精选平行四边形教案9篇
作为一名人民教师,可能需要进行教案编写工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。来参考自己需要的教案吧!下面是小编收集整理的平行四边形教案9篇,欢迎大家借鉴与参考,希望对大家有所帮助。
平行四边形教案 篇1
【学习目标】
1、平行四边形性质(对角线互相平分)
2、平行线之间的距离定义及性质
【新课探究】
活动一:
如图,□ABCD的两条对角线AC、BD相交于点O.
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)想办法验证你的猜想?
(3)平行四边形的性质:平行四边形的对角线
几何语言:∵四边形ABCD是平行四边形(已知)
∴AO==AC,BO==BD()
活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.
(1)线段AC,BD有怎样的位置关系?
(2)比较线段AC,BD的长短.
(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的`垂线段处处.
【知识应用】
1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.
3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是
【当堂反馈(小测)】:
1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长
3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?
【巩固提升】
1.平行四边形的两条对角线
2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的距离是
4、下列性质中,平行四边形不一定具备的是()
A、对角互补B、邻角互补C、对角相等D、内角和是360°
5、下列说法中,不正确的是()
A、平行四边形的对角线相等B、平行四边形的对边相等
C、平行四边形的对角线互相平分D、平行四边形的对角相等
6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长
7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。
8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。
(1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对进行证明。
9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。
(1)多做几条这样的直线,看看它们有什么共同的特征
(2)试着用旋转的有关知识解释你的发现。
平行四边形教案 篇2
一、创设情境,呈现真实
师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)
师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)
生活动后汇报如下:
长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米
(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米
(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米
二、否定错误猜想
1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。
你觉得哪种更合理?能不能举个例子,证明哪种是错误的。
生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。
师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?
生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?
2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?
生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。
师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)
生:(兴奋地)高!
师:现在,你觉得平行四边形的面积与它的什么有关?
生:我觉得平行四边形的面积与它的高有很大的关系。
3、师:用什么办法可以比较它们的面积大小呢?
生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。
师:变成长方形后,面积大小变了没有?
生:没有
师:那么要计算平行四边形的面积,应该怎么办?
生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。
生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的`高,所以第二种猜想是正确的。
师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。
三、归纳计算方法
师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。
根据学生反馈情况进行课件演示,出现几种拼法(略)
师:这几种剪拼方法有什么相同之处?
生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。
生:在剪拼过程中,图形的形状变了,面积不变。
师:为什么平行四边形的面积可以用“底乘高”来计算?
生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。
师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?
生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。
师:我们用S表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为S=ah。
四、反思探究过程
师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?
平行四边形教案 篇3
【设计理念】
本课以新课程理念为指导,以学生发展为根本,以问题引领为指向,让学生亲身经历探究平行四边形面积计算公式的推导过程。通过猜测验证、转化变形、联系比较、迁移推理、回顾总结、实践应用等数学活动,掌握平行四边形面积的计算方法,感悟数学的思想方法,获得基本的数学活动经验,养成良好的数学学习品质。教学内容
【教学内容】
《义务教育教科书》人教版数学课本五年级上册87——88页。
【教材、学情分析】
平行四边形面积计算,是在学生掌握了长方形、正方形面积计算方法的基础上安排的教学内容。是学习平面图形面积计算的进一步拓展。应用转化的数学思想方法推导平面图形面积计算公式是学生的初次接触,让学生为了解决问题主动地实现转化就成为本节课教学的关键。只要突破这一关键,其余的问题就会迎刃而解。
学生对平行四边形的特征有了一定的了解,但对平行四边形如何转化为长方形还没有经验,转化的意识也十分薄弱。因此,要让学生把转化变为一种需要,教师必须通过问题引领,为学生提供解决问题的直观材料和工具帮助学生探究,从而实现探究目标。
【教学目标】
1、经历平行四边形面积公式的探究推导过程,掌握平行四边形面积计算方法。能应用公式解决实际问题。
2、在探究的过程中感悟“转化”的数学思想和方法。
3、通过猜测、验证、观察、发现、推导等活动,培养学生良好的数学品质。
4、引领学生回顾反思,获得基本的数学活动经验。
【教学重点】
推导平行四边形面积计算公式。应用公式解决实际问题。
【教学难点】
理解平行四边形的面积计算公式的推导过程。
【教学准备】
平行四边形纸片若干,直尺、剪刀、。
【教学过程】
一、创设情境,激发兴趣。
讲述阿凡提智斗巴依老爷的故事,激发学生的好奇心。
【设计意图:创设生动的故事情境,加强了数学与生活的联系,让学生感受到数学就在身边,学习平行四边形的面积是有价值的,从而诱发学习的欲望。】
二、组织探究,推导公式。
1、联系旧知,做出猜想。
看到这个题目,你想到了我们学过哪些有关面积的知识?
大胆猜想:平行四边形的面积可能和哪些条件有关呢?该怎样计算?
【设计意图:引导学生回顾长方形、正方形的面积公式,让学生在已有知识经验的基础上,进而猜测平行四边形的面积公式。】
2、初步验证,感悟方法。
根据自己的猜想,测量并计算面积,然后选择合适的工具进行验证。
引导学生:可以用数方格的方法试一试。(出示方格纸中的平行四边形)
学生数方格并来验证自己的猜想。
【设计意图:让学生在算、数、观察的基础上进行比较,让学生初步领悟到平行四边形和长方形的关系,放手让学生自主探索、研究、比较,验证自己的猜想。】
3、剪拼转化,发现规律。
除了数方格,我们还能用什么方法来验证呢?(学生思考)
能否将平行四边形转化成我们学过的图形再来进行计算呢?
(1)请大家先以小组进行讨论,然后动手实践,比一比哪个小组完成的更快。
(2)展示交流。(演示)
【设计意图:把平行四边形转化成长方形,剪、拼的方法是关键,通过剪、拼方法的交流,凸显了剪、拼方法的'本质,训练了学生思维的灵活性。动手剪拼,进一步强化了对转化过程的认识与理解,初步感受到底和高相乘就是面积,为下一步教学起到了承上启下的作用。】
4、观察比较,推导公式。
剪拼后的长方形与原来的平行四边形有什么关系?平行四边形的面积怎样计算?为什么?用字母怎样表示?
小结: 长方形面积 = 长 × 宽
平行四边形面积 = 底 × 高
S = a × h
【设计意图:让学生观察发现转化前、后图形之间的联系,找共同点,自主推导平行四边形面积的计算公式,表达推导过程,发挥了学生的主体作用,发展了学生抓住关键有序表达的数学能力,有效的突出了教学重点。】
5、展开想象,再次验证。
是不是所有的平行四边形都可以转化成长方形?面积都可以用底乘高来计算呢?
