关于平行四边形教案范文汇编十篇
在教学工作者开展教学活动前,时常需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的平行四边形教案10篇,仅供参考,希望能够帮助到大家。
平行四边形教案 篇1
教学目标设计:
1、激发主动探索数学问题的兴趣,经历平行四边形面积计算公式的推导过程,会运用公式求平行四边形的面积。
2、体会“等积变形”和“转化”的数学思想和方法,发展空间观念。
3、培养初步的推理能力和合作意识,以及解决实际问题的能力。
教学重点:探究平行四边形的面积公式
教学难点:理解平行四边形的面积计算公式的推导过程
教学过程设计:
一、创设情境,激发矛盾
拿出一个长方形框架,提问:这个框架所围成图形的面积你会求吗?你是怎样想的?根据学生的回答,适时板书:长方形面积=长×宽
教师捏住两角轻微拉动长方形框架,使它稍微变形成一个平行四边形。提问:它围成的图形面积你会求吗?你是怎样想的?根据学生的回答,适时板书:平行四边形面积=底边长×邻边长
学情预设:学生充分发表自己的看法,大多数学生会受以前知识经验和教师刚才设问的影响,认为平行四边形的面积等于底边长×邻边长。
教师继续拉动平行四边形框架,使变形后的平行四边形越来越扁,到最后拉成一个很扁的`平行四边形,提问:这些平行四边形的面积也等于底
边长×邻边长吗?
今天这节课我们就来研究“平行四边形的面积”。教师板书课题。
学情预设:随着教师继续拉动的平行四边形越来越扁的变化,学生的原有知识经验体系开始坍塌。这种认知平衡一旦被打破,学生的思维就想开了闸的洪水一样一发不可收拾:为什么用底边长乘邻边长不能解决平行四边形面积是多少问题?问题出在哪里呢?
二、另辟蹊径,探究新知
1、寻找根源,另辟蹊径
教师边演示长方形渐变平行四边形的过程,边引导学生思考:平行四边形为什么不能用长方形的长与宽演变而来的底边长与邻边长相乘来求面积呢?
引导学生思考:原来是平行四边形的面积变得越来越小了,那平行四边形的面积到底与什么有关呢?该怎样来求平行四边形的面积呢?
学情预设:学生在教师的引导下发现,在教师的操作过程中,底边与邻边的长没有发生变化,也就是说,底边长与邻边长相乘的积应该也是不变的,但明显的事实是学生看到了平行四边形在越拉越扁,平行四边形的面积在越变越小。看来此路不通,那又该在哪里找出路呢?
2、适时引导,自主探索
教师结合刚才的板书引导学生发现,我们已经会计算长方形的面积了,是否能把平行四边形转化成长方形来求面积呢?
(1)学生操作
学生动手实践,寻求方法。
学情预设:学生可能会有三种方法出现。
第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。 第二种是沿着平行四边形中间任意一高剪开。
第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。
(2)观察比较
刚才同学们把平行四边形转化成长方形,在操作时有一个共同点,是什么呢?为什么要这样呢?
(3)课件演示
是不是任意一个平行四边形都能转化成一个长方形呢?请同学们仔细观察大屏幕,让我们再来体会一下。
3、公式推导,形成模型
既然我们可以把一个平行四边形转化成一个长方形,那么转化前的平行四边形究竟和转化后的长方形有怎样的联系呢?怎样能想出平行四边形的面积怎么计算呢?
先独立思考,后小组合作、讨论,如小组有困难,可提供“思考提示”。
A、拼成的长方形和原来的平行四边形比,什么变了?什么没有改变?
B、拼成的长方形的长和宽与原来的平行四边形的底和高有什么关系?
C、你能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?)
学情预设:学生通过讨论很快就能得出拼成的长方形和原来的平行四边形之间的关系,并据此推导出平行四边形的面积计算公式。在此环节中,教师要引导学生尽量用完整、条理的语言表达其推导思路:“把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形的面积相等。这个长方形的长与平行四边形的底相等,这个长方形的宽与平行四边形的高相等,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高。”并将公式板书如下:
长方形的面积 = 长 × 宽
平行四边形的面积 = 底 × 高
4、变化对比,加深理解
引导学生比较前后两种变化情况,思考:第一次的长方形变成平行四边形与第二次的平行四边形变成长方形,这两种情况有什么不一样?哪种变化能说明平行四边形的面积计算方法的来源呢?为什么?
