
4、开放题:山西地形图。先根据信息猜测是哪个省市的地形图,山西南北大约590千米,东西大约310千米,估计它的土地面积。
以小组为单位探讨多种想法
五、总结全课(电脑显示、学生口答)
把一个平行四边形沿着高剪成两部分,通过( )法,可以把这两部分拼成一个( )形。这个长方形的( )等于平行四边形的( ),这个长方形的( )等于平行四边形的( ),因为长方形的面积=长×宽,所以平行四边形的面积等于( ), 用字母表示平行四边形的面积公式( )。
平行四边形教案 篇2
教学过程
一、课堂引入
1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?
2.你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)
图中有几个平行四边形?你是如何判断的?
二、例习题分析
例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.
分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.
方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)
方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
定义:连接三角形两边中点的线段叫做三角形的中位线.
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的中位线与第三边有怎样的关系?
(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的'端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)
三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。
平行四边形教案 篇3
教学目标:
知识技能:认识平行四边形,能在方格纸上画平行四边形。
过程方法:在对简单图形分类的过程中,经历认识平行四边形的过程。
情感态度:鼓励学生发现日常生活中形状是平行四边形的物体,初步体会平行四边形的作用。
教学过程:
一、 创设情境
1、认识平行四边形
(1)出示下图,认真观察。94页的一组图形,让学生仔细观察,然后提出分类的.要求。
(2)在交流的基础上,让学生了解什么样的图形叫做平行四边形。
(3)引导学生从自动拉门、篱笆中找出平行四边形。
2、感悟平行四边形的特征
⑴学会画平行四边形。
教师掩饰在方格纸上画一个平行四边形。
⑵引导学生找到平行四边形的不稳定性。
二、实践与应用
1.下面哪些图形是平行四边形?把它涂上色。
2.在方格纸上画一个大一点的平行四边形。
三、全课小结
学生汇报本节课的收获。
平行四边形教案 篇4
【当堂检测】
1.(20xx 年永州市).下列命题是假命题的是( )
A.两点之间,线段最短; B.过不在同一直线上的三点有且只有一个圆.
C.一组对应边相等的两个等边三角形全等; D.对角线相等的.四边形是矩形.
2.如图,一个四边形花坛 ,被两条线段 分成四个部分,分别种上红、黄、紫、白四种花卉,种植面积依次是 ,若 , ,则有( )
A. B. C. D.都不对
3.(20xx襄樊)如图,在平行四边形 中, 于E 且 是一元二次方程 的根,则平行四边形 的周长为( )
A. B. C. D.
4.(20xx年南宁市)如图(1),在边长为5的正方形 中,点 、 分别是 、 边上的点,且 , .
(1)求 ∶ 的值;
(2)延长 交正方形外角平分线 ,如图2试判断 的大小关系,并说明理由;
(3)在图(2)的 边上是否存在一点 ,使得四边形 是平行四边形?若存在,请给予证明;若不存在,请说明理由.
平行四边形教案 篇5
教 学 分 析
本节课是在学生已经认识长方形、正方形的基础上进行教学。重点是让学生通过亲自观察、动手测量、比较掌握长方形、正方形的特点,初步认识平行四边形。
教 学 目 标
知识与 技能
引导学生观察长方形、正方形的边、角的特点,认识长方形和正方形的共性及各自的特性。会在方格纸上画长方形、正方形,并认识平行四边形。
过程与 方法
学生通过观察比较、动手操作、交流合作等活动发现长方形和正方形的.特点,积累感性认识,初步认识平行四边形。
情感态度价值观
培养学生积极参与的学习品质,使学生获得成功的体验,感受教学与日常生活的密切联系,树立学好数学的信心。
教学策略
创设情景 动手实践 交流合作
教具学具
多媒体课件、长方形、正方形、格子纸、三角板
教 学 流 程
教师活动
学生活动
一、 创设情景,提出问题
今天,我们的好朋友智慧星要带领大家到图形王国去参观。参观之前提一个小小的要求,请你仔细观察、多动脑筋。(多媒体演示图片)你能说出这些事物中你认识的图形吗?(抽出长方形、正方形。引出课题)
二、 协作探索,研究问题
1. 教学长方形、正方形
(1) 多媒体出示长方形、正方形:请大家仔细观察他们各有几条边,几个角?
