植树问题教案

时间:2024-09-15 01:45:40 教案 我要投稿

植树问题教案15篇

  作为一位杰出的教职工,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那要怎么写好教案呢?下面是小编收集整理的植树问题教案,希望对大家有所帮助。

植树问题教案1

  一、教材

  《植树问题》是《义务教育教科书.数学》五年级册第七单元《数学广角》中的内容。

  教材将植树问题分为几个层次,有两端都栽、两端不栽、以及封闭曲线(方阵)中的植树问题。例1讨论的是在校园里的一条小路一边植树,需要多少棵树苗的问题,这是关于一条线段的植树问题。小路全长100米,每隔5米栽一棵树,两端都要栽,一共要准备多少棵树苗呢?让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历分析、思考问题的过程。例2是在例1的基础上继续探讨关于植树问题的另一种情况。教材给出动物园里绿化队在大象馆和猩猩馆之间的小路两旁栽树的问题,根据实际情况在这条小路两端都不栽树。本节课教学第106页——107页例1、例2和做一做的内容。

  本节课在教材的处理上我作了如下调整,把原例1中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究一条线段上的植树问题三种情况中间隔数与棵数的关系,将例2分成两道题放到利用模型、解决问题环节,有利于学生用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。

  二、教学目标

  1.在给定目标下,感受针对具体问题提出设计思路、制订简单的方案解决问题的`过程。通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。

  2.学生已经学习了《除法的含义》、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  3.借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

  4.学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。

  5.能运用所得到的规律解决实际问题。能和他人合作交流。

  6.能积极参与数学活动,对数学有好奇心和求知欲。在数学学习过程中,体验获得成功的乐趣,建立自信心。感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

  三、重、难点

  重点:探索规律,建立植树问题模型,会应用植树问题的模型解决一些相

  关的实际问题。

  难点:理解“间隔”与“数“之间的对应关系,应用植树问题的模型灵活

  解决一些相关的实际问题。

  四、说教法与学法

  教法:以情境教学法为主,直观演示法、引导发现法、讨论法、讲解法为辅。

  学法:以学生发展为本,融观察、操作、合作、交流等方法为一体。

  五、教学流程

  (一)课前互动、引出课题

  师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:

  1.一根木头长10米,要把它平均锯成9段,需要锯几次?

  2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)

  师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)

  (这一环节,旨在使学生在轻松的活动中为新课的学习作铺垫,而且让学生体会到只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律,并应用这些规律去解决实际问题。)

  (二)探索规律、建立模型

  1.创设情境,引入学习。

  园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由. (创设为园林工人设计植树方案的情境,贴近学生生活,让学生感受到数学问题于生活,为生活服务的思想,并且激发学生积极参加到学习活动中。我还把教材例题100米,改成20米,主要因为我感觉100米的距离还是有些长,学生在动手操作时,不便于研究。同时也遵从了教参中把复杂问题简单化的思想)

  (二)动手操作,设计方案

  同桌二人合作,摆一摆或画一画。

  (先给学生创设宽松的思维环境,让学生打开思路,找到在一条线段上栽树时的不同方法,让思维如花般绽放。)

  3.交流汇报,演示。

  4.比较方案,探究规律。

  (1)间隔数与总长、间距的关系。

  ①出示植树的三种情况,学生观察相同点。

  ②学生汇报,教师板书。

  ③探究间隔数与总长、间距的关系。(向学生渗透此类问题的思想方法、让学生发现其中的规律,建立起数学模型的过程。)

  (2)间隔数与植树棵数之间的关系。

  ①学生观察不同点,教师讲解三种方法的名称。

  ②同桌交流棵树和间隔数的关系。

  ③汇报交流。(板书)

  ④共同探究原因。(演示:树与间隔之间的一一对应关系。)(让学生在一个开放的情境,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。)

  (3)小结:

  ①植树问题规律,②解决植树问题方法:先求出间隔数,再看属于哪种类型。

  (三)巩固应用、内化提高

  师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:

  1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?

  2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?

  3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

  4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

  (练习题设计有层次性,充分体现本节课的重点,难点,并且利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想,使学生进一步体会,现实生活中的许多不同事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。)

  (四)课堂总结,拓展延伸

  六、说板书设计

  (一条线段上的)植树问题

植树问题教案2

  课型新授使用人

  (学生会很快发现:植树的棵数比间隔数多1)

  三、巩固应用,内化提高

  作 业 设 计

  基础:

  1.填一填。

  (1)下面的线段有( )个点,共有( )小段,不封闭图形的点数和段数的关系是( )。

  (2)在一条长300米的.公路两边种树,每隔4米种1棵(两端都要种),这样一共要种( )棵。

  (3)如下图,在一条防风带上每隔30米种1棵树,这条防风带共种( )棵树,由此可以

  推断出两端都种树时,树的棵树比间隔数( )。

  综合:

  2.选一选:

  (1)一个圆形花坛的周长是36米,每隔4米摆一盆花,一共需要( )盆花。

  A.8 B.9 C.10 D.11

  (2)一座楼房每上一层要16个台阶,小红每天回家要走80个台阶,小红家住( )楼。

  A.5 B.6 C.7 D.8

  拓展提升:

  3.一条走廊长24米,每隔3米放一盆花,走廊两端都要放。一共要放多少盆花?

植树问题教案3

  教学内容:

  人教版小学数学四年级下册第八单元《数学广角--植树问题》

  教材分析:

  植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

  学情分析:

  从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  教学目标:

  1.知识与技能性:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。 了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系。通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。 能够借助图形,利用规律来解决简单植树的问题。

  2.过程与方法:进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。 渗透数形结合的思想,培养学生借助图形解决问题的意识。 培养学生的合作意识,养成良好的交流习惯。

  3.情感态度与价值观 :通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重点:

  引导探究、发现两端都栽时棵数与间隔数之间关系。

  教学难点:

  运用棵数与间隔数之间的关系,解决逆向思维的实际问题。

  教学方法:

  植树问题虽然是日常生活中常见的生活现象,但对四年级的学生还是有很大的难度。美国教育家杜威说过:教育不是告知和被告知的事情,而是学生主动性建设的过程。因此教学中我让学生在动手实践中找方法--在方法中找规律在规律中学应用。

  教学过程:

  一、创设情境,引入课题

  1.我以学生的小手为载体引入本课

  【以学生身体的一部分为游戏主体,充分调动学生的参与积极性,利用学生的表现欲望和爱玩的天性,使学生对要学的内容产生好奇心理,顺利解决植树问题中的间隔含义,同时让学生在生活实例和亲身实践中,直观地感受一一对应的数学思想。】

  2.3月12日植树节对学生进行环境教育。

  通过创设生动有趣的情境,激发学生的求知欲望,顺利过渡到第二个环节。

  二、探索规律建立模型

  先出示引例:同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

  指导学生读题

  1.从题目你们知道了什么?(说一说)

  2.题目中每隔5米栽一棵是什么意思?