5、自学字母公式,体会作用
请同学们打开课本第81页,告诉老师,如果用字母表示平行四边形的
面积计算公式,应该怎样表示?你觉得用字母表达式比文字表达式好在哪里?
三、实践应用
1、出示课本第82页题目,一个平行四边形的停车位底边长5m,高2.5m,它的面积是多少?(学生独立列式解答,并说出列式的根据)
2、看图口述平行四边形的面积。
3分米 2.5厘米
3、这个平行四边形的面积你会求吗?你是怎样想的?
4、分别计算图中每个平行四边形的面积,你发现了什么?(单位:厘米)这样的平行四边形还能再画多少个?
平行四边形教案 篇2
教学内容:第70-73页练习十七第1-3题
教学要求:
1、理解平行四边形面积计算公式,能正确地计算平行四边形面积;
2、在割补、观察与比较中,初步感知与学习转化、变化的数学思想方法,并发展学生的空间观念。
教学重点:运用面积公式解答实际问题。
教具、学具准备:教师准备微机及多边形、平行四边形课件两组、边可活动的平行四边形框架。学生准备任意大小(画有高)的平行四边形纸片、剪刀。
教学过程:
一、质疑导入
1、指出下面平行四边形的底和高各是几厘米?
2、向学生出示可拉动的长方形框架,问:要求这个长方形的面积,怎么办?(学生回答,教师板书:长方形面积=长×宽)
3、分别用手拉长方形相对的一对角,使其变形为平行四边形后,问:原来的平行四边形变成了什么图形?它的面积怎样求呢?(揭示课题:平行四边形面积计算)
二、引导探究
(一)、初探
1、微机出示第70页左图,让学生说出平行四边形底和高各是多少厘米,然后数出它的面积。
2、出示第70页右图,让学生说出长方形长和宽各是多少厘米,然后算出它的面积。
3、让学生观察、比较:
(1)两图形的面积都是18平方厘米,那么平行四边形的底和高与长方形的`长和宽有什么关系?
(2)从上面的比较中你想到什么?
(二)、深究
1、做导引题下图中阴影部分面积是多少?
微机演示剪拼过程后让学生回答:
(1)剪拼前后,图形形状变了没有?面积改变没有?
(2)阴影部分面积是多少?
(3)解这道题你想到什么?
2、剪拼
(1)刚才用剪拼的方法解决了一个求面积的问题,你能不能用剪拼的方法,把平行四边形转化成学过的图形,求出它的面积呢?拿出平行四边形纸片,剪一剪,拼一拼,试试怎么样。
(2)请剪拼方法不同的学生展示剪拼结果,说一说是怎样想的。根据学生的回答,教师演示。
3、引导学生分析得出:沿着平行四边形底边上的任意一条高,都可以把平行四边形剪拼成一个长方形。
4、归纳
(1)讨论:
A平行四边形剪拼成长方形后,两种图形的面积是否改变了?
B剪拼成的长方形的长和宽分别与原平行四边形什么线段长度相同?
C剪拼成上面三种情况的图形后,哪些面积可以直接求出来?怎样算?
(2)归纳、总结,推导公式。
A因为长方形面积=长×宽
所以平行四边形面积=底×高
B先启发学生用字母分别表示三个量,写出字母公式,再告诉学生一般的字母表示公式:S=ah
C引导学生分析公式,使学生知道,要求平行四边形面积必须知道两个条件,平行四边形的底和高。
三、深化认识
1、验证公式:
让学生用面积公式算出课本第70页平行四边形面积,看结果与数方格法得出的结果是否一样。
2、应用公式:
(1)引导学生解课本第72页例
(2)完成课本第72页做一做1
3、求下图表示的平行四边形的面积,列式为3×2.7,对吗?为什么?