学生先闭眼想象,再借助手中的工具加以验证。
6、回顾反思,总结经验。
回顾我们推导平行四边形面积计算公式的探究过程,我们是怎样推导出面积计算公式的,从中可以获得哪些经验。
把平行四边形转化成长方形面积。(剪拼—转化)
然后找到转化前、后图形之间的联系。(寻找—联系)
根据长方形面积公式推导出平行四边形面积公式。(推导—公式)
【设计意图:引导学生反思学习过程,总结活动经验,体现了新的课程理念,培养了学生的反思意识和反思能力,为学生的终身发展奠定基础。】
三、实践应用,解决问题。
1、解决实际问题
平行四边形花坛底是6米,高是4米,它的面积是多少?
2、出示如下图
算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)
3、下面是块近似平行四边形的菜地(引导学生理解计算平行四边形面积的时候,底和高必须是相对应的。)
王大爷:43×23 李大爷43×20,请你判断一下,谁对?谁错?
4、现在你明白阿凡提是怎么打败巴依的了吗?
引导学生明白:阿凡提利用了平行四边形易变形的特性调整了篱笆。
思考:阿凡提调整篱笆后的菜地面积变为100平方米,底20米,你知道高是多少吗?
【设计意图:解决实际问题,增强学生的应用意识。突出对应,明确计算面积的关键所在,感悟对应思想的价值和作用。面积大小的比较,培养学生发现规律,表达想法,解释现象,阐明道理的能力。】
四、总结全课,拓展延伸。
转化思想是一种重要的解决数学问题的方法,它是连接新旧知识的桥梁,合理利用,不仅可以掌握新知,还可以巩固旧知。希望同学们能把它作为我们的好朋友,帮助我们探索更多数学奥秘。
通过本节课的学习,同学们一定收获很多,下课以后,把自己的收获用日记记录下来,主动地到生活中去发现和解决一些关于平行四边形面积计算的问题。
【设计意图:试图把学生带入更加广阔的学习空间。】
五、板书设计
平行四边形的面积
长 方 形面积 = 长 × 宽
平行四边形面积 = 底 × 高
S = a × h
平行四边形教案 篇4
一、学习目标
1、经历探索多项式与多项式相乘的运算法则的过程,发展有条理的思考及语言表达能力。
2、 会进行简单的多项式与多项式的乘法运算
二、学习过程
(一)自学导航
1、创设情境
某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米,用两种方法表示这块林区现在的面积。
这块林区现在的长为 米,宽为 米。因而面积为________米2。
还可以把这块林地分为四小块,它们的面积分别为 米2, 米2,_______米2, 米2。故这块地的面积为 。
由于这两个算式表示的都是同一块地的面积,则有 =
如果把(m+n)看作一个整体,你还能用别的方法得到这个等式吗?
2、概括:
多项式乘以多项式的法则:
3、计算
(1) (2)
4、练一练
(1)
(二)合作攻关
1、某酒店的厨房进行改造,在厨房的中间设计一个准备台,要求四面的过道宽都为x米,已知厨房的长宽分别为8米和5米,用代数式表示该厨房过道的总面积。
2、解方程
(三)达标训练
1、填空题:
(1) = =
(2) = 。
2、计算
(1) (2)
(3) (4)
(四)提升
1、怎样进行多项式与多项式的乘法运算?
2、若 的乘积中不含 和 项,则a= b=
应用题
第三十五讲 应用题
在本讲中将介绍各类应用题的解法与技巧.
当今数学已经渗入到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点.
应用性问题能引导学生关心生活、关心社会,使学生充分到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心.
解答应用性问题,关键是要学会运用数学知识去观察、分析、概括所给的实际问题,揭示其数学本质,将其转化为数学模型.其求解程序如下:
在初中范围内常见的数学模型有:数式模型、方程模型、不等式模型、函数模型、平面几何模型、图表模型等.
例题求解
一、用数式模型解决应用题
数与式是最基本的数学语言,由于它能够有效、简捷、准确地揭示数学的本质,富有通用性和启发性,因而成为描述和表达数学问题的重要方法.
【例1】(20xx年安徽中考题)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变。有关数据如下表所示:
景点ABCDE
原价(元)1010152025
现价(元)55152530
平均日人数(千人)11232
(1)该风景区称调整前后这5个景点门票的平均收费不变,平均日总收入持平。问风景区是怎样计算的?
(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%。问游客是 怎样计算的?
(3)你认为风景区和游客哪一个的说法较能反映整体实际?
思路点拨 (1)风景区是这样计算的:
调整前的平均价格: ,设整后的平均价格:
∵调整前后的平均价格不变,平均日人数不变.
∴平均日总收入持平.
( 2)游客是这样计算的:
原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元)
现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元)
∴平均日总收入增加了
(3)游客的说法较能反映整体实际.
二、用方程模型解应用题
研究和解决生产实际和现实生恬中有关问题常常要用到方程<组)的知识,它可以帮助人们从数量关系和相等关系的角度去认识和理解现实世界.
【例2】 (重庆中考题)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2min内可以通过560名学生;当同时开启一道正门和一道侧门时,4mln内可以通过800名学生.
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5min内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门整否符合安全规定?请说明理由.
思路点拨 列方程(组)的关键是找到题中等量关系:两种测试中通过的学生数量.设未知数时一般问什么设什么.“符合安全规定”之义为最大通过量不小于学生总数.
(1)设平均每分钟一道正门可以通过x名学生,一道侧门可以通过y名学生,由题意得:
,解得:
(2)这栋楼最多有学生4×8×4 5=1440(名).
拥挤时5min4道门能通过.
5×2(120+80)(1-20%)=1600(名),
因1600>1440,故建造的4道门符合安全规定.
三、用不等式模型解应用题
现实世界中的不等关系是普遍存在的,许多问题有时并不需要研究它们之间的相等关系,只需要确定某个量的变化范围,即可对所研究的问题有比较清楚的认识.
【例3】 (苏州中考题)我国东南沿海某地的风力资源丰富,一年内月平均的风速不小于3m/s的时间共约160天,其中日平均风速不小于6m/s的时间占60天.为了充分利用“风能”这种“绿色资源”,该地拟建一个小型风力发电场,决定选用A、B两种型号的风力发电机,根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:一天的发电量)如下表:
日平均风速v(米/秒)v<33≤v<6v≥6
日发电量 (千瓦?时)A型发电机O≥36≥150
B型发电机O≥24≥90
根据上面的数据回答:
(1)若这个发电场购x台A型风力发电机,则预计这些A型风力发电机一年的发电总量至少为 千瓦?时;
(2)已知A型风力发电机每台O.3万元,B型风力发电机每台O.2万元.该发电场拟购置风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电场每年的发电总量不少于102000千瓦?时,请你提供符合条件的购机方案.