(2) 教学对边的概念:
在生活中我们把两个人面对面叫做对面,在长方形中上下两条边我们把它们叫做对边、左右两条边也叫对边。(多媒体演示)
(3) 小组合作研究长方形、正方形的特点
下面请大家利用你手中的工具量一量、折一折、比一比,和组内同学说一说,你自己手中
观察汇报
观察汇报
学习对边的概念
小组合作
动手操作
长方形的对边和正方形的边有什么特点,角有什么特点?
(4) 指名汇报,并演示自己发现的过程。
共同总结:长方形和正方形都是四条边围成的图形,它们都是四边形,它们的每个角都是直角,长方形的对边相等,正方形的四条边都相等。
(5) 在方格纸上画出长方形、正方形
2. 教学平行四边形
(1) 多媒体演示:在生活中我们还会看到这样一些图形,它们是长方形吗?是正方形吗?
我们把这样的四边形叫做平行四边形。
(2) 平行四边形的特点:
出示格子图中平行四边形:引导学生观察,用数格子的方法数一数你发现平行四边形的对边有什么特点?
(3) 总结:平行四边形有四条边,四个角,对边相等。
(4) 动手操作:拿出活动的四边形:拉动之后你发现了什么?
汇报总结
动手实践
观察认识平行四边形
观察思考发现特点
动手操作
三、 运用知识,解决问题。
1. 猜一猜。(多媒体演示)
2. 找一找。(多媒体演示)
3. 说一说。
四、 总结。
你今天从智慧星那里学到了什么?
练习巩固
总结交流
板书设计 :
长方形 正方形 和 平行四边形
边: 4条 4条 4条
对边相等 全都相等 对边相等
角:4个直角 4个直角 4个
平行四边形教案 篇6
教材分析
本节课是在学生已经掌握平行四边形的特征,理解并能正确运用长方形面积计算公式的基础上进行教学的,在本节课中学生要经历平行四边形面积计算公式的推导过程,理解平行四边形的面积计算公式,为今后学习三角形、梯形等平面图形面积计算公式奠定基础。
教材首先以比较花坛大小的情境引入,充分体现数学源于生活的课程理念;通过数格法,比较平行四边形和长方形的面积大小,再通过割补法,将平行四边形转化成与它面积相等的长方形,从而渗透“转化”的数学思想。
教学目标
1.探索平行四边形的面积公式,掌握并能正确运用公式解决实际问题。
2.通过操作、观察、比较,培养学生分析、抽象概括能力,渗透转化思想。
3.在探索的过程中获得成功的体验,激发学生学习数学的兴趣。
根据目标的定位,我将“掌握平行四边形的面积计算公式”作为本节课的重点,而本课要突破的难点是“经历平行四边形面积公式的探究过程”
教学方法
《数学课程标准》提出了重视学生学习过程的全新理念。在本节课中我主要以引导探究法为主,以学生参与活动为主线,引导学生大胆猜想、通过数格子和剪拼验证、观察比较,使小组教学和班级教学紧密联系,并通过自主探索、合作交流发展能力。
教学过程
教学环节
教学活动
设计意图
一、创设情境,引入新知
二、动手实践、探索新知
三、尝试练习,提升能力
四、课堂小结,梳理提高
以争论面积大小的`故事情境引入,引出要比较大小就得先算面积。回顾了长方形面积计算公式=长×宽,并通过回忆长方形
(一)提出猜想
【提问】平行四边形的面积可能等于什么?
受长方形面积公式的迁移学生可能会出现两种答案:①底×高 ②底×斜边(学生争论)
(二)动手验证
(课前准备好剪刀、方格纸、尺子、两个图形纸的学具,放在信封里。)请大家拿出信封,小组合作,验证你的猜想。教师巡视并扮演好合作者的角色,给予适当地指导。
1.多数学生会选用数格法,得到两个图形面积相等。
【追问】如果让你测量花坛的面积,你也用数格法吗?
【询问】我们能不能把平行四边形转化成我们熟悉的图形,再计算它的面积呢?
再次验证,并提出活动要求
(1) 你把平行四边形转化成什么图形?
(2) 什么变了,什么没变?
(3) 平行四边形的面积怎么算?