四、全课总结
五、课堂作业
1、第72页做一做2
2、练习十七1
3、练习十七2、3
板书设计:
平行四边形的面积
平行四边形教案 篇3
1、本单元教材内容
例1.认识同一平面内两条直线的特殊位置关系:平行和垂直。
例2.学习画垂线,认识点到直线的距离。
例3.学习画平行线,理解平行线之间的距离处处相等。
例1.把四边形分类,概括出平行四边形和梯形的'特征,探讨平行四边形和长方形、正方形的关系。
例2.认识平行四边形的不稳定性,认识平行四边形的底和高,学习画高,梯形的各部分名称。
2、重难点、关键
重点:垂直与平行的概念;平行四边形和梯形的特征。
难点:画垂线、画平行线、画长方形和正方形、画平行四边形和梯形的高。
关键:加强作图的训练和指导,重视作图能力的培养。
3、教学目标
(1)使学生理解垂直与平行的概念,会用直尺、三角尺画垂线和平行线。
(2)使学生掌握平行四边形和梯形的特征。
(3)通过多种活动使学生逐步形成空间观念,进一步体会几何图形在日常生活中的广泛应用。
4、课时划分
6课时
(1)垂直与平行 3课时左右
(2)平行四边形和梯形 3课时左右
平行四边形教案 篇4
一、教学目标:
1、理解和掌握平行四边形的面积计算公式。
2、会计算平行四边形的面积。
二、教学重点:
理解公式并正确计算平行四边形的面积。
三、教学难点:
理解平行四边形的面积公式的推导过程。
四、学具准备:平行四边形纸
五、教学过程:
(一)、板书课题,揭示目标
同学们请看大屏幕,这两个花坛哪一个大呢?比较它们的大小得知道它们的面积,我们只学过长方形的面积,哪位同学能说一下?(教师板书)
平行四边形的面积我们还不会计算,(出示)小精灵提示我们先用数方格的方法试一试。(切换)
一个方格代表12,不满一格的都按半格计算。
谁来数一数两个图形的面积各是多少?(出示)
平行四边形的底和高各是多少?(出示)
长方形的长和宽各是多少?(出示)
(出示)你发现了什么?
同学们今天这节课我们就来学习“平行四边形的面积”(板书课题)
本节课我们的学习目标是:“1、理解和掌握平行四边形的面积计算公式。 2、会计算平行四边形的面积。”(出示)
要想完成学习目标,还要靠同学们认真自学,请看自学指导。
(二)出示自学指导
1、想一想,如何把平行四边形剪拼成长方形?以小组为单位剪一剪,拼一拼。
2、观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的长方形与原来的平行四边形的面积有什么关系?想一想平行四边形的面积应该怎样计算?
(6分钟后,比一比谁能正确计算出平行四边形的面积。相信你一定行!)
现在开始自学,注意看书的姿势,用剪刀时要注意安全!
(三)、学生自学
1、学生看书自学,教师巡视,督促每个学生都能认真自学。
2、检测学生自学效果
师:自学时间到,谁来演示一下你是怎样把平行四边形剪拼成长方形的?(抽生到前面演示)
观察拼成的长方形和原来的平行四边形,拼成的长方形的长与平行四边形的底有什么关系?拼成的长方形的宽与平行四边形高有什么关系?拼成的.长方形与原来的平行四边形的面积有什么关系?
想一想平行四边形的面积应该怎样计算?(师板书面积公式)
教师小结(展示动画):
同时教师口述:通过割补的方法,我们可清楚地看到,任何一个平行四边形都可以转化为长方形,而且长方形的长和宽恰好等于平行四边形的底和高。所以,平行四边形的面积=底×高。
(边口述,边板书。)教师讲述:如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,那么平行四边形的面积计算公式可以写成:S=a×h,简写成:S=ah。(板书)
下面就用你所学的知识去解决一下实际问题。
出示检测题
出示:平行四边形花坛的底是 6,高是 4,它的面积是多少?
抽2名学生上台板演,其他学生写在练习本上,教师巡视,搜集学生检测中出现的错误。
(四)、后教
1、学生自由更正
在学生完成检测后,看黑板上学生的板演,注意做题的步骤,如发现错误和有不同见解的同学,上台更正。
2、讨论归纳
问:做题的步骤是什么?第一步写什么?其中的a表示什么?h表示什么?s呢?
板书:写公式——代入数——计算(单位)——写答话。
(五)、当堂训练
1、
2、
(六)、全课总结
这节课,你有什么收获?