根据上面的数据回答:
思路点拨 (1) (100×36+60×150)x=12600x;
(2)设购A型发电机x台,则购B型发电机(10—x)台,
解法一根据题意得:
解得5≤x ≤6.
故可购A型发电机5台,B型发电机5台;或购A型发电机6台,B型发电视4台.
四、用函数知识解决的应用题
函数类应用问题主要有以下两种类型:(1)从实际问题出发,引进数学符号,建立函数关系;(2)由提供的基本模型和初始条件去确定函数关系式.
【例4】 (扬州)杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点.对经营的某种晚报,杨嫂提供丁如下信息:
①买进每份0.20元,卖出每份0.30元;
②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份;
③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.10元退回给报社;
(1)填表:
一个月内每天买进该种晚报的份数100150
当月利润(单位:元)
(2)设每天从报社买进该种晚报x份,120≤x≤200时,月利润为y元,试求出y与x的函数关系式,并求月利润的最大值.
思路点拨(1)填表:
一个月内每天买进该种晚报的份数100150
当月利润(单位:元)300390
(2)由题意可知,一个月内的20天可获利润:
20×=2x(元);其余10天可获利润:
10=240—x(元);
故y=x+240,(120≤x≤200), 当x=200时,月利润y的最大值为440元.
注 根据题意,正确列出函数关系式,是解决问题的关键,这里特别要注意自变量x的取值范围.
另外,初三还会提及统计型应用题,几何型应用题.
【例5】 (桂林市)某公司需在一月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.
(1)求甲、乙两工程队单独完成此项工程所需的天数.
(2)如果请甲工程队施工,公司每日需付费用200 0元;如果请乙工程队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程;B.请乙队单独完成此项工 程; C.请甲、乙两队合作完成此项工程.以上方案哪一种花钱最少?
思路点拨 这是一道策略优选问题.工程问题中:工作量=工作效率×工时.
(1)设乙工程队单独完成此项工程需x天,根据题意得:
, x=30合题意,
所以,甲工程队单独完成此项工程需用20天,乙队需30天.
(2)各种方案所需的费用分别为:
A.请甲队需20xx×20=40000元;
B.请乙队需1400×30=4200元;
C.请甲、乙两队合作需(20xx+1400)×12=40800元.
所队单独请甲队完成此项工程花钱最少.
【例6】 (2全国联赛初赛题)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km的速度返回,在出发后的第60天,考察队行进了24km后回到出发点,试问:科学考察队的生态区考察了多少天?
思路点拨 挖掘题目中隐藏条件是关键!
设考察队到 生态区去用了x天,返回用了y天,考察用了z天,则x+y+z=60,
17x-25y=-1,即25y-17x=1. ①
这里x、y是正整数,现设 法求出①的`一组合题意的解,然后计算出z的值.
为此,先求出①的一组特殊解(x0,y0),(这里x0,y0可以是负整数).用辗转相除法.
25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.
与①的左端比较可知,x0 =-3,y0=-2.
下面再求出①的合题意的解.
由不定方程的知识可知,①的一切整数解可表示为x=-3+25t,y=-2+17t,
∴ x+y=42t-5,t为整数.按题意0 ∴z=60—(x+y)=23. 答:考察队在生态区考察的天数是23天. 注 本题涉及到的未知量多,最终转化为二元一次不定方程来解,希读者仔细咀嚼所用方法. 【例7】 (江苏省第17届初中竞赛题)华鑫超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠; (2)若一次购物满200元,但不超过500元,按标价给予九折优惠; (3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折 优惠. 小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购 买小明分两次购买的同样多的物品,他需付款多少? 思路点拨 应付198元购物款讨论: 第一次付款198元,可是所购物品的实价,未 享受优惠;也可能是按九折优惠后所付的款.故应分两种情况加以讨论. 情形1 当198元为购物不打折付的钱时,所购物品的原价为198元 . 又554=450+104,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱;104÷0. 8 =130(元). 因此,554元所购物品的原价为130+500=630(元),于是购买小呀花198 +630=828(元)所购的全部物品,小亮一次性购买应付500×0.9+(828-500)×0.8=712.4(元). 情形2 当198元为购物打九折付的钱时,所购物品的原价为198 ÷0.9=220(元) .仿情形1的讨论,,购220+630=850{元}物品一次性付款应为500×0.9+(850-500)×0.8=730(元). 综上所述,小亮一次去超市购买小明已购的同样多的物品,应付款712.40元或730元 【例8】 (20xx年全国数学竞赛题)某项工程,如果由甲、乙两队承包,2 天完成,需180000元;由乙、丙两队承包,3 天完成,需付150000元;由甲、丙两队承包,2 天完成,需付160000元.现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少? 思路点拨 关键问题是甲、乙、丙单独做各需的天数及独做时各方日付工资.分两个层次考虑: 设甲、乙、丙单独承包各需x、y、z天完成. 则 ,解得 再设甲、乙、丙单独工作一天,各需付u、v、w元, 则 ,解得 于是,由甲队单独承包,费用是45500×4=182000 (元). 由乙队单独承包,费用是29500×6= 177000 (元). 而丙队不能在一周内完成.所以由乙队承包费用最少. 学历训练 (A级) 1.(河南)在防治“SARS”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液? 2.(山东省竞赛题)某市为鼓励节约用水,对自来水妁收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费,某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费) 3.(江苏省竞赛题)甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题.试问:难题多还是容易题多?多的比少的多几道题? 4.某人从A地到B地乘坐出租车有两种方案,一种出租车收费标准是起步价10元,每千米1.2元;另一种出租车收费标准是起步价8元,每千米1.4元,问选择哪一种出租车比较合适? (提示:根据目前出租车管理条例,车型不同,起步价可以不同,但起步价的最大行驶里程是相同的,且此里程内只收起步价而不管其行驶里程是多少) (B级) 1.(全国初中数学竞赛题)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40min可抽完;如果用4台抽水机抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水机 台. 2.(希望杯)有一批影碟机(VCD)原售价:800元/台.