  3.题目中有什么地方要提醒大家的吗?(一边,两端要栽)

  4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

  5.交流。

  6.反馈。

  (1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

  (2)学生分别说想法。使学生明确:间隔数+1=棵数。

  三、巩固练习实际应用

  在这一环节我还原例1,让学生解决

  四、回顾整理反思提升

  1、我会填,让学生现一次巩固总长,棵数,间隔数之间的关系。研究两端都种的情况。如果路长是10米、15米、25米、30米,每隔5米种一棵(两端都种),各要种多少棵树呢?先想一想,再用一条线段表示小路画一画,验证一下! 每隔5米种一棵(两端都种) 路长(米) 画一画 间隔数 棵数

  每隔5米种一棵(两端都种)

  路长(米) 画一画 间隔数 棵数

  (1)反馈交流:可以种几棵?你是怎么种的?

  (2)观察比较表格中的数据,有什么发现?小组内交流自己的发现。

  (3)全班交流汇报,引导学生概括规律(板书规律)。

  两端都种时: 棵数=间隔数+1

  间隔数=总长间隔

  2、我会算,设计两旁都要栽的练习。出示119页做一做

  3、智力大比拼,通过两端都要栽的情况顺理成章地使其明白另外两种植树问题。联系生活,完善建构。

  (1)感知植树问题的三种模型。

  看课件三种情况。(两端种、两端都不种、一端不种)

  (2)想一想,生活中有类似这样的植树问题吗?请举例说一说!

  课件出示例2(两端不种)

  【数学来源于生活,而又服务于生活。在学生初步感知植树问题基础上,引出另外不同的种法,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的`、以便能更好的理解与植树问题有关的生活题型,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。】

  4、应用模型,解决问题(植树问题并不只是与植树有关,生活中海油许多现象和植树问题相似。)如

  (1)垃圾箱问题. 为净化环境,公园沿一条600米长的小路一侧设置垃圾箱,每隔30米放一个(路的一头不放),一共需要多少个垃圾箱?

  (2)一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  (3)学校召开秋季运动会,在笔直的跑道一旁插彩旗。跑道全长100米,每隔2米插一面(两端都要插)。需要多少面彩旗?

  (4)在全长20xx米的街道两旁安装路灯(两端也要装)。每隔50米安一座,一共要安装多少座路灯? 指名读题,引导学生理解题意后独立解题。教师追问思考过程。

  (5)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离是多远?

  (6)广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间? 【练习紧扣中心,拓展情境,让学生运用规律独立解决简单的实际问题,。这样不但巩固了新知,而且完成了建构,更重要的是训练了学生的多向思维。】

  五、回顾整理反思提升

  1、谈谈这节课的收获。

  【如此设计是基于学生的思维状态,引导学生说说对这部分内容的学习收获,进一步深入总结,给学生留有回味和发展的空间。】

  2、只要我们细心观察,生活中还有更多更有挑战性的问题等着我们去解决,比如小朋友们排队,如果排成个圈儿,棵数与间隔数之间会藏着怎样的秘密呢?就留给大家课后去思考吧!

植树问题教案4

  教材分析

  植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。

  教学目标

  1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。

  2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。

  3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。

  教学重点:

  理解间隔数和棵数之间的关系,建构数学模型。

  教学难点:

  建立模型及“一一对应思想”的应用。

  教学过程

  1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。

  2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。

  第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,

  在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的'发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。

  第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。

  第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。

  教学反思:

  作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。

  1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。

  2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。

  3、探究得太少,自己说得太多。使课堂不够开放。

  4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。

植树问题教案5

  一、教材内容分析

  1.人教版四年级下册第8单元书119页

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、进一步理解和掌握在直线上植树问题的解题规律。

  2、会根据实际问题,灵活选择方法进行解答。

  3、经历解决植树问题的过程,体验比较、区别学习方法。

  4、感受数学与生活之间的密切联系,激发学习兴趣,培养学生的探究精神。

  三、学习者特征分析

  学生通过生活中的简单事例,初步体会解决植树问题的'思想方法和它在解决实际问题中的应用,应该让学生从实际问题入手,逐步发现隐藏于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。

  四、教学策略选择与设计

  认真观察分析,运用规律解决问题

  五、教学环境及资源准备

  投影仪

  六、教学过程

  教学过程 教师活动 预设学生行为 设计意图及资源准备

  一、复习回顾

  (1)教师:上节课我们共同学习探讨了有关植树的数学问题,植树问题中有哪几种情形?解答时应注意什么问题?组织学生在小组中议一议。相互交流。再组织学生汇报,教师根据学生汇报板书:

  ①两端都要栽:植树棵树=间隔数+1

  ②两端都不栽:植树棵数=间隔数-1

  ③只栽一端:植树棵数=间隔数 学生在小组中议一议。相互交流。

  二、指导练习

  (1)教材练习二十第1题。

  ①学生读题:理解题意。

  ②小组讨论:当大钟敲5下时,前后共有几次间隔?平均每次间隔时间有多长?

  ③大钟敲12下,需要多长时间呢?

  大钟敲12下,共有11次间隔,所以共需时间是:2×11=22(秒)。

  组织学生读题,理解题意。

  (2)教材练习二十第3题

  教师:从王村到李村之间设电线杆,会有几种情况?

  学生在小组中根据分析的情况,独立解答,并相互交流。根据可能会存在的三种情况,分别有三种解答结果。

  a.16-1=15 200×15=3000(米)

  b.16+1=17 200×17=3400(米)

  c.200×16=3200(米)

  教材第119页思考题。

  教材练习二十第4题。

  ①学生读题,理解题意。

  ②学生观察示意图,小组讨论:有多少个间隔?有多少盏灯?

  教师:你发现了什么?