2.交流反馈(一个演示,一个讲解)
【提问】看懂这种方法吗?有谁的和他不同?
(三)动眼观察
【提问】这两种方法有什么共同之处?
学生可能会发现,都是沿着高剪的,因为只有这样才会有直角,而且都拼成了长方形。
【追问】什么变了,什么没变?
学生发现,形状变了,面积没有变。因为平行四边形的底就相当于长方形的长,平行四边形的高就相当于长方形的宽,根据长方形的面积等于长乘宽,所以得到平行四边形的面积等于底乘高。
(小组内、同桌间说一说变化的过程,加深对公式的理解)
(四)自学课本
引导学生自学课本,用字母表示公式。
S=ah(用S表示平行四边形的面积,用a表示平行四边形的底,h表示平行四边形的高)
【追问】要求平行四边形的面积,必须知道什么?
(一)基本技能训练
(1) 计算平行四边形的面积
(2) 蓝色线这条高的长度
(二)解决实际问题
快乐公园由三个高都是16m的平行四边形组成,其中中间是一条长河,两边种植花草树木。(如下图)
(三)提升思维能力
1.在方格纸上画一个面积是24平方厘米的平行四边形
2.如果这个平行四边形的底是4厘米,那么能画出几种?
这节课你学习了什么,有哪些收获?
教材是以比较花坛大小的情境导入,但我认为这一情境不是很贴切学生的认知,教师在尊重教材的同时但又不能拘泥于教材,因此我对教材进行创造性地改编。
感受数格法不受用,从而激发起探究欲望。
本环节以“大胆猜想—动手操作—动眼观察—动脑思考”为主线,引导学生带着猜想自主探究,让不同起点的学生都能经历平行四边形面积公式的推导过程,体验转化思想,发展探索的能力,使学生在做数学的过程中感悟数学。
打破学生思维定势,感受高和底的对应。
发散学生思维,同时渗透变与不变的辩证唯物思想,感受同底等高。
通过对全课进行总结,帮助学生梳理知识,形成知识体系,并帮助学生对自己的学习方法进行小结。
平行四边形教案 篇7
【实验目的】
验证互成角度的两个力合成时的平行四边形定则。
【实验原理】
等效法:使一个力F的作用效果和两个力F1、F2的作用效果都是让同一条一端固定的橡皮条伸长到某点,所以这一个力F就是两个力F1和F2的合力,作出F的图示,再根据平行四边形定则作出F1和F2的合力F的图示,比较F和F的大小和方向是否都相同。
【实验器材】
方木板一块、白纸、弹簧测力计(两只)、橡皮条、细绳套(两个)、三角板、刻度尺、图钉(几个)、细芯铅笔。
【实验步骤】
⑴用图钉把白纸钉在水平桌面上的方木板上,并用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套。
⑵用两只弹簧测力计分别钩住细绳套,互成角度地拉像皮条,使橡皮条伸长到某一位置O,如图所示,记录两弹簧测力计的读数,用铅笔描下O点的位置及此时两细绳套的方向。
⑶只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下弹簧测力计的读数和细绳套的方向。
⑷用铅笔和刻度尺从结点O沿两条细绳套方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以F1和F2为邻边用刻度尺作平行四边形,过O点画平行四边形的对角线,此对角线即为合力F的图示。
⑸用刻度尺从O点按同样的标度沿记录的方向作出只用一只弹簧测力计的拉力F的图示。
⑹比较一下,力F与用平行四边形定则求出的合力F的大小和方向是否相同。
锦囊妙诀:白纸钉在木板处,两秤同拉有角度,读数画线选标度,再用一秤拉同处,作出力的矢量图。
交流与思考:每次实验都必须保证结点的位置保持不变,这体现了怎样的物理思想方法?若两次橡皮条的伸长长度相同,能否验证平行四边形定则?