甲商场用如下办法促销: 购买台数1~5台6~10台11~15台16~20台20台以上 每台价格760元720元680元640元600元 乙商场用如下办法促销:每次购买1~8台,每台打九折;每次购买9~16台,每台打八五折; 每次购买17~24台,每台打八折;每次购买24台以上,每台打七五折. (1)请仿照甲商场的促销列表,列出到乙商场购买VCD的购买台数与每台价格的对照表; (2)现在有A、B、C三个单位,且单位要买10台VCD,B单位要买16台VCD,C单位要买20台VCD,问他们到哪家商场购买花费较少? 3.(河北创新与知识应用竞赛题)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案. 4.从自动扶梯上走到二楼(扶梯本身也在行驶),如果男孩和女孩都做匀速运动且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达扶梯顶部(设男孩、女孩每次只踏—级).问: (1)扶梯露在外面的部分有多少级? (2)如果扶梯附近有一从二楼到一楼的楼梯,楼梯的级数和扶梯的级数相等,两孩子各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘扶梯(不考虑扶梯与楼梯间距离)则男孩第一次追上女孩时走了多少级台阶? 5.某化肥厂库存三种不同的混合肥,第一种 含磷60%,钾40%,第二种含钾10%,氮90%;第三种含钾50%,磷20%,氮30%,现将三种肥混合成含氮45%的混合肥100?(每种肥都必须取),试问在这三种不同混合肥的不同取量中,新混合肥含钾的取值范围. 6.(黄冈竞赛题)有麦田5块A、B、C、D、E,它们的产量,(单位:吨)、交通状况和每相邻两块麦田的距离如图21-2所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场.问建在哪快麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?图中圆圈内的数字为产量,直线段上的字母a、b、d表示距离,且b < a 多边形的边角与对角线 j.Co M 第十四讲 多边形的边角与对角线 边、角、对角线是多边形中最基本的概念,求多边形的边数 、内外角度数、对角线条数是解与多边形相关的基本问题,常用到三角形内角和、多边形内、外角和定理、不等式、方程等知识. 多边形 的内角和定理反映出一定的规律性:(n-2)×180°随n的变化而变化;而多边形的外角和定理反映出更本质的规律;360°是一个常数,把内角问题转化为外角问题,以静制动是解多边形有关问题的常用技巧. 将多边形问题转化为三角形问题来处理是解多边形问题的基本策略,连对角线或向外补形、对内分割是转化的常用方法,从凸 边形的一个顶点引出的对角线把 凸 边形分成 个多角形,凸n边形一共可引出 对角线. 例题求解 【例1】在一个多边形中,除了两个内角外,其余内角之和为20xx°,则这个多边形的边数是 . (江苏省竞赛题) 思路点拨 设除去的角为°,y°,多边形的边数 为 ,可建立关于x、y的不定方程;又0° 链接 世界上的万事万物是一个不断地聚合和分裂的过程,点是几何学最原始的概念,点生线、线生面、面生体,几何元素的聚合不断产生新的图形,另一方面,不断地分割已有的图形可得到新的几何图形,发现新的几何性质,多边形可分成三角形,三角形可以合成其他 一些几何图形. 【例2】 在凸10边形的所有内角中,锐角的个数最多是( ) A.0 B.1 C.3 D.5 (全国初中数学竞赛题) 思路点拨 多边形的内角和是随着多边形的边数变化而变化的,而外角和却总是不变的,因此,可把内角为锐角的个数讨论转化为 外角为钝角的个数的探讨. 【例3】 如图,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若将此三角形沿AD剪开成为两个三角形,在平面上把这两个三角形拼成一个四边形,你能拼出所有的不同形状的四边形吗?画出所拼四边形的示意图(标出图中直角),并分别写出所拼四边形的对角线的长. (乌鲁木齐市中考题) 思路点拨 把动手操作与合情想象相结合 ,解题的关键是能注意到重合的边作为四边形对角线有不同情形. 注 教学建模是当今教学教育、考试改革最热门的一个话题,简单地说,“数学建模”就是通过数学化(引元、画图等)把实际问题特化为一个数学问题,再运用相应的数学知识方法(模型)解决问题. 本例通过设元,把“没有重叠、没有空隙”转译成等式,通过不定方程求解. 【例4】 在日常生活中,观察各种建筑物的地板,就能发现地板常用各种正多边形地砖铺砌成美丽的图案.也就是说,使用给定的某些正多边形,能够拼成一个平面图形,既不留下一丝空白,又不互相重叠(在几何里叫做平面镶嵌),这显然与正多边形的内角大小有关,当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个周角(360°)时,就拼成了一个平面图形. (1)请根据下列图形,填写表中空格: (2)如果限于用一种正多边形镶嵌,哪几种正多边形能镶嵌成一个平面图形? (3)从正三角形、正四边形,正六边形中选一种,再在其他正多边形中选一种,请画出用这两种不同的正多边形镶嵌成的一个平面图形(草图);并探索这两种正多边形共能镶嵌成几种不同的平面 图形?说明你的理由. (陕西省中考题) 思路点拨 本例主要研究两个问题:①如果限用一种正多边形镶嵌,可选哪些正多边形;②选用两种正多边形镶嵌,既具有开放性,又具有探索性.假定正n边形满足铺砌要求,那么在它的顶点接合的地方,n个内角的和为360°,这样,将问题的讨论转化为求不定方程的正整数解. 【例5】 如图,五边形ABCDE的每条边所在直线沿该边垂直方向向外平移4个单位,得到新的五边形A'B'C'D'E'. (1)图中5块阴影部分即四边形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一个五边形吗?说明理由. (2)证明五边形A'B'C'D'E'的周长比五边形ABCD正的周长至少增加25个单位. (江苏省竞赛题) 思路点拨 (1)5块阴影部分要能拼成一个五边形须满足条件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三点分别共线;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周长等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圆的周长逼近估算. 1.如图,用硬纸片剪一个长为16cm、宽为12cm的长方形,再沿对角线把它分成两个三角形,用这两个三角形可拼出各种三角形和四边形来,其中周长最大的是 ?,周长最小的是 cm. (选6《荚国中小学数学课程标准》) 2.如图,∠1+∠2+∠3+∠4+∠5+∠6= . 3.如图,ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围是 . 4.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案: (1)第4个图案中有白色地面砖 块; (2)第n个图案中有白色地面砖 块. (江西省中考题) 5.凸n边形中有且仅有两个内角为钝角,则n的最大值是( ) A.4 B.5 C. 6 D.7 ( “希望杯”邀请赛试题) 6.一个凸多边 形的每一内角都等于140°,那么,从这个多边形的一个顶点出发的对角线的条数是( ) A.9条 B.8条 C.7条 D. 6条 7.有一个边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,则需要这种瓷砖( ) A.216块 B.288块 C.384块 D.512块 ( “希望杯”邀请赛试题) 8.已知△ABC是边长为2的等边三角形,△ACD是一个含有30°角的直角三角形,现将△ABC和△ACD拼成一个凸四边形ABCD. (1))画出四边形ABCD; (2)求出四边形ABCD的对角线BD的长. (上海市闵行区中考题) 9.