  教师引导学生归纳总结:在封闭路线上植树时,间隔数=植树棵树。(板书)

  教师引导学生分析:3号在1号队员的前面,1号队员不是第4名,而3号队员不是第1名,所以3号队员是第2名,而1号队员是第3名,当1号队员第3名时,由于号码名次不同,所以2号是第4名,4号是第1名。

  所以排名是:

  1号 2号 3号 4名

  第3名 第4名 第2名 第1名

  学生小组讨论后汇报,可能会说出:大钟敲5下,共有4次间隔,平均每次间隔时间是8÷4=2(秒)。

  学生独立思考,并解答。教师指名汇报,然后集体订正。

  组织学生议一议,然后汇报。汇报时学生可能会说出:共有三种情况:

  a. 两端都设有电线杆。

  b. 两端都不设电线杆。

  c. 只在一端设电线杆。

  学生讨论后汇报,汇报时可能会说出:1号第3名,2号第4名,3号第2名,4号第1名

  三、应用练习

  (1)一度长180米的大桥两侧,每隔30米安装一盏路灯。

  ①两端要安装,需路灯几盏?

  ②两端不安装,需路灯几盏?

  (2)小刚到电影院看电影,他前面有8排,后面有9排,左边有15个座位,右边有17个座位。电影院一共有多少个座位?(每排座位一样多 学生独立练习,然后小组交流。

  指2名学生板演,再集体订正。

  学生读题,理解题意。

  小组合作讨论,交流解答。

  四、总结

  通过这节课的练习,你又有哪些收获?

  板书设计: 植树问题

植树问题教案6

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的.关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

植树问题教案7

  学情分析:

  四年级的学生以形象思维为主,而且抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。

  教材分析:

  “植树问题”原本属于经典的奥数教学内容,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  这个数学内容既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的.模型解决一些相关的实际问题。

  设计理念:

  《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。

  教学内容:

  人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。

  教学目标:

  知识与技能:

  1、理解间隔概念,知道间隔数与棵树之间的关系,初步建构植树问题的数学模型。

  2、能根据数模解决简单的实际问题,培养学生观察、分析及推理能力。

  数学思考:

  1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  解决问题:

  能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。

  情感态度与价值观:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:会应用植树问题的规律解决一些相关的实际问题。

  教学难点: 建构数模,探寻规律。

  教学准备:课件、实物投影仪、每组一张表格

  教学流程:

  一、创设情景,导入新课。

  1、猜谜语

  师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你知道在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”

  “现在看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)

  2、找间隔

  “生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)

  “我们的身边还有间隔吗,一起来找找吧!”

  3、揭示课题

  出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样美丽的环境呢?”

  “对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家知道吗?在我们数学王国里植树可是有一定的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)

  二、自主探究,构建模型

  师:“春天到了,为了美化校园,我们学校也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)

  1、设计不同方案

  师:“画一条线段表示12米的小路,你想怎么载就用示意图或线段图画出来吧!”教师巡视。

  2、展示不同方案

  投影仪展示学生的设计方案,问:“你是怎么画的?”

  师板书三种情况,分别是:两端都栽,只栽一端,两端都不栽。

  师:“今天这节课我们先来探讨两端都栽的情况。”

  3、小组探索、加强体验

  (1)提出问题

  出示例1(课件9)学生默读题目,找出关键词并做解释。

  师:“需要多少棵树苗呢?”指名说出不同的答案并板书。

  师:“现在出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。

  (2)验证猜想

  演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想知道吗?就是将复杂问题简单化,在这里100米太长了,我们可以先在短距离的路上种种看。”(出示课件10)

  分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”

  (3)总结规律

  小组内填写表格,观察:“你发现了什么规律?”板书规律

  “刚才通过画图知道了棵数,能不能通过计算得到呢?”

  师:“根据刚才发现的规律你知道例1的答案了吗?会列式计算吗?”(出示课件11)

  4、运用规律

  (1)现在我们的小手的5个手指看成5棵树,你能说说今天发现的规律吗?同桌相互说一说。

  (2)出示课件12“比一比谁的反应快” 在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?

  三、巩固应用,内化提高

  师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。

  1、公共汽车上(出示课件13)

  2、公路上(出示课件14)

  3、上楼梯(出示课件15)

  4、钟表上(出示课件16)

  引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。

  四、回顾整理,反思提升

  师:通过今天的学习,你有什么收获?

  “对!今天你们发现了植树问题中的重要规律,我们是怎么得到的?”“你还学到了什么方法?”(复杂问题简单化)

  “收获方法比收获知识更重要,祝贺大家!”

  板书设计:

  植树问题

  两端都栽

  棵数=间隔数+1

  间隔数=路长÷间距

  路长=间隔数×间距

  100÷5+1=21(棵)

植树问题教案8

  教学内容:

  《义务教育课程标准实验教科书数学(四年级下册)》第P117- P118

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的`情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数+1=棵数,棵数-1=间距数”

  教学准备:

  课件

  教学过程:

  一、创设原型

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、根据生活实景信息回答问题。

  (1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

  (2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

  (3)河边的护栏有5根铁链,需要几根柱子?(6根)

  4、引入课题

  师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)

  二、构建模型

  1、用图象语言描述“植树棵数与间隔数”之间的关系。

  师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

  2、构建植树问题的数学模型

  (1)我们一起来看一下这几位同学画的图,你能说说你是怎么画的吗?

  (2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是啊,用线段图的方法最简便,因此它也是我们最常用的。)

  (3)通过画图,我们发现这条路的两端都栽了树,这就是我们今天研究的植树问题的一种类型。(板书:两端都栽)

  (4)在线段图上,我们用点表示栽的树,几个点就是几棵树,通过画图,我们知道6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

  植树棵数间隔数

  6 7

  (板书:棵数-1=间隔数间隔数+1=棵数)

  师:今天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

  三、利用模型解决问题

  1、教学例1

  师:现在老师要考考你们了,谁敢接受检查?既然大家都想来,那么我们一起来。

  课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)谁能大声清楚朗读这个题目?

  (2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

  (3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

  (3)这题也可以用画线段图的方法来解答,你能试着画线段图吗?

  (4)展示学生线段图,你能说说你是怎么画的吗?

  (5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你可以了解些什么信息?谁也知道了也想来说给大家听一听的?