六、板书设计
平行四边形的面积
长方形的面积=长×宽
平行四边形的面积=底×高
S=ah
写公式——代入数——计算(单位)——写答话
5
平行四边形教案 篇5
【学习目标】
1、平行四边形性质(对角线互相平分)
2、平行线之间的距离定义及性质
【新课探究】
活动一:
如图,□ABCD的两条对角线AC、BD相交于点O.
(1)图中有哪些三角形是全等的?有哪些线段是相等的?
(2)想办法验证你的猜想?
(3)平行四边形的性质:平行四边形的对角线
几何语言:∵四边形ABCD是平行四边形(已知)
∴AO==AC,BO==BD()
活动二:如图,直线∥,过直线上任意两点A,B分别向直线做垂线,交直线与点C,点D.
(1)线段AC,BD有怎样的位置关系?
(2)比较线段AC,BD的长短.
(3)若两条直线互相平行,,则其中一条直线上任意一点到另一条直线的距离,这个距离称为平行线之间的距离。平行线之间的垂线段处处.
【知识应用】
1.已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
2.如图,四边形ABCD是平行四边形,DB⊥AD,求BC,CD及OB,OA的长.
3.已知□ABCD中,AB=12,BC=6,对边AD和BC的距离是4,则对边AB和CD间的距离是
【当堂反馈(小测)】:
1、平行四边形ABCD的两条对角线相交于O,OA,OB,AB的长度分别为3cm、4cm、5cm,求其它各边以及两条对角线的长度。
2、如图,在□ABCD中,,已知∠ODA=90°,OA=6cm,OB=3cm,求AD、AC的长
3、如图,在□ABCD中,已知AB、BC、CD三条边的长度分别为(x+3)cm,(x-4)cm,16cm,这个平行四边形的周长是多少?
【巩固提升】
1.平行四边形的两条对角线
2、已知□ABCD的两条对角线相交于点O,OA=5,OB=6,则AC=,BD=
3、已知□ABCD中,AB=8,BC=6,对边AD和BC的距离是2,则对边AB和CD间的'距离是
4、下列性质中,平行四边形不一定具备的是()
A、对角互补B、邻角互补C、对角相等D、内角和是360°
5、下列说法中,不正确的是()
A、平行四边形的对角线相等B、平行四边形的对边相等
C、平行四边形的对角线互相平分D、平行四边形的对角相等
6、如图,在□ABCD中,,已知∠BAC=90°,OB=8cm,OA=4cm,求AB、BC的长
7、如图,已知□ABCD中,对角线AC与BD相交于点O,△AOD的周长是80cm,已知AD的长是35cm,求AC+BD的长。
8、如图,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F。
(1)写出图中每一对你认为全等的三角形;
(2)选择(1)中的任意一对进行证明。
9.对角线可以将平行四边形分成全等的两部分,这样的直线还有很多。
(1)多做几条这样的直线,看看它们有什么共同的特征
(2)试着用旋转的有关知识解释你的发现。
平行四边形教案 篇6
教学目标
1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。
2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。
3.培养学生独立思考的习惯。
教学重点与难点
重点:探索平行四边形的识别方法。
难点:理解平行四边形的识别方法与应用。
教学准备
方格纸、直尺、图钉、剪刀。
教学过程
一、提问。
1.平行四边形对边( ),对角( ),对角线( )。
2.( )是平行四边形。
二、探索,概括。
1.探索。
(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。
步骤1:画一线段AB。
步骤2:平移线段AD到BC。
步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。
(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。
根据上述的过程,能否断定这个四边形是平行四边形?
2.概括。
我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到_BAC=ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:
一组对边平行且相等的`四边形是平行四边形。
(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)
三、应用举例。
例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。
四、巩固练习。
如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。
五、拓展延伸。
在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?
六、看谁做的既快又正确?
七、课堂小结。
这节课你有什么收获?学到了什么?还有什么疑问吗?