如图,四边形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度数. (北京市竞赛题) 10.如图,在五边形A1A2A3A4A5中,Bl是A1的对边A3A4的中点,连结A1B1,我们称A1B1是这个五边形的一条中对线,如果五边形的每条中对线都将五边形的面积分成相等的两部分,求证:五边形的每条边都有一条对角线和它平行. (安徽省中考题) 11.如图,凸四边形有 个;∠A+∠B+∠C+∠D+∠E+∠F+∠G= . (重庆市竞赛题) 12.如图,延长凸五边形A1A2A3A4A5的各边相交得到5个角,∠B1,∠B2,∠B3,∠B4,∠B5,它们的和等于 ;若延长凸n边形(n≥5)的各边相交,则得到的n个角的和等于 . ( “希望杯”邀请赛试题) 13.设有一个边长为1的正三角形,记作A1(图a),将每条边三等分,在中间的线段上向外作正三角形,去掉中间的线段后所得到的图形记作A 2(图b),再将每条边三等分,并重复上述过程,所得到的图形记作A3(图c);再将每条边三 等分,并重复上述过程,所得到的图形记作A4,那么,A4的周长是 ;A4这个多边形的面积是原三角形面积的 倍. (全国初中数学联赛题) 14.如图,六边形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,FA—CD=3,则BC+DC= . (北京市竞赛题) 15.在一个n边形中,除了一个内角外,其余(n一1)个内角的和为2750°,则这个内角的度数为( ) A.130° D.140° C .105° D.120° 16.如图,四边形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,则CD的长为( ) A.4 B.4 C.3 D. 3 (江苏省竞赛题) 注 按题中的方法'不断地做下去,就会成为下图那样的图形,它的边界有一个美丽的名称——雪花曲线或 科克曲线(瑞典数学家),这类图形称为“分形”,大量的物理、生物与数学现象都导致分形,分形是新兴学科“混沌”的重要分支. 17.如图,设∠CGE=α,则∠A+∠B+∠C+∠D+∠C+∠F=( ) A.360°一α B.270°一αC.180°+α D.2α (山东省竞赛题) 18.平面上有A、B,C、D四点,其中任何三点都不在一直线上,求证:在△ABC、△ABD、△ACD、△BDC中至少有一个三角形的内角不超过45°. 19.一块地能被n块相同的正方形地砖所覆盖,如果用较小的相同正方形地砖,那么需n+76块这样的地砖才能覆盖该块地,已知n及地砖的边长都是整数,求n. (上海市竞赛题) 20.如图,凸八边形ABCDEFGH的8 个内角都相等,边AB、BC、CD、DE、EF、FG的长分别为7,4,2,5,6,2,求该八边形的周长. 21.如图l是一张可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,如果折叠起来,床头部分被折到了床面之下(这里的A、B、C、D各点都是活动的),活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程可由图2的变换反映出来. 如果已知四边形ABCD中,AB=6,CD=15,那么BC、AD取多长时,才能实现上述的折叠变化? (淄博市中考题) 22.一个凸n边形由若干个边长为1的正方形或正三角形无重叠、无间隙地拼成,求此凸n边形各个内角的大小,并画出这样的 凸n边形的草图. 图形的平移与旋转 前苏联数学家亚格龙将几何学定义为:几何学是研究几何图形在运动中不变的那些性质的学科. 几何变换是指把一个几何图形Fl变换成另一个几何图形F2的方法,若仅改变图形的位置,而不改变图形的形状和大小,这种变换称为合同变换,平移、旋转是常见的合同变换. 如图1,若把平面图形Fl上的各点按一定方向移动一定距离得到图形F2后,则由的变换叫平移变换. 平移前后的图形全等,对应线段平行且相等,对应角相等. 如图2,若把平面图Fl绕一定点旋转一个角度得到图形F2,则由Fl到F2的变换叫旋转变换,其中定点叫旋转中心,定角叫旋转角. 旋转前后的图形全等,对应线段相等,对应角相等,对应点到旋转中心的距离相等. 通过平移或旋转,把部分图形搬到新的位置,使问题的条件相对集中,从而使条件与待求结论之间的关系明朗化,促使问题的解决. 注 合同变换、等积变换、相似变换是基本的几何变换.等积变换,只是图形在保持面积不变情况下的形变'而相似变换,只保留线段间的比例关系,而线段本身的大小要改变. 例题求解 【例1】如图,P为正方形ABCD内一点,PA:PB:PC=1:2:3,则∠APD= . 思路点拨 通过旋转,把PA、PB、PC或关联的线段集中到同一个三角形. 【例2】 如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN= x,DN=n,则以线 段x、m、n为边长的三角形的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.随x、m、n的变化而改变 思路点拨 把△ACN绕C点顺时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、 x、n 集中为△DNB,只需判定△DNB的形状即可. 注 下列情形,常实施旋转变换: (1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°; (2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形; (3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合. 【例3】 如图,六边形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,对边之差BC-EF=ED?AB=AF?CD>0,求证:该六边形的各角相等. (全俄数学奥林匹克竞赛题) 思路点拨 设法将复杂的条件BC?FF=ED?AB=AF?CD>0用一个基本图形表示,题设中有平行条件,可考虑实施平移变换. 注 平移变换常与平行线相关,往往要用到平行四边形的性质,平移变换可将角,线段移到适当的位置,使分散的条件相对集中,促使问题的解决. 【例4】 如图,在等腰△ABC的两腰AB、AC上分别取点E和F,使AE=CF.已知BC=2,求证:EF≥1. (西安市竞赛题) 思路点拨 本例实际上就是证明2EF≥BC,不便直接证明,通过平移把BC与EF集中到同一个三角形中. 注 三角形中的不等关系,涉及到以下基本知识: (1)两点间线段最短,垂线段最短; (2)三角形两边之和大于第三边,两边之差小于第三边; (3)同一个三角形中大边对大角(大角对大边),三角形的一个外角大于任何一个和它不相邻的内角. 【例5】 如图,等边△ABC的边长为 ,点P是△ABC内的一点,且PA2+PB2=PC2,若PC=5,求PA、PB的长. (“希望杯”邀请赛试题) 思路点拨 题设条件满足勾股关系PA2+PB2=PC2的三边PA、PB、PC不构成三角形,不能直接应用,通过旋转变换使其集中到一个三角形中,这是解本例的关 键. 学历训练 1.如图,P是正方形ABCD内一点,现将△ABP绕点B顾时针方向旋转能与△CBP′重合,若PB=3,则PP′= . 2.如图,P是等边△ABC内一点,PA=6,PB=8,PC=10,则∠APB . 3.如图,四边形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,则CD的长为 . 4.如图,把△ABC沿AB边平移到△A'B'C'的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC的面积的一半,若AB= ,则此三角形移动的距离AA'是( ) A. B. C.l D. (20xx年荆州市中考题) 5.