  (6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

  (7)汇报:说说你的想法。

  ①出示学生各种答案,板书在黑板上。

  ②对于这几种方法,你们有什么看法吗?(生:我认为……)

  ③擦去错误答案,剩下正确答案:100÷5=10(个)10+1=11(棵)

  ④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

  ⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

  2、试一试

  师:如果老师把题目改一改,看看谁还会?

  课件出示:“六一”儿童节快到了,学校决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

  (1)生轻轻读题,说说从这个题目中你了解了些什么信息?

  (2)和刚才这题比较,你想说什么?

  (3)学生独立列式并汇报。

  3、巩固新知

  师:恭喜大家,顺利通过检查!你们还想接受新一轮的挑战吗?

  课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

  (6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

植树问题教案9

  教学目标

  1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

  2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

  3.让学生感受数学在日常生活中的广泛应用。

  教学重难点

  教学重点:从封闭曲线(方阵)中探讨植树问题。 教学难点:用数学的方法解决实际生活中的简单问题。

  教学过程

  一、复习旧知,情境导入(课件出示)

  (1) 在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?

  (2) 校园图书馆和体育馆两栋楼之间长40米,每隔4米种一棵柏树,一共种了多少棵? 师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1) 师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数-1)。让学生说出每个算式所表示的意义。

  你能说说棵数与间隔数之间的'关系

  二、探索新知。

  1、圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

  板书课题:封闭图形的植树问题

  2、运用规律。 圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

  (1)引导学生读题,理解题意。独立完成。

  (2)理解圆形的株数与间隔数相等,

  列出算式:12÷2=6(盆)

  3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数

  4、发现规律:在圆形的花坛上种树,棵数=间隔数 。

  圆形花坛的一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?

  5、学习例题:

  (1)课件出示例题。例:在围棋的每边都放19个旗子,最外层一共可以放多少个旗子? (2)生读题,独立列出算式

  学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:

  方法1:直接点数出最外层一共可以摆放72个棋子。

  方法2:列式:19 ×2+(19-2)× 2=72(个)

  方法3:列式:(19-1)×4=72(个)

  方法4:列式:4+(19-2)×4=72(个)

  方法5:列式:19×4 - 4=72(个)

  以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。

  6、探究规律。

  (1)首先理解封闭图形 围棋盘的最外层是一个正方形,像这样首尾相连没有开口的图形就是封闭图形。(课件出示)

  (2)提问:我们学过的封闭图形有哪些?根据学生的回答课件出示部分学过的封闭图形。学生任选一个,用小圆点代替棋子在封闭图形中画一画,数一数,想一想,会有怎样的发现? (3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。

  提问:这和我们学过的哪种植树情况一样呢?(帮助学生进行新旧知识的链接,迁移到一端栽一端不栽的植树情形。)这是巧合吗?想不想继续研究? 学生研究发现 :如果将画好的封闭图形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。

  (4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19-1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。 列式:(19-1)×4=72(个)

  (5)请一学生板演,并说出每个算式所表示的意义 19-1=18(段) ----表示19个旗子有18段间隔 18×4=72(个)----表示最外层的总数 答:最外层一共可以放72个旗子。 (6)引导学生说出公式: 最外层的总数=(每边的棵树-1)×边数

  7、运用规律解决问题。

  (1)摆棋子:一个四边形,每个顶点都摆一个。

  (2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

  设问:100-1求的是什么?乘4呢?(为什么要乘4?)

  (3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

  (4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?

  小结:看来,在封闭图形中的植树,只要先求出每边间隔数,再乘边数就可以求出最外层的总棵树。但是要注意在求每边间隔数时,要用棵数减1,你知道为什么吗?

  8、摆花盆:完成做一做第2题 问题:

  沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?

  三、巩固延伸

  解决问题:

  1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?

  2、16名学生在操场上做游戏,围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?若相邻两个同学之间相隔1米,围成的正方形的边长是多少米?

  课后延伸题

  1、“四(4)班”召开班会时,同学们围坐在一起,如果每边做5人,(如下图),这个班一共有多少个同学?每边都有5张课桌,一共要多少张课桌子?

  2、公园里的花坛有以下几种形状,请选择一种你最喜欢的形状,计算一下如果每边放4盆花,至少一共可以摆放多少盆花?

  四、全课小结 师:同学们,马上就要下课了,这节课你又收获吗?一起来分享分享吧? 封闭图形的植树问题,株数=间隔数

  最外层总数=间隔数×边数

  五、作业布置

  教材122页的第4、6、7、8题

植树问题教案10

  设计理念

  本课通过生活中的事例,调动学生已有的生活经验,接触一些重要的数学思想方法,经历猜想、实验、推理等数学探索过程,激发学生对数学的好奇心和探求新知的兴趣,增强学习数学的兴趣。以学生发展为本,着眼于数学思维能力的培养。注重引导学生充分体验探究过程,感受数学在日常生活中的广泛应用,培养学生的观察比较、动手操作、分析概括能力以及语言表达能力。

  教学内容

  《义务教育课程标准实验教科书数学》(人教版)四年级下册第117页。

  学情与教材分析

  “植树问题”是人教版四年级下册“数学广角”这个单元的一节内容。和前几册教材一样,主要是向学生渗透一些重要的数学思想方法。本课主要是渗透有关植树问题的一些思想方法,教学时通过现实生活中的一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  教学目标

  1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。

  2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。

  3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的.密切联系,体验学习成功的喜悦。

  教学重点

  引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。

  教学难点

  运用规律解决类似的实际问题的方法。

  教学准备

  电脑课件、泡沫条、小树模型、表格等等。

  教学过程

  一、创设情境,引入新课

  1、初步感知植树方法的多样化

  师:春天是个植树的好季节,你们知道植树有哪些好处吗?

  植树原来有这么多的好处啊。这节课,我们就一起来研究植树中的数学问题。(板书课题)

  (课件出示)兰兰想在门前小路的一侧种上三棵小树苗来美化环境。你们能帮她设计出一种方案吗?