提示:每次实验保证结点位置保持不变,是为了使合力的作用效果与两个分力共同作用的效果相同,这是物理学中等效替换的思想方法。由于力不仅有大小,还有方向,若两次橡皮条的`伸长长度相同但结点位置不同,说明两次效果不同,不满足合力与分力的关系,不能验证平行四边形定则。
【误差分析】
⑴用两个测力计拉橡皮条时,橡皮条、细绳和测力计不在同一个平面内,这样两个测力计的水平分力的实际合力比由作图法得到的合力小。
⑵结点O的位置和两个测力计的方向画得不准,造成作图的误差。
⑶两个分力的起始夹角太大,如大于120,再重做两次实验,为保证结点O位置不变(即保证合力不变),则变化范围不大,因而测力计示数变化不显着,读数误差大。
⑷作图比例不恰当造成作图误差。
交流与思考:实验时由作图法得到的合力F和单个测力计测量的实际合力F忘记标注而造成错乱,你如何加以区分?
提示:由弹簧测力计测量合力时必须使橡皮筋伸直,所以与AO共线的合力表示由单个测力计测量得到的实际合力F,不共线的合力表示由作图法得到的合力F。
【注意事项】
⑴不要直接以橡皮条端点为结点,可拴一短细绳连两细绳套,以三绳交点为结点,应使结点小些,以便准确地记录结点O的位置。
⑵使用弹簧秤前,应先调节零刻度,使用时不超量程,拉弹簧秤时,应使弹簧秤与木板平行。
⑶在同一次实验中,橡皮条伸长时的结点位置要相同。
⑷被测力的方向应与弹簧测力计轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。
⑸读数时应正对、平视刻度。
⑹两拉力F1和F2夹角不宜过小,作力的图示,标度要一致。
交流与思考:如何设计实验探究两力合力随角度的变化规律?如何观察合力的变化规律?
提示:保持两力的大小不变,改变两力之间的夹角,使两力的合力发生变化,可以通过观察结点的位置变化,判断合力大小的变化情况,结点离固定点越远,说明两力的合力越大。
【正确使用弹簧秤】
⑴弹簧秤的选取方法是:将两只弹簧秤调零后互钩水平对拉,若两只弹簧在对拉过程中,读数相同,则可选;若读数不同,应另换弹簧,直至相同为止。
⑵弹簧秤不能在超出它的测量范围的情况下使用。
⑶使用前要检查指针是否指在零刻度线上,否则应校正零位(无法校正的要记录下零误差)。
⑷被测力的方向应与弹簧秤轴线方向一致,拉动时弹簧不可与外壳相碰或摩擦。
⑸读数时应正对、平视刻度。
平行四边形教案 篇8
教学目标
1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。
2.通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力。
3.对学生进行辩诈唯物主义观点的启蒙教育。
教学重点
理解公式并正确计算平行四边形的面积。
教学难点
理解平行四边形面积公式的推导过程。
教学过程
一、复习引入
1.拿出事先准备好的长方形和平行四边形。量出它的长和宽(平行四边形量出底和高)。
2.观察老师出示的几个平行四边形,指出它的底和高。
3.教师出示一个长方形和一个平行四边形。
猜测:
哪一个图形面积比较大?大多少平方厘米呢?
师:要想我们准确的答案,就要用到今天所学的知识--平行四边形面积的计算(板书课题)
二、指导探究
1.数方格方法
(1)小组合作讨论:
a.图上标的厘米表示什么?每个小方格表示1平方厘米为什么?
b.长方形的长是多少厘米?宽是多少厘米?面积是多少平方厘米?
c.用数方格的方法,求出平行四边形的面积?(不满一格的,都按半格计算)
d.比较平行四边形的底和长方形的长,再比较平行四边形的高和长方形的宽,你发现了什么?
(2)集体订正
(3)请同学评价一下用数方格的方法求平行四边形的面积。
(麻烦,有局限性)
2.探索平行四边形面积的计算公式。
(1)教师讲话:不数方格怎样能够计算平行四边形的面积呢?想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。
(2)学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的`。
(3)同学到前面演示转化的方法。
(4)教师演示课件并组织学生讨论:
①平行四边形和转化后的长方形有什么关系?
②怎样计算平行四边形的面积?为什么?
③如果用S表示平行四边形的面积,用a表示平行四边形的底,用n表示平行四边形的高,那么平行四边形面积的字母公式是什么?
3、应用
例1一块平行四边形钢板,它的面积是多少?(得数保留整数)
4.83.517(平方米)
答:它的面积约是17平方米。
三、质疑小结
今天你学到了哪些知识?怎样计算平行四边形面积?