如图,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点C、F,给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF= S△ABC;④EF=AP. 当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有( ) A.1个 B.2个 C .3个 D.4个 (20xx年江苏省苏州市中考题) 6.如图,在四边形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四边形ABCD d=8,则BE的长为( ) A.2 B.3 C . D. (20xx年武汉市选拔赛试题) 7.如图,正方形ABCD和正方形EFGH的边长分别为 和 ,对角线BD、FH都在直线 上,O1、O2分别为正方形的中心,线段O1O2的长叫做两个正方形的中心距,当中心O2在直线 上平移时,正方形EFGH也随之平移,在平移时正方形EFGH的形状、大小没有变化. (1)计算:O1D= ,O2F= ; (2)当中心O2在直线 上平移到两个正方形只有一个公共点时,中心距O1O2= ; (3)随着中心O2在直线 上平移,两个正方形的公共点的个数还有哪些变化?并求出相对应的中心距的值或取值范围(不必写出计算过程). (徐州市中考题) 8.图形的操做过程(本题中四个矩形的水平方向的边长均为a,竖直 方向的边长均为b): 在图a中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B1B2(即阴影部分); 在图b中, 将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B1B2B3(即阴影部分); (1)在图c中,请你类似地画一条有两个折点的折线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影; (2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积:S1= ,,S2= ,S3= ; (3)联想与探索: 如图d,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草地面积是多少?并说明你的猜想是正确的. (20xx年河北省中考题) 9.如图,已知点C为线段AB上一点,△ACM、△CBN是等边三角形,求证:AN=BM. 说明及要求:本题是《几何》第二册几15中第13题,现要求: (1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上,请对照原题图在图中画出符合要求的图形(不写作法,保留作图痕迹). (2)在①所得的图形中,结论“AN=BM”是否还成立?若成立,请证明;若不成立,请说明理由. (3)在①得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并证明你的结论. 10.如图,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜边BC上距离B点3cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个直角三角形重叠部分的面积是 cm2. 11.如图,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE、BC的延长线交于点F,若AE=10,则S△ADE+S△CEF的值是 . (绍兴市中考题) 12.如图,在△ABC中,∠BAC=120°,P是△ABC内一点,则PA+PB+PC与AB+AC的大小关系是( ) A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.无法确定 13.如图,设P到等边三角形ABC两顶点A、B的距离分别为2、3,则PC所能达到的最大值为( ) A. B. C .5 D.6 (20xx年武汉市选拔赛试题) 14.如图,已知△ABC中,AB=AC,D为AB上一点,E为AC 延长线上一点,BD=CE,连DE,求证:DE>DC. 15.如图,P为等边△ABC内一点,PA、PB、PC的长为正整数,且PA2+PB2=PC2,设PA=m,n为大于5的实数,满 ,求△ABC的面积. 16.如图,五羊大学建立分校,校本部与分校隔着两条平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A为校本部大门,B为分校大门,为方便人员来往,要在两条小河上各建一座桥,桥面垂直于河岸.图中的尺寸是:甲河宽8米,乙河宽10米,A到甲河垂直距离为40米,B到乙河垂直距离为20米,两河距离100米,A、B两点水平距离(与小河平行方向)120米,为使A、B两点间来往路程最短,两座桥都按这个目标而建,那么,此时A、D两点间来往的路程是多少米? (“五羊杯”竞赛题) 17.如图,△ABC是等腰直角三角形,∠C=90°,O是△ABC内一点,点O到△ABC各边的距离都等于1,将△ABC绕 点O顺时针旋转45°,得△A1BlC1 ,两三角形公共部分为多边形KLMNPQ. (1)证明:△AKL、△BMN、△CPQ都是等腰直角三角形; (2)求△ABC与△A1BlC1公共部分的面积. (山东省竞赛题) 18.(1)操作与证明:如图1,O是边长为a的正方形ACBD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O点处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值. (2)尝试与思考:如图2,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或正五边形的中心O点处,并将纸板绕O点旋转, 当扇形纸板的圆心角为 时,正三角形的边被纸板覆盖部分的总长度为定值a;当扇形纸板的圆心角为 时,正五边形的边被纸板覆盖部分的总长度也为定值a. (3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为 时,正n边形的边被纸板覆盖部分 的总长度为定值a;这时正n边形被纸板覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系;若不是定值,请说明理由. 一、教学目标: 1.使学生掌握平行四边形的意义及特征,了解它的特性。 2.通过观察、动手,培养学生抽象概括能力和初步的空间观念。 3.渗透事物是相互联系的辩证唯物主义观点。培养学生观察和认识周围图形的兴趣和认识。 二、教学重点:平行四边形的意义。 三、教学难点:抽象概括平行四边形的意义。 四、教学过程: (一)、老师出示一个长方形框架. 1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么? (这个图形不是长方形了,因为它的四个角不是直角) 我们把这样的图形叫做平行四边形.在黑板右上角贴出一个平行四边形. 2.请同学们观察:黑板上还有哪些平行四边形? (分类中的“其它四边形”都是平行四边形)老师把黑板上的“其它四边形”改写成“平行四边形”) 问:同学们平时见过平行四边形吗?请举例来说.(有一种防盗网上的图形、篱笆上的图形,有的编织图案) 3.平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架) (它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角) 今天,我们又认识了一个图形——平行四边形. (二)通过活动,再次感知平行四边形。 1. 小朋友看过魔术表演吗?咱们来变个魔术,请打开1号纸袋。看一看,里面有什么?(6根硬纸条,4个图钉) 师:咱们要围一个长方形框,得用几根硬纸条?4根什么样的硬纸条?请小组的同学讨论选出来。 学生讨论筛选后,教师提问:你们选了什么样的?