  请学生上台用课件演示:鼠标移动书苗介绍设计方案

  【学情预设:有的学生在小路两端各栽一棵,中间栽一棵;有的学生把三棵都栽在中间;有的学生从一端栽起,另一端不栽。】

  师示范给一种方案命名,其他方案请学生命名。

  结论:(1)两端都栽。

  (2)只栽一端。

  (3)两端都不栽。

  (板书)

  【设计意图:将生活中常见的植树问题,整体地呈现出来,培养学生“用数学”的意识,渗透“生活中处处有数学”的思想。放手让学生设计方案并冠名,充分体现学生的主体地位。】

  二、动手操作,探究新知

  1、教学例1

  本节课我们主要学习两端都栽的植树问题。

  (1)出示例1:六年级的学生想在全长100米的校园小路一边植树,每隔5米栽一棵(两端都栽),一共要准备多少棵小树苗?

  读完题目,你们获得了哪些信息?

  猜猜看,一共要准备几棵小树苗?

  【设计意图:培养学生认真审题的好习惯。学生在猜想的过程中可能会出现几种不同的答案,到底哪种答案对呢?留下悬念,引发思考,激发学生探究新知的欲望。】

  (2)学具操作,初步探究

  到底谁的答案是对的呢?我们先取100米中的一小段20米来研究。

  小组合作,用学具模拟栽树。思考:两端都栽的时候,应该栽多少棵?

  学生展示学具,汇报模拟结果。

  【学情预设:学生汇报:每隔5米栽一棵,所以在5米,10米,15米,20米的地方各栽一棵。两端都要栽,所以在0米的地方又栽一棵,一共是5棵。】

  (3)教学画线段图

  我们用一条线段来代表20米长的小路,用几个点来代表小树苗。这就是我们经常要用到的线段图,线段图可以很好地帮助我们思考。(课件展示)

  师:这几个点除了可以代表小树苗,还能代表其他的东西吗?引导学生发现点可以表示很多物体。

  师:两点间的距离可以用哪个词语来表示呢?(间隔)

  生活中你们还见过哪些间隔,能举些例子吗?

  刚才在植树中,你们发现了几个间隔(数)呢?是怎么知道的?

  【学情预设:学生可能会说是数出来的,可能会说是算出来的……每一种方法教师都予以肯定。】

  【设计意图:老师呈现解决问题常用的方法:遇到复杂问题想简单的,从简单问题入手去研究。让学生利用学具模拟实际种树去检验,学生兴趣比较大,做到人人动手实践,丰富了学生的感性材料,并自然过渡引出线段图,为学生顺利发现并总结规律打下了基础。】

  师:同学们在刚才栽树的过程中,还发现了什么?

  【设计意图:给学生一个思考的空间,使学生发现植树时要准备树苗的问题并不能简单地用除法来解决。】

  (4)感知规律

  如果让你们来栽树,在这条20米的小路上,要使每棵树之间的距离相等,还可以每隔几米栽一棵树?

  【学情预设:学生会提出每隔1米,2米,4米,10米,20米栽一棵。】

  出示表格,根据学生的回答将间隔填上。

  小组合作:选择一、两种间隔,用喜欢的方法找出间隔数和棵数,填入表格中。

  总长

  间隔(米)

  间隔数(个)

  棵数(棵)

  20米

  (两端都栽)

  5米

  4个

  5棵

  1米

  2米

  4米

  10米

  20米

  填好表格后,小组派代表汇报结果。

  【学情预设:学生可以用画线段图、算一算、数一数等方法完成。】

  【设计意图:学生自由选择方案,并选择用自己喜欢的方式来找出间隔数和棵数,体现教学方法的开放性。展示学生不同的探究方法,体现“不同的学生学习数学的水平可以不同”的教育思想。】

  谈论交流:两端都栽时,植树的棵数与间隔数之间有什么关系?

  得出结论:两端都栽树时,棵数比间隔数多1。也可以说间隔数比棵数少1。

  板书:(两端都栽)间隔数+1=棵数

  质疑:为什么两端都栽时,棵数比间隔数多1?

  配合学生的回答,课件展示

  【设计意图:启发学生透过现象发现规律,也就是在两端都栽时,棵数比间隔数多一。】

  (5)练习

  老师有几个问题想请你们用刚才所学的规律以抢答的形式来帮忙解决。

  两端都栽时,7棵树有几个间隔呢?9个间隔有几棵树?12棵树有几个间隔呢?20个间隔有几棵树?……

  【设计意图:全体学生一起抢答,知识得到了巩固,同时也活跃了课堂的气氛。】

  (6)验证

  我们利用这个规律来算一算,两端都栽时,100米到底应该种多少棵树?看看前面哪些同学猜对了。

  【设计意图:学生经历了分析、思考、解决问题的全过程,同时利用所学的规律加以验证。从中得到解决问题的方法,丰富了学生的解题策略,体验到成功的喜悦。】

  三、应用规律

  (1)任意一纵队的学生起立

  师:谁能应用刚才所学的知识提几个数学问题?

  【学情预设:学生可能会提:有几个间隔?头尾两个同学相距多少米?每相邻两个同学间隔有多少米?】

  (2)学校小路一侧插上12面彩旗,两头各插一面,每两面彩旗之间相隔6米,这条小路长多少米?

  (3)工人架设电线杆,每两根电线杆之间的电线长100米,从第1根到第9根之间要拉多长的电线?

  (4)学校组织40名同学参加车鼓队排练,请你设计一下队形?可能会排成几排?

  【学情预设:1排、2排、4排、5排、8排……】

  师:如果老师想排成一排,每两个同学的间隔是2米,想想,这个车鼓队伍头尾相距多少米?

  如果老师想排成两排呢?

  (5)我们的城市建设正在火热进行中,市里决定在一条长20xx米的街道两侧安装节能路灯,(两端都要安装),每隔50米安一座,算算看一共要安装多少座路灯?

  【设计意图:应用知识解决孩子们身边的问题,解决学校的问题,解决社会公益问题,提高了学生解决生活实际问题的能力。充分体现了新课标“数学学习内容应当是现实的,有意义的,富有挑战性的”的理念。】

  四、全课总结

  学完这节课,你有什么想对老师或者同学们说的呢?

  五、课外思考

  为了进一步美化我们的校园,学校准备沿着宣传廊一旁摆上漂亮的花。宣传廊全长约60米,如果每隔6米摆一盆花,你想怎么摆?一共需要购买多少盆花?