八、布置作业。
补充习题
平行四边形教案 篇7
《平行四边形的初步认识》第1课时教案分析
备课时间:20xx年9月5日
上课时间: 年 月 日
教学内容:教材第12~16页例1和“想想做做”第1~5题。
教学目标:
1、使学生通过观察、比较、分类,认识四边形、五边形、六边形等平面图形,能判断一个由线段围成的图形是几边形,能按要求围出或剪出多边形。
2、使学生经历从实际中抽象出图形,以及观察、实践操作等数学活动,进一步感受分类的思想,积累学习平面图形的初步经验;体会不同图形边数的特点,发展相应的空间观念。
3、使学生逐步形成参与数学活动的意识,培养独立思考、主动交流的学习习惯。
教学重点:
认识四边形、五边形、六边形等平面图形。
教学难点:
能根据要求把一个多边形分成不同的图形或者是数图形的.个数。
教具或学具准备:
师生每人准备小棒若干根,钉子板1个,四边形纸片2张,正方形纸片1张,剪刀1把。
教学过程:
一、初步感知
1.回顾已知图形。
今天,老师带大家到有趣的“图形王国”去游一游、看一看。(出示如下图形)请看,这里有一些我们学过的图形。你能说出它们的名称吗?
(1)让学生明确第(1)题的要求。
出示两张四边形纸片,让学生想想怎样剪成两个三角形,怎样剪成一个三角形和一个四边形。
学生操作剪图形,教师巡视。
(2)让学生明确第(2)题的要求。
出示正方形纸片,要求学生想想怎样可以剪下一个三角形。
学生操作剪下一个三角形。
展示交流:你是怎样剪的?剩下的部分是什么图形?
6、做“想想做做”第5题。
让学生找一找、数一数,能找到几个就找几个;然后交流自己找到了几个四边形。
四、总结评价
交流:今天我们又去了图形王国,你有哪些新收获?你是怎样学习这些知识的?
五、布置作业
《补充习题》第 页。
板书设计:
课后笔记:
平行四边形教案 篇8
学习目标:
1、理解并掌握平行四边形的定义
2、掌握平行四边形的性质定理1及性质定理2
3、提高综合运用知识的能力
预习指导:
1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。
2、____________________________________是平行四边形。
3、平行四边形的性质是:_________________________________________.
学习过程:
一、学习新知
1、平行四边形的定义
(1)定义:________________ ________________________叫做平行四边形。
(2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形
(3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形,
反过来,平行四边形就一定具有性质。
(4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________.
2、平行四边形的性质
平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?
已知:如图 ABCD,
求证:AB=CD,CB=AD.
分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.
证明:
总结:本题提供了证明线段相等的'方法,也体现了数学中的转化思想。
在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。
证明:
通过上面的证明,我们得到了:
平行四边形的性质定理1是_______________________________________.
平行四边形的性质定理2是_______________________________________.
二、应用举例:
例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的 度数。
例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE.
例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。
三、随堂练习
1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。
2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。
四、课堂小结 :
1、平行四边形的概念。
2、平行四边形的性质定理及其应用。
五、当堂检测
1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).
(A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是
2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD,
EF与GH相交与点O,那么图中的平行四边形一共有( ).
(A)4个 (B)5个 (C)8个 (D)9个
3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.
平行四边形教案 篇9
【学习目标】
1.能运用勾股定理解决生活中与直角三角形有关的问题;
2.能从实际问题中建立数学模型,将实际问题转化为数学问题,同时渗透方程、转化等数学思想。
3.进一步发展有条理思考和有条理表达的能力,体会数学的应用价值
【学习重、难点】
重点:勾股定理的应用
难点:将实际问题转化为数学问题
【新知预习】
1.如图,单杠AC的高度为5m,若钢索的底端B与单杠底端C的距离为12m,求钢索AB的长.
【导学过程】
一、情境创设
欣赏生活中含有直角三角形的图片,如果知道斜拉桥上的索塔AB的高,如何计算各条拉索的长?
二、探索活动
活动一 如图,起重机吊运物体,已知BC=6m,AC=10m,求AB的长.
活动二 在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形.在水池正中央有一根新生的芦苇,它高出水面1尺.如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各为多少?
活动三 一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图所示的某工厂,问这辆卡车能否通过该工厂的厂门?
三、例题讲解:
1.《中华人民共和国道路交通安全法》规定:小汽车在城市道路上行驶速度不得超过70km/h,如图一辆小汽车在一条城市中的直道上行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30m处,过了2s后,测得小汽车与车速检测仪间的距离为50m,这辆小汽车超速了吗?
2.一种盛饮料的圆柱形杯(如图),测得内部地面半径为2.5cm,高为12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,问吸管需要多长?