为什么这样选? 最后小组合作用图钉固定出长方形框。 围好后,请小朋友推一推,拉一拉,看图形变了没有?(学生操作) 在日常生活中我们经常见到这种图形。请看屏幕。(课件显示“纺织图案”、“楼梯扶手”、“篱笆”,并闪动其中的几何图形再抽象出来。) 2. 学生自己发现平行四边形与长方形、正方形的共同点。观察后交流。 3. 分组操作、研究平行四边形的特征。 (1)回忆研究长方形、正方形特点的方法。(量一量、折一折、比一比) (2)打开2号纸袋(里面有两张平行四边形纸片),用刚才的方法,也可以想别的办法,也可以观察变平行四边形框的过程,小组讨论平行四边形4条边和 4个角的特点。 (3)分组交流,教师小结。 4. 辨认平行四边形。 完成课本练习三十九第2题,指生订正并说出理由。 (三)巩固练习 1、判断题: (1)长方形、正方形和平行四边形都是四边形.( ) (2)四个角都是直角的四边形一定是正方形.( ) (3)一个四边形,它的四条边相等,这个四边形一定是正方形.( ) (4)对边相等的四边形都是长方形.( ) (5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形.( ) 2.思考题: 有两个大小一样的长方形,长都是4分米,宽都是2分米. (1)把这两个长方形拼成一个正方形,你是怎样拼的? (2)把这两个长方形拼成一个大的长方形,它的长是多少?宽是多少?你是怎样拼的? (四)全课总结 通过今天的学习你有什么收获?谈一谈。 教学反思: 在整节课的设计中,我注重将游戏、活动引入教学。如在导入新课时,创设问题情境,利用教具有熟悉的长方形一拉动变成了要学的内容平行四边形,既复习了旧知识长方形,又很自然地过渡到新知识,使学生体会到数学知识都有内在联系。在探索阶段,让学生在实践活动中,经历、体验数学知识的形成过程。在巩固拓展时,创始了让学生“辨、拼、说”的活动,课堂上学生始终乐此不疲,兴趣盎然。 在教学设计中,我注重把思考贯穿教学的全过程,将实践与思考贯穿教学的全过程,让学生在观察实践交流中思考,尤其是特别注重为学生创设独立思考的空章。然后通过学生的动手操作,最大限度地调动学生多种感观,让他们的手、眼、脑等都参与到学习活动中去。教学时有意识地为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。设计学生喜欢又富有挑战性的问题,激发学生主动思考和创造的欲望。通过"变魔术"引出平行四边形,激发了学生的观察兴趣,从而使学生认识平行四边形的'特性,在轻松学习中学习数学。 教学中感到不足的是设计的练习不很多,题的类型不够新颖,在练习的设计中,应能引起学生的兴趣,使学生乐于探究。 教学反思: 学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、验证、推理与交流等数学活动。因此,本节课我让学生把自己制作的长方形框架拿出来拉动后可以得到一个平行四边形引入新课,激起探究的兴趣。在探究平行四边形的特征时,引导学生小组讨论:一个平行四边形和一个三角形的框架,比较一下,它们之间有什么不同。再引导学生观察平行四边形,归纳、概括平行四边形的特征。让每个学生都有观察、操作、分析、思考的机会,提供给学生一个广泛的、自由的活动空间。当学生通过动手动脑,在探索中初步发现平行四边形的特征。学生学得非常积极主动:数学教学活动要帮助学生在自主探究和合作交流的过程中真正理解和掌握基本的数学思想和方法,因此在数平行四边形时,引导学生有序地进行观察,主动探究规律,渗透有序思维的方法。整节课从实际出发运用现代教学手段,突破了教学的难点。反思整个教学过程,我认为教学的益处在于有效地引导了学生在活动中享受到学习的乐趣,体验到合作、交流的成功,从而大大提高了教学效果。 不足:课中的练习量还是不够,可以多做些练习突出平行四边形的特征。 《平行四边形的初步认识》第1课时教案分析 备课时间:20xx年9月5日 上课时间: 年 月 日 教学内容:教材第12~16页例1和“想想做做”第1~5题。 教学目标: 1、使学生通过观察、比较、分类,认识四边形、五边形、六边形等平面图形,能判断一个由线段围成的图形是几边形,能按要求围出或剪出多边形。 2、使学生经历从实际中抽象出图形,以及观察、实践操作等数学活动,进一步感受分类的思想,积累学习平面图形的初步经验;体会不同图形边数的特点,发展相应的空间观念。 3、使学生逐步形成参与数学活动的意识,培养独立思考、主动交流的学习习惯。 教学重点: 认识四边形、五边形、六边形等平面图形。 教学难点: 能根据要求把一个多边形分成不同的图形或者是数图形的个数。 教具或学具准备: 师生每人准备小棒若干根,钉子板1个,四边形纸片2张,正方形纸片1张,剪刀1把。 教学过程: 一、初步感知 1.回顾已知图形。 今天,老师带大家到有趣的“图形王国”去游一游、看一看。(出示如下图形)请看,这里有一些我们学过的图形。你能说出它们的名称吗? (1)让学生明确第(1)题的'要求。 出示两张四边形纸片,让学生想想怎样剪成两个三角形,怎样剪成一个三角形和一个四边形。 学生操作剪图形,教师巡视。 (2)让学生明确第(2)题的要求。 出示正方形纸片,要求学生想想怎样可以剪下一个三角形。 学生操作剪下一个三角形。 展示交流:你是怎样剪的?剩下的部分是什么图形? 6、做“想想做做”第5题。 让学生找一找、数一数,能找到几个就找几个;然后交流自己找到了几个四边形。 四、总结评价 交流:今天我们又去了图形王国,你有哪些新收获?你是怎样学习这些知识的? 五、布置作业 《补充习题》第 页。 板书设计: 课后笔记: 教学内容: 教科书第79~81页 教学目标: 1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。 2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。 教学过程: 一、导入 1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。 2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗? 3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。 板书课题:平行四边形的面积 二、平行四边形面积计算 1.用数方格的方法计算面积。 (1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的`方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。 说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。 (2)同桌合作完成。 (3)汇报结果,可用投影展示学生填好的表格。 (4)观察表格的数据,你发现了什么? 通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。 2.推导平行四边形面积计算公式。 (1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢? 学生讨论,鼓励学生大胆发表意见。 (2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。 学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。 请学生演示剪拼的过程及结果。 教师用课件或教具演示剪—平移—拼的过程。(如教材第81页的图示) (3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么? 小组讨论。可以出示讨论题: ①拼出的长方形和原来的平行四边形比,面积变了没有? ②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系? ③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗? 