四、巩固练习
1、列式并计算面积
①底厘米,高厘米,
②底米,高米,
③底分米,高分米
2、说出下面每个平行四边形的底和高,计算它们的面积。
3、应用题
有一块地近似平行四边形,底是43米,商是20.1米,这块地的面积约是多少平方米?(得数保留整数)
4、量出你手里平行四边形学具的底和高,并计算出它的面积。
平行四边形教案 篇9
教学内容:
人教版小学数学教材五年级上册第87~88页例1及相关练习。
教学目标:
1.通过操作、观察、比较等活动,自主探索平行四边形面积计算公式,渗透转化思想。
2.能正确地应用公式计算平行四边形的面积。
教学重点:
探索并掌握平行四边形面积计算公式。
教学难点:
理解平行四边形面积计算公式的推导过程,体会转化思想。
教学准备:
课件,一个框架式可以活动的平行四边形教具,为学生准备一张底为6 cm、高为4 cm的平行四边形纸张。
教学过程:
一、激趣引入
1.游戏。面积比大小:你能很快比较出下面每组图中阴影部分面积的大小吗?
你怎么知道它们的面积一样大的?(反馈重点:①数方格;②转化成长方形。)
2.(出示平行四边形)这个图形是?(平行四边形)。关于平行四边形,大家已经知道了哪些知识?
3.揭示课题:今天,这节课我们要来研究平行四边形的面积,谁能说说平行四边形的面积指的是哪部分呢?
【设计意图】转化的思想是推导平面图形面积计算方法的指导思想,作为本单元的起始课,通过面积比大小的游戏,让学生意识到不仅可以通过数方格来比较图形的大小,还可以通过剪拼转化成熟悉的图形进行大小比较,既富有趣味性,又能为新知的探究做好铺垫。
二、新知探究
(一)合理猜想
1.确实,由四条边围成的封闭图形的大小就是平行四边形的面积。那么同学们猜想一下,这个平行四边形的面积可能会怎么计算?并说说你的理由。
预设1:邻边相乘;
预设2:底边乘高。
2.同桌互相说一说,你同意哪一种猜想?理由是什么?
3.反馈想法。
预设1:长方形的面积是长乘宽,所以平行四边形的面积是底乘邻边。把平行四边形拉一拉就可以变成长方形。
预设2:用底边乘高来计算。可以通过剪一剪、拼一拼,把平行四边形转化为长方形,再计算面积。
(二)验证猜想
同学们都想到将平行四边形的面积转化成长方形的面积来计算,那么这两种方法有什么不同?哪种方法更合理呢?
1.邻边相乘的想法
教师:就让我们先来研究一下拉的方法。(出示教具)请看,我们再次慢慢地把原来的平行四边形拉成长方形,仔细观察拉动前后什么没有变,什么发生了变化?
学生:边的长短没变,高和面积变了。
教师追问:周长变了吗?面积变大了还是变小了?能在图上更直观地表示出来吗?
教师:现在谁能说说这种拉的方法合理吗?为什么?
教师小结:是的,在拉动前后平行四边形的面积与长方形的面积不相等。用底乘邻边算出的不是平行四边形的面积,而是拉动后的长方形的面积。所以用拉的方法计算平行四边形的面积是不正确的。
【设计意图】利用教具进行操作对比,让学生通过观察自觉修正自己的想法。
2.底边乘高的想法
(1)数格子验证
教师:这里的一些不是整格的怎么数?
学生:可以通过拼一拼,变成整格的再数。
教师:拼一拼后,就变成了什么形状?这个长方形的长和宽分别是多少?所以面积是多少?
(2)剪拼验证
教师:谁来展示你是如何进行剪接的?
学生:沿高剪下,补到另一边,拼成长方形。
教师:拼成的是一个怎样的长方形?(长6 cm,宽4 cm)
那这个长方形的面积怎么算?(平行四边形的面积是24 cm2)。
【设计意图】让学生大胆提出假设,并让学生自主思考通过数格子、剪拼等实践操作进行验证。在操作反馈中,让他们在和同学、老师的交流过程中,展示自己的想法,完善自己的思考,对于知识的获取是很有益处的。
(三)公式推导
教师:仔细观察, 拼成的长方形的'长和宽分别相当于原来的平行四边形中的哪两部分?