【反馈练习】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,则AB=______;若AB=4,BC=2,则AC=_____;
(2)一个直角三角形的模具,量得其中两边的长分别为5cm,3cm,则第三边的长是______;
(3)甲乙两人同时从同一地出发,甲往东走4km,乙往南走6km,这时甲乙两人相距____km.
2.如图,圆柱高为8cm,地面半径为2cm ,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.无法确定
3.如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?
【课后作业】P67 习题2.7 1、4题
八年级数学竞赛辅导教案:由中点想到什么
第十八讲 由中点想到什么
线段的`中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是:
1.中线倍长;
2.作直角三角形斜边中线;
3.构造中位线;
4.构造中心对称全等三角形等.
熟悉以下基本图形,基本结论:
例题求解
【例1】 如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为 .
(“希望杯”邀请赛试题)
思路点拨 取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件.
注 证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有:
(1)利用直角三角斜边中线定理;
(2)运用中位线定理;
(3)倍长(或折半)法.
【例2】 如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( )
A.AB=MN B.AB>MN C.AB (20xx年河北省初中数学创新与知识应用竞赛试题) 思路点拨 中点M、N不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB中点,连结CE、CD,求证:C D=2EC. (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG ⊥ CE,垂足分别为F、G,连结FG,延长AF、AG,与直线BC相交,易证FG= (AB+BC+AC). 若(1)BD、CF分别是△ABC的内角平分线(如图2); (2)BD为△ABC的内角平分线,CE为△ABC的外角平分线(如图3),则在图2、图3两种情况下,线段FG与△ABC三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (20xx年黑龙江省中考题) 思路点拨 图1中FG与△ABC三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG与△ABC三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用. 【例5】 如图,任意五边形ABCDE,M、N、P、Q分别为AB、CD、BC、DE的中点,K、L分别为MN、PQ的中点,求证:KL∥AE且KL= AE. (20xx年天津赛区试题) 思路点拨 通过连线,将多边形分割成三角形、四边形,为多个中点的 利用创造条件,这是解本例的突破口. 注 需要什么,构造什么,构造基本图形、构造线段的和差(倍分)关系、构造角的关系等,这是作辅助线的有效思考方法之一. 学历训练 1.BD、CE是△ABC的中线,G、H分别是BE、CD的中点,BC=8,则GH= . (20xx年广西中考题) 2.如图,△ABC中、BC=a,若D1、E1;分别是AB、AC的中点,则 ;若 D2、E2分别是D1B、E1C的中点,则 :若 D3、E3分别是D2B、E2C的中点.则 ……若Dn、En分别是Dn-1B、En-1C的中点,则DnEn= (n≥1且 n为整数). (200l年山东省济南市中考题) 3.如图,△ABC边长分别为AD=14,BC=l6,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是 . 4.如图, 梯形ABCD中,AD∥BC,对角线AC⊥BD,AC=5cm,BD=12cm,则该梯形的中位线的长等于 cm. (20xx年天津市中考题) 5.如图,在梯形ABCD中,AD∥EF∥GH∥BC,AE=EG=GB=AD=18,BC=32,则EF+GH=( ) A.40 B.48 C 50 D.56 6.如图,在梯形ABCD中,AD∥BC,E、F分别是对角线BD、AC的中点,若AD=6cm,BC=18?,则EF的长为( ) A.8cm D.7cm C. 6cm D.5cm 7.如图,矩形纸片ABCD沿DF折叠后,点C落在AB上的E点,DE、DF三等分∠ADC,AB的长为6,则梯形ABCD的中位线长为( ) A.不能确定 B.2 C. D. +1 (20xx年浙江省宁波市中考题) 8.已知四边形ABCD和对角线AC、BD,顺次连结各边中点得四边形MNPQ,给出以下6个命题: ①若所得四边形MNPQ为矩形,则原四边形ABCD为菱形; ②若所得四边形MNPQ为菱形,则原四边形ABCD为矩形; ③若所得四边形MNPQ为矩形,则AC⊥BD; ④若所得四边形MNPQ为菱形,则AC=BD; ⑤若所得四边形MNPQ为矩形,则∠BAD=90°; ⑥若所得四边形MNPQ为菱形,则AB=AD. 