小组汇报,教师归纳: 我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。 这个长方形的长与平行四边形的底相等, 这个长方形的宽与平行四边形的高相等, 因为 长方形的面积=长×宽, 所以 平行四边形的面积=底×高。 3.教师指出在数学中一般用S表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。 三、巩固和应用 1.出示例1。读题并理解题意。 学生试做,交流作法和结果。 2.讨论:下面两个平行四边形的面积相等吗?为什么? 教学要求: 1.巩固平行四边形的面积计算公式,能比较熟练地运用平行四边形面积的计算公式解答有关应用题。 2.养成良好的审题习惯。 教学重点:运用所学知识解答有关平行四边形面积的应用题。 教学过程: 一、基本练习 1.口算。(练习十六第4题) 4.90.75.4+2.640.250.87-0.49 530+2703.50.2542-98612 2.平行四边形的面积是什么?它是怎样推导出来的`? 3.口算下面各平行四边形的面积。 ⑴底12米,高7米; ⑵高13分米,第6分米; ⑶底2.5厘米,高4厘米 二、指导练习 1.补充题:一块平行四边形的麦地底长250米,高是78米,它的面积是多少平方米? ⑴生独立列式解答,集体订正。 ⑵如果问题改为:每公顷可收小麦7000千克,这块地共可收小麦多少千克?①必须知道哪两个条件? ②生独立列式,集体讲评: 先求这块地的面积:25078010000=1.95公顷, 再求共收小麦多少千克:70001.95=13650千克 ⑶如果问题改为:一共可收小麦58500千克,平均每公顷可收小麦多少千克?又该怎样想? 与⑵比较,从数量关系上看,什么相同?什么不同? 讨论归纳后,生自己列式解答:58500(250781000) ⑷小结:上述几题,我们根据一题多变的练习,尤其是变式后的两道题,都是要先求面积,再变换成地积后才能进入下一环节,否则就会出问题。 2.练习十七第6题:下土重量各平行四边形的面积相等吗?为什么?每个平行四边形的面积是多少? 1.6厘米 2.5厘米 ⑴你能找出图中的两个平行四边形吗? ⑵他们的面积相等吗?为什么? ⑶生计算每个平行四边形的面积。 ⑷你可以得出什么结论呢?(等底等高的平行四边形的面积相等。) 3.练习十七第10题:已知一个平行四边形的面积和底,(如图),求高。 28平方米 7米 分析与解:因为平行四边形的面积=底高,如果已知平行四边形的面积是28平方米,底是7米,求高就用面积除以底就可以了。 三、课堂练习 练习十六第7题。 四、作业 练习十六第5、8、9、11题。 教学内容:教科书第12—13页的例1、例2、例3,“试一试”和“练一练”,第14页的练习二。 教学目标: 1.知识目标:使学生通过实际操作和讨论思考,探索并掌握平行四边形的面积公式,并能应 用公式正确计算平行四边形的面积。 2.能力目标:使学生经历观察、操作、测量、填表、讨论、分析、归纳等数学活动过程,进一步体会“等积变形”的思想方法。 3.情感目标:培养空间观念,发展初步的推理能力。 教学过程: 一、复习导入。 1.说出下面每个图形的名称。(电脑出示) 2.在这几个图形中,你会求哪些图形的面积呢? 3.大家想不想知道平行四边形的面积怎么求?今天我们一起来研究“平行四边形面积的计算”。(揭示课题) 二、探究新知。 1.教学例1。 (1)出示例l中的第一组图形。 提出要求:这儿有两个图形,这两个图形的面积相等吗?在小组里说一说你准备怎样比较这两个图形的面积。学生分组活动后组织交流。 对学生的交流作适当点评,使学生明白两种不同的比较方法都是可以的:即数方格比较大小或把左边的图形转化后与右边的图形进行比较。 (2)出示例l中的第二组图形。 提出要求:你能用刚才的方法比较这两个图形的.大小吗? 学生分组活动后组织交流,在学生的交流中,教师适当强调“转化”的方法。 (3)小结:把不熟悉的图形转化成学过的图形,并用学过的知识解决问题,这是数学上一种很重要的方法——转化。这种方法在数学学习中经常要用到。 2.教学例2。 (1)出示画在方格纸上的平行四边形。提问:你能想办法把图中的平行四边形转化成长方形吗? (2)学生操作,教师巡视指导。 (3)学生交流操作情况。 提出要求:谁愿意把你的转化方法说给大家听听?(让学生用实物投影演示剪、拼过程) 提问:有没有不同的剪、拼方法? (继续请学生演示) 教师用课件演示各种转化方法,进行小结。 (4)讨论:刚才大家把平行四边形转化成长方形时,都是沿着平行四边形的一条高剪的。大家为什么要沿着高剪开? 启发学生在讨论中理解:沿着高剪开,能使拼成的图形出现直角,从而符合长方形的特征。 (5)小结:沿着平行四边形的任意一条高剪开,再通过平移,都可以把平行四边形转化成一个长方形。 3.教学例3。 (1)提问:是不是任意一个平行四边形都能转化成长方形?平行四边形转化成长方形后,它的面积大小有没有变?与原来的平行四边形之间有什么联系? (2)操作:请大家从教科书第123页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写下表: 转化成的长方形 平行四边形 长(cm) 宽(cm) 面积(c㎡) 底(cm) 高(cm) 面积(c㎡) (3)小组讨论: ①转化成的长方形与平行四边形面积相等吗? ②长方形的长和宽与平行四边形的底和高有什么关系? ③根据,长方形的面积公式,怎样求平行四边形的面积? (4)反馈、交流,抽象出面积公式。 根据学生的讨论进行如.下的板书: 因为 长方形的面积二长×宽 所以 平行四边形的面积二底×高 (5)用字母表示公式。 如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,那么你能用字母写出平行四边形的面积公式吗? 结合学生的回答,板书: S=ah (6)指导完成“试一试”。 先让学生根据题意独立解答,再通过指名板演和评点,明确应用公式求平行四边形面积一般要有两个条件,即底和高。 三、巩固深化。 1.指导完成“练一练”。先让学生独立计算,再让学生说说每个平行四边形的底和高分别是多少,计算时应用了什么公式。 2.指导完成练习二第1题。 (1)明确要求,鼓励学生尝试操作。 (2)讨论:长方形的长、宽、面积各是多少?要使画出的平行四边形面积与长方形相等,它的底和高可以分别是多少? (3)学生继续操作后展示作品。引导学生对展示的平行四边形进行判断,是否符合题目的要求。 3.指导完成练习二第2题。 先让学生指出每个平行四边形的底和高,再让学生各自测量计算。 提醒学生:测量的结果取整厘米数。 4.指导完成练习二第3、4两题。 先让学生独立解答,再通过交流说说自己解决问题的思路。 5.指导完成练习二第5题。 (1)同桌两人分别按要求做出长12厘米,宽7厘米的长方形。一个长方形不动,另一个长方形拉成平行四边形,平放在桌上。 (2)指导观察、思考。 要求学生认真观察做成的长方形和用长方形拉成的平行四边形,想一想,它们的周长相等吗?为什么?面积呢? (3)指导测量、计算,验证猜想。 (4)连续拉动长方形,启发思考面积的变化有什么特点。 四、全课小结。 通过今天的学习活动,你学会了什么?有哪些收获? 教学后记 通过平移转化成长方形计算面积, 使学生了解用数方格方法计算面积时不满整格的都按半格计算,同时初步学会用这方法估计并计算不规则物体表面的面积。 使学生体会平移后图形的面积不变,感受转化的策略。体会平移后图形的面积不变。 【平行四边形教案】相关文章: 平行四边形的认识教案07-30 平行四边形教案范文09-30 《认识平行四边形》教案08-26 平行四边形面积教案07-20 平行四边形优秀教案09-11 平行四边形教案4篇05-25 平行四边形和梯形教案05-14 平行四边形面积的计算教案07-23 精选平行四边形教案3篇05-25平行四边形教案 篇5
平行四边形教案 篇6
平行四边形教案 篇7
平行四边形教案 篇8
平行四边形教案 篇9