学生:长方形的长与平行四边形的底相等,长方形的宽与原来平行四边形的高相等。
教师:那么根据长方形的面积计算公式,平行四边形的面积该怎么计算呢?
教师:如果我们用
表示平行四边形的面积,用
表示平行四边形的底,用
表示平行四边形的高,那么平行四边形的面积计算公式可以用
来表示。
(四)回顾总结
回顾刚才的学习过程,谁能说说我们是怎样学习平行四边形的面积的计算方法的?
【设计意图】通过观察对比,让学生发现转化前后图形之间的相同点之后,沟通两个图形之间的内在联系,顺利地把新知转化为旧知,从而顺利推导出平行四边形面积的计算公式。
三、练习巩固
(一)基础练习
1.完成练习十九第1题。
(1)请学生计算,并进行订正。
(2)反馈小结:在计算时,可以先写出面积公式,再进行计算。
2.完成练习十九第2题。
(1)请学生计算,并进行反馈。
(2)反馈侧重:最后一小题引导学生注意找准相对应的底和高。教师还可以根据学生的学习情况进行补充练习。
【设计意图】教材本身就提供了多层次的练习,教师在这里进行合理选择,通过基础题、变化题练习,帮助学生进一步明确计算平行四边形面积所需要的条件,巩固所学的知识。
(二)拓展提升
一块平行四边形木板,底是4 cm ,高是3 cm 。它的面积是多少?
1.引导学生算出它的面积;
2.请学生在方格纸上画出这样的平行四边形;
3.教师:像这样的平行四边形你能画出多少个?(无数个)它们的面积相等吗?说说你的理由。
4.教师小结:是的,像这样的平行四边形剪拼之后都可以转化成一个长4 cm,宽3 cm 的长方形,它们的面积都相等。由此,可以得到等底等高的平行四边形面积一定相等。
5.思考:面积相等的平行四边形一定等底等高吗?为什么?
【设计意图】从已知条件求面积到根据条件画图形,让学生在画图反馈的过程中感受到等底等高的平行四边形面积相等,既提升了所学知识,又关注了学生的思考,培养学生的分析归纳能力。
四、总结提示
教师:回忆一下,今天这节课有什么收获?
总结:我们用把平行四边形转化成长方形的方法推导出了平行四边形的面积计算方法,这种转化的思想对于我们的数学学习很重要。
【设计意图】在本节课的最后,教师通过回忆帮学生把本节课得到的数学活动经验进行总结,引导学生在后续的学习中也利用转化的思想对图形的面积进行自主探索。
平行四边形教案 篇10
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。
教学目标:
1。通过操作和讨论掌握平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。
2。培养分分析观察能力、动手操作能力和有序思考的能力,培养学生的空间观念和想像力。
3。体会数学学习的乐趣,树立学习信心,感受数学价值。
教学重点:
通过操作和讨论掌握平行四边形和梯形的特征。
教学难点:
了解平行四边形与长方形和正方形的关系。
教学准备
教具:正方形、长方形、平行四边形和梯形图各一;多媒体课件。
学具:直尺,三角板,练习纸一张。
教学过程:
一、回顾旧知,引入新课。
师:孩子们,在我们三年级时已经学过并认识了许多的四边形,那怎样的图形叫四边形呢?
师:今天四边形之家要邀请它的家族成员来开联欢会,看,它们来了。(课件出示)你还认识它们吗?请你说一说你认识的图形的名称。(生说名称,教师相应的课件出示名称)
师:你能把它们分分类吗?
师:长方形和正方形是我们的老朋友了,你们能介绍它们的边与角各有什么特征吗?
师:这两个图形(出示和,并粘贴在黑板上)你能试着说一说它的.特征吗?
师:长方形和正方形我们已经很熟悉了,所以大家描述得既准确又充分,(拿下长方形和正方形),指着平行四边形和梯形说:这两个图形我们不熟悉,所以描述的信息不够准确,没关系,通过本节课的学习,会让你清楚的认识平行四边形和梯形。
二、探索发现,掌握特征。
1。联系生活,建构概念
师:其实生活中就有许多物体的表面是平行四边形或梯形。(课件出示一组图片)找一找,有平行四边形吗?梯形呢?说说看!