  【设计意图:把探究活动延伸到课外,为下一节课的教学做好铺垫。】

  设计思路:

  《植树问题》是人教版小学数学实验教材四年级下册新增的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  上课伊始,对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。

  导入新课后,让学生成为学习的主人,学生经历了猜猜,试试,画画,填填等多种学习形式,自主探究出规律。整个过程培养了学生的动手操作能力,自主探究能力,小组合作交流能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型,为下一节课的教学打下坚实的基础。

  在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。

  本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。

植树问题教案11

  教学目标:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:

  课件、表格、尺子等。

  教学过程:

  一、教学间隔

  1.教学间隔的含义。

  师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  2.引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

  二、自主探究 找出规律

  1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

  预设:学生可能大多数对得到20棵。

  师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

  师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

  全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

  师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

  生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的`这一棵是怎么来的?

  师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

  根据学生的回答,师填写表格:

  总 长(米)

  20

  全班观察表格寻找规律。

  师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

  师:对得到的这个规律有没有不同意见?

  三、巩固练习

  师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

  (1)基础练习。

  师:请看题目,谁愿意来说一说?

  A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  A2. 如果是每隔10米栽一棵呢?(口答)

  B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

  课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

  C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

  课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

  (2)拓展练习。

  师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

  课件出示解放碑的大钟及题目。

  解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

  师:请同学们独立的在练习本上完成。

  小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

  四、数学文化

  介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  五、全课总结

  1.通过这节课的学习你有什么收获?

  2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

植树问题教案12

  第一课时

  教学目标

  1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2、掌握“植树问题”的第一种情况:“两端都要种”(即间隔数比株数少1的情况)。

  3、培养学生认真审题的好习惯。

  重难点

  重点:掌握“两端都要种的植树问题”的解题方法。

  难点: 掌握已知间隔长度和全长,求间隔数的方法,以及已知间隔数和间隔长度,求全长的方法。

  教学过程

  一、引入。

  1、春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?美化绿化自己的家园,你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。

  2、小游戏。

  师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,看一看,数一数,一共可以系几个扣。 学生动手试一试。

  小组讨论,看一看能得出什么结论。

  集体交流,通过刚才的游戏,你得出了什么结论。

  通过操作,观察讨论后得出系扣的个数比间隔数多1。

  3、验证。

  学生拿出一根20厘米的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。

  指名说说自己系了几个扣。 验证扣的个数与间隔数的关系。

  4、练习。

  同桌两人各拿一张纸条,互提要求在纸上分段,要求两端均画上标志。 相互评价,互提建议。

  二、新授

  1、出示教学教材第106页例1。

  (1)读题,理解题意。

  (2)交流从题目中获取的信息和所要解决的问题。

  (3)学生动手试一试。

  (4)小组看图讨论,各自交流。

  想法一:100÷5=20,所以要准备20棵树苗。

  想法二:我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。

  (5)猜测。

  猜一猜,谁的思路对。

  (6)集体反馈,发现规律。

  经过集体交流,发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。

  (7)教师讲解,帮助学生理解规律。

  因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。

  (8)研究列式的方法。

  100÷5=20(段)

  20+1=21(棵)

  教师表扬能自己正确列式的学生,并请他们阐明思考过程。

  2、尝试。

  (1)出示例题:在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?

  (2)读题,理解题意。

  (3)明确已知条件和所求问题。

  (4)找寻数量间的关系。 同伴探究,并得出结论。

  (5)独立列出算式。

  (6)集体反馈。

  指名板书:18÷3=6(段)

  6+1=7(盆) 请学生分别说出每步的意思。

  3、巩固练习

  1)有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米?

  2)学校领操台前从起点开始每隔2米插一面彩旗。一共需要多少面彩旗?

  3)新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯?

  4)一个小学生从一楼上到三楼用了40秒。照这样计算,他从三楼上到六楼需要多长时间?

  第二课时

  教学目标

  1、理解并掌握“植树问题”的基本解题方法,能解决一些实际生活中的与“植树”有关的问题。

  2、掌握“植树问题”的第二种情况:“两端都不种”(即间隔数比株数多1的情况)。

  重难点

  重点:掌握“两端都不种的植树问题”的解题方法。

  难点:掌握已知棵数和全长,求间隔长度的方法,以及已知棵数和间隔长度,求全长的方法。

  教学过程

  一、复习

  提问:已知全长和间隔长度,怎样求棵数?

  教师根据学生回答板书:棵数=全长÷间隔长度+1 那么已知间隔长度和棵数,怎样求全长呢? 答后板书:全长=间隔长度×(棵数-1)

  二、新授

  今天我们继续来研究另一种植树问题。

  1)出示教材第107页例2。

  (1)读题,理解题意。

  (2)投影出示教材图,帮助理解。

  (3)分组看图讨论。

  (4)尝试列式计算。

  (5)集体交流。

  教师板书:60÷3=20(段) 20-1=19(棵) 19×2=38(棵)

  (6)质疑。

  为什么减1?(因为两端都不种树,所以植树的棵数比间隔数少1)为什么要乘2?(因为是在两馆间的路两旁植树,所以要乘2) (7)比较与例1的不同。 先分组讨论,再集体交流。

  例1是两端都要栽树,所以棵数比间隔数多1。 例2是两端都不栽树,所以棵数比间隔数少1。 (8)教师讲解,帮助学生理解。

  教师讲述:相邻两棵树之间的距离是3米,60米里面有多少个3米,就是多少个间隔。我们知道大象馆和猩猩馆在路两端,也就是说两端不栽树,所以间隔数就比植树的棵数多1。

  2)小游戏。

  这里有一张彩纸条,老师想把它等分成2份,需要用剪刀剪几次?(一次) 请你们拿出彩纸条,分别把它们分成3段、4段、5段,看一看要剪几次。 看一看能得出什么结论。

  总结:剪的次数比纸条的段数少1。

  3)巩固练习

  1、两根栏杆之间每隔3米放一个障碍物,一共放了8个。这两根栏杆相距多少米?

  2、两栋楼之间每隔2米种一棵树,共种了 15棵。这两栋楼相距多少米?

  3、甲、乙两地相距4千米,每隔800米设一个站牌(甲、乙两地各设一个)。甲、乙两地一共设有多少个站牌?

  4、小明家门前有一条35米的小路,绿化队要在路旁栽一排树。每隔5米栽一棵树(一端栽,一端不载)。一共要栽多少棵数?