以上命题中,正确的是( ) A.①② B.③④ C.③④⑤⑥ D.①②③④ (20xx年江苏省苏州市中考题) 9.如图,已知△ABC中,AD是 高,CE是中线,DC=BE,DG⊥CE,G为垂足.求证:(1)G 是CE的 中点;(2)∠B=2∠BCE. (20xx年上海市中考题) 10.如图,已知在正方形ABCD中,E为DC上一点,连结BE,作CF⊥BE于P,交AD于F点,若恰好使得AP=AB,求证:E是DC的中点. 11.如图,在梯形ABCD中,AB∥CD,以AC、AD为边作平行四边形ACED,DC的延长线交BE于F. (1)求证:EF=FB; (2)S△BCE能否为S梯形ABCD的 ?若不能,说明理由;若能,求出AB与CD的关系. 12.如图,已知AG⊥BD,AF⊥CE,BD、CF分别是∠ABC和∠ACB的角平分线,若BF=2,ED=3,GC=4,则△ABC的周长为 . (20xx年四川省竞赛题) 13.四边形ADCD的对角线AC、BD相交于点F,M、N分别为AB、CD中点,MN分别交BD、AC于P、Q,且∠FPQ=∠FQP,若BD=10,则AC= . (重庆市竞赛题) 1 4.四边形ABCD中,AD>BC,C、F分别是AB、CD的中点,AD、BC的延长线分别与EF的延长线交于H、G,则∠AHE ∠BGE(填“>”或“=”或“<”号) 15.如图,在△ABC中,DC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于( ) A. B. C. D. 16.如图,正方形ABCD中,AB=8,Q是CD的中点,设∠DAQ=α,在CD上取一点P,使∠BAP=2α,则CP的长是( ) A.1 D.2 C.3 D. 17.如图,已知A为DE的中点,设△DBC、△ABC、△EBC的面积分别为S1,S2,S3,则S1、S2、S3之间的关系式是( ) A. B. C. D. 18.如图,已知在△ABC中,D为AB的中点,分别延长CA、CB到E、F,使DE=DF,过E、F分别作CA、 CB的垂线,相交于点P.求证:∠PAE=∠PBF. (20xx年全国初中数学联赛试题) 19.如图,梯形ABCD中,AD∥BC,AC⊥BD于O,试判断AB+CD与AD+BC的大小,并证明你的结论. (山东省竞赛题) 20.已知:△ABD和△ACE都是直角三角形,且∠ABD=∠ACE=90°.如图甲,连结DE,设M为D正的中点. (1)求证:MB=MC; (2)设∠BAD=∠CAE,固定△ABD, 让Rt△ACE绕顶点A在平面内旋转到图乙的位置,试问:MB;MC是否还能成立?并证明其结论. (江苏省竞赛题) 21.如图甲,平行四边形ABCD外有一条直线MN,过A、B、C、D4个顶点分别作MN的垂线AA1、BB1、CCl、DDl,垂足分别为Al、B1、Cl、D1. (1)求证AA1+ CCl = BB1 +DDl; (2)如图乙,直线MN向上移动,使点A与点B、C、D位于直线MN两侧,这时过A、B、C、D向直线MN引垂线,垂足分别为Al、B1、Cl、D1,那么AA1、BB1、CCl、DDl 之间存在什么关系? 教学过程 一、课堂引入 1.平行四边形的性质;平行四边形的判定;它们之间有什么联系? 2.你能说说平行四边形性质与判定的用途吗? (答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.) 3.创设情境 实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图) 图中有几个平行四边形?你是如何判断的? 二、例习题分析 例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC. 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC. (也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同) 方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC. 定义:连接三角形两边中点的线段叫做三角形的中位线. 【思考】: (1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别? (2)三角形的中位线与第三边有怎样的关系? (答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的.连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.) 三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。 【平行四边形教案】相关文章: 平行四边形面积教案02-10 《认识平行四边形》教案03-30 平行四边形优秀教案03-08 平行四边形教案6篇05-18 平行四边形教案三篇05-11 平行四边形面积的计算教案03-03 平行四边形教案9篇05-21 【精选】平行四边形教案四篇05-22 精选平行四边形教案三篇05-22 【精华】平行四边形教案四篇05-20平行四边形教案 篇10