师:你们真会观察啊!除了这些,你能举出生活中的哪些物体的表面是平行四边形和梯形呢?(生举例)
师:看来平行四边形和梯形在生活中应用很广泛,既然他们的应用如此广泛,我们就来研究什么叫做平行四边形,什么叫做梯形。(板书课题:平行四边形和梯形)
2。观察图形,直观感知
师:好了孩子们,先来看看平行四边形有什么特征?梯形有什么特征呢?
生说:平行四边形左右的边是平行的,平行四边形的上下的边也是平行的。师指图比划,梯形的上下边是平行的。
师:刚才这位同学说平行四边形的两组对边分别平行,梯形的一组边平行(老师说时带动作),这是我们通过观察得到的信息,真的是这样吗?下面我们就来验证。
3。验证猜想。
师:现在在你们的练习纸上有一个平行四边形和一个梯形,请你拿出工具检查平行四边形和梯形对边是否平行。
学生活动:验证。
活动结束师让学生在实物投影上就图说明。
师:通过刚才的验证他们组有这样的发现,其他组和他的发现一样的请举手,哦,大家都有这样的发现。是不是其他的平行四边形和梯形也具有这样的特点呢?
4。整体呈现,确定概念。
(1)平行四边形。
师:我们首先来看平行四边形。请看屏幕:课件出示三个不同的平行四边形并验证。
师:验证之后可以证实我们刚才的发现是正确的,是吗?谁再来说一说我们刚才的发现?
引导学生得出:两组对边分别平行的四边形叫做平行四边形。
学生读。
师:闭上眼睛想一想,你的脑子中的平行四边形是什么样的?
(2)梯形
师:我们知道了什么叫平行四边形。现在我们来看梯形。请看屏幕:课件出示三个不同的梯形并验证。
师:现在我们又证实了刚才梯形的发现是正确的,谁再来说一说刚才的发现?
引导学生得出:只有一组对边平行的四边形叫做梯形。
师:刚才这个同学发言中有一个特别重要的词,谁发现了?你能解释什么是“只有”吗?
学生读概念,闭上眼睛想一想梯形的样子。
5。对比概念,上升理解。
师:(指板贴平行四边形和梯形图)同学们,既然我们知道了平行四边形和梯形的概念了,谁说说它们的共同点是什么?
师:但也有不同,谁来说说哪里不同?
师:加着重号“分别”是什么意思?“只有”是什么意思?能不能不要这两个字?
三、巩固知识,加深理解
师:既然大家已经知道了什么叫做平行四边形、什么叫做梯形,那么,请你迅速的判断一下。
课件出示:下面的图形中.是平行四边形的画“○”,是梯形的画“√”。
(在完成此题的过程中,如果出现争议,则让学生议一议;无争议则提问:为什么在长方形下面画“○”?为什么说它是特殊的平行四边形?)
四、探讨四边形间的关系
师:到现在为止,我们学过了长方形、正方形、平行四边形和梯形,如果分别用一个集合圈来表示一种图形,这几种图形在四边形这个大家庭中应该站什么位置呢?(课件出示集合圈)
师:你会选择哪一个?为什么?(放大正确集合图)
师:谁能根据这个图说说它们的关系?(生说)
五、灵活应用,解决问题
师:看来,同学们对于各种四边形之间的关系已经很了解了,说到四边形,看。老师这里有一个(课件出示:)可它被数学书挡住了,猜一猜,它可能是什么图形呢?
继续演示:不可能是……?可能是……?
不可能是……?可能是……?
一定是……?为什么?
师:其实谜底早在我们的意料之中!
师:通过一次次的猜想,我能感觉对于平行四边形和梯形的了解越来越深入,想挑战吗?
2.分图形。
呈现题目:如果在平行四边形里画一条线段,把它分成两部分,这两部分可能是什么图形?画画看吧。
【平行四边形教案】相关文章:
平行四边形的认识教案07-30
平行四边形教案范文09-30
《认识平行四边形》教案08-26
平行四边形面积教案07-20
平行四边形优秀教案09-11
平行四边形教案4篇05-25
平行四边形和梯形教案05-14
平行四边形面积的计算教案07-23
精选平行四边形教案3篇05-25
精选平行四边形教案9篇05-26