  学生独立思考小组讨论,后集体交流。 教师指导:棵数=间隔数

  第三课时

  教学目标

  1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2、掌握“植树问题”的第三种情况:“关于一个封闭图形的植树问题”。

  3、培养学生认真审题的学习习惯。

  重难点

  重点:掌握封闭图形中“植树问题”的解题方法。

  难点:掌握已知株数和全长,求株距的方法,以及已知株数和株距,求全长的方法。

  教学过程

  一、复习

  1、前两节课都学习了有关“植树问题”的哪些情况?

  根据学生的回忆内容,教师整理板书:

  (1)两端都植树,则棵数比间隔数多1。 全长、棵数、间隔长度之间的关系:

  全长=间隔长度×(棵数-1)

  棵数=全长÷间隔长度+1

  间隔长度=全长÷(棵数-1)

  (2)一端植树,则棵数就比在两端植树时的棵数少1,也就是棵数与间隔数相等,全长、棵数、株距之间的关系:

  全长=间隔长度×棵数

  棵数=全长÷间隔长度

  间隔长度=全长÷棵数 (3)两端都不植树,则棵数比间隔数少1。

  棵数=全长÷间隔长度-1

  间隔长度=全长÷(棵数+1)

  2、设想。

  你还知道有关“植树问题”的`哪种情况?给同伴做一个介绍,说一说你是从哪知道或学到的。

  3、谈话。

  同学们,今天我们继续来研究第三种“植树问题”,这种情况比较特殊,也很有意思,看谁最先发现规律。

  二、新授

  1、出示教材第108页例3。

  (1)引导学生审题,从图中知道哪些信息?

  生:从情境中知道张伯伯要在圆形池塘周围栽树,池塘的周长是120m,每隔10m栽1棵树,问题是求一共要栽多少棵树。

  (2)引导学生:把这类问题转化成在封闭的图形上植树的问题。

  师:什么是封闭图形呢?

  学生思考后回答:无论什么图形,只要起点和终点重合,即首尾相连就是封闭图形。

  师:观察封闭图形上的棵数与间隔数,你有什么发现?

  生:棵数等于间隔数。 教师板书。

  师:本题该怎么解答呢?

  生:因为圆形池塘是封闭图形,根据“棵数等于间隔数”解答。120÷10=12(棵)

  师:如果把圆拉成直线,你能发现什么?

  出示下图:

  生:间隔数与棵数相同,也就是相当于一端栽树,另一端不栽树的情况。

  2、解决实际问题。

  (1)完成教材第108页“做一做”。

  (2)读题,理解题意。

  (3)分析数量关系。

  (4)自主探究或同伴共同探究。

  (5)集体交流。

  (6)教师讲解,帮助学生理解。

  (7)套用关系式进行验证。 (8)解答。150÷15=10(盏)

  三、巩固练习

  1、一个圆形花坛,它的周长是150米,每隔2米栽一棵树。共需树苗多少棵?

  2、社区有一块正方形活动区,每边都栽种19棵树,四个角各种1棵。共种树多少棵?

  3、时钟6时敲6下,10秒敲完。那么12时敲几下,需要几秒?

  第四课时

  教学目标

  1、使学生能够根据实际条件,解决“植树问题”。

  2、熟练应用解决“植树问题”的方法。

  3、培养学生研究问题的科学素养。

  重难点

  重点:能根据条件研究计算方法。

  难点:熟练运用解决“植树问题”的方法。

  教学过程

  同学们,今天我们用这几天学习的知识来解决一些生活中的实际问题。

  1、解决实际问题。

  四(1)班同学办安全小报,全班48人每人展示一张。在每张作品的四个角都钉上图钉,一共需要多少个图钉?

  (2)读题,理解题意。

  (3)分小组讨论,制订方案。

  学生动手试一试。

  小组讨论,看一看能得出什么结论。 重点是根据条件研究计算方法。

  (4)分小组汇报设计方案。 根据不同的方案进行计算。

  ①共1行,每行48张。列式:(1+1)×(48+1)=98(个)

  ②共2行,每行24张。列式:(2+1)×(24+1)=75(个)

  ③共3行,每行16张。列式:(3+1)×(16+1)=68(个)

  ④共4行,每行12张。列式:(4+1)×(12+1)=65(个)

  ⑤共6行,每行8张。 列式:(6+1)×(8+1)=63(个) 还有其他方法吗?

  最简单的方法是48×4=192(个)。

  但是,这种方法比较浪费图钉,生活中一般不会采用这种方法。

  (5)说一说,你会选择哪种方法布置展板。

  (6)观察算式,发现规律。

  2、拓展。

  (1)板书练习。

  李明上楼,从第一层到第三层要走36级台阶。如果从第一层走到第六层,需要走多少级台阶?(各层之间台阶数相同)

  (2)理解题意。

  (3)尝试解答。

  (4)交流反馈。

  (5)教师讲解,帮助学生理解。

  讲述:我们把从第一层到第二层看作1个间隔,第二层到第三层看作1个间隔,所以李明从第一层到第三层共走了2个间隔,根据“植树问题”的数量关系,可求出每相邻两层楼梯之间的台阶数为36÷(3-1)=18(级)。而从第一层到第六层共走了5个间隔,根据“植树问题”的数量关系可得,18×(6-1)=90(级)。 (6)归纳。

  这道题从表面看并不是“植树问题”,但是我们把层数看成棵数,可以抽象成为一条线段上的点数与间隔数之间的关系。

  3、巩固练习

  (1)计划在一条长8064米的水渠的一条边上植树,包括两端在内,共植169棵。每相邻两棵树之间的距离是多少米?

  (2)椭圆形的跑道周长是400米。每隔40米装一盏红灯,两盏红灯之间装2盏绿灯。一共装多少盏灯?

  (3)舞蹈队排成一个方阵,最外一层的人数为60人,舞蹈队外层每边有多少人?这个方阵共有多少人?

  4、学生独立完成练习二十四的题目,并逐一校对。

植树问题教案13

  教学内容:教科书106页例1及相关内容。

  教学目标:

  1.通过猜测、实验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵树之间的关系。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:多媒体课件、直尺、学习纸。

  教学过程:

  一、 谜语引入做铺垫:

  1.师:同学们,记得上一次上课前老师给同学们除了一个谜语,同学们一下子就猜出来了,今天老师又带来了一个谜语。

  师说谜语,学生回答(手)

  师:真厉害!现在举起你们的右手,手心向我,尽量把五指张开,大家看,每两个手指间都有一段?(距离)。在数学中,我们把这一段距离就叫做一个间隔。(板书:间隔)5个手指间有几个间隔呢?(4个),4个手指呢?(3个),3个手指呢?(2个),2个手指呢?(1个)。好,同学们可以把手放下了。

  2.现在请第一小组的.前5位同学站起来,站起来的这5位同学之间有没有间隔?(有)。从第一位同学到最后一位,一共有几个间隔呢?(4个)后面一位同学也请站起来,现在有几位同学?几个间隔呢?(6位,5个),再站起来一位,现在是?(7位同学,6个间隔)。好,请坐,谢谢你们。

  手指之间有间隔,刚才站起来的同学间有间隔,我们在植树时,树与树之间也要有间隔,那么今天我们就以植树为例探讨与间隔数有关的问题。

  板书课题:植树问题

  二、探索新知

  1.出示例题:植树节到了,同学们要在100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?

  2.理解题意:

  师:在这道题中,你们发现了什么数学信息?

  生回答(总长度100m,5m一棵)。课件演示。

  师:每隔5m一棵是指两棵树之间的距离是5m,我们把这个距离叫做间隔长度。

  师:还要注意哪些重要的信息?生:一边。师:一边是什意思?路有左右两边,只要在一边栽树,另一边不栽。生:两端要栽。师:路的起点和终点都要栽。

  课件演示。

  3.学生猜想:

  师:你们猜一猜,一共要栽多少棵树?谁来说说。

  生回答。怎样得到的。师板书:100÷5=20(棵)等等。

  师:到底要栽多少棵呢?哪一种猜想是对的,我们要检验一下,你们认为怎样检验?(画图)100m的小路每5m画一棵,5m画一棵,这样画下去你们觉得?(太麻烦)。为什么麻烦?(100里面有20个5m),怎么办呢?

  像这样数据大、比较复杂的问题,我们可以先从简单的情况入手进行研究,我们可以选择100m中的一小段,如果是15m的小路,可以栽几棵?20m呢?

  4.学生操作:

  师:请同学们拿出学习纸,我们用线段表示小路,把小路的长度缩小100倍,学习纸上15cm的线段表示15m的小路。20cm表示20m,我们用5cm一个间隔表示5m一个间隔。可以用你喜欢的图案表示一棵树。画好后,完成下面的表格。

  学生操作。师巡视。画好的互相检查。

  5.学生汇报:

  师:请一个同学汇报一下结果,15m的小路?生:3个间隔,4棵树。

  师:同意吗?我们来演示一下栽的情况。首先起点处栽一棵,隔5m栽一棵。

  第3棵树时,师问:还要栽吗?(要)为什么?(两端都要栽)起点栽一棵,终点也就是末尾也要栽一棵。

  大家看,15里面有几个5m?(3个),也就是3个间隔。1、2、3,3个间隔,1、2、3、4,4棵树。3个间隔4棵树。刚才那位同学的回答是正确的。20m的小路?(4个间隔,5棵树)。我们来看,(课件演示)还是5m一个间隔,终点还要栽一棵。20里面有几个5m?(4个)几棵树?(5棵)。4个间隔5棵树,回答正确。

  6.尝试列式:

  师:你发现了什么规律,不画图,你知道25m要栽几棵树吗?试一试。

  学生尝试列式。汇报,师板书:25÷5=5(个间隔)5+1=6(棵)

  学生说列式想法:5m一个间隔,25m里有几个5m就有几个间隔,求出的是间隔数,棵数比间隔数多1,所以要加1。

  师:为什么要加1,你怎么知道棵数比间隔数多1(从刚才表格得到的规律)你们同意吗?(同意)。

  7.理解规律:

  如果说5个间隔就栽5棵树会出现什么情况呢?我们来看,一个间隔对应一棵树,5个间隔就是5棵树,这样栽完了吗?(没有)为什么?(末尾没栽,这是一端栽一端不栽)5个间隔栽5棵树行吗?(不行),应该栽几棵?(6棵)。

  要使两端都栽树,棵树和间隔数有一个怎样的关系呢?谁来说。

  (棵树比间隔数多1,反过来,间隔数比棵树少1)

  8.巩固强化,得出结论:

  师:同学们都明白了两端都栽的情况下,棵树和间隔数之间的关系,现在老师出几道题考考大家,7间隔栽几棵树?20个间隔栽几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?非常好!

  如果用一个等式来表示间隔数和棵数之间的关系,应该怎样写?

  间隔数+1=棵树(棵树—1=间隔数)

  大家把这个关系齐说一次。

  要求棵数必须要知道?(间隔数)

  已知总长度和间隔长度怎样求间隔数?

  总长度÷间隔长度=间隔数齐读一次。

  9.运用方法,验证例题:

  师:现在我们回到例题,100m的小路一边植树,每隔5m栽一棵(两端要栽),到底要栽多少棵树?你猜对了吗?

  看看黑板上这种做法对吗?生回答,集体讲评。课件出示正确列式。

  三、巩固练习:

  1.同学们在全长400m的小路一边植树,每隔8m栽一棵树(两端要栽),一共要栽多少棵树?

  学生完成,板演,讲评。、

  把一边改为两旁,生独立完成,集体讲评。

  2. 工人叔叔正在架设电线杆,相邻两根间的距离是200m。在总长3000m的笔直路上,一共要架设多少根电线杆(两端都架设)?

  师:这道题和我们今天学的植树问题有联系吗?(有)谁来说一说。

  生回答,师引导找到联系,在课件上标示。

  学生独立完成,板演,集体讲评。

  3.在一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

  学生独立完成,师提醒:先求间隔数。

  四、课堂小结。

  (略)

植树问题教案14

  学习目标:

  1.让学生学会在摆一摆、画一画、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2.学会在小组合作、交流中,进一步理解间隔数与棵数之间规律,并解决简单的植树问题。

  3. 在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  学习过程:

  一、自主探究

  1.从图中你都知道了什么?

  2.思考:你认为一共要栽多少棵树?

  3.出示表格

  总长 每两棵树之间的距离,即间隔(米) 两端都种

  间隔数 棵数

  我的.发现

  可以独立完成,也可以小组合作完成。

  二、课堂达标

  1.算一算

  在全长20xx米的街道一旁安装路灯(两端都装),每隔50米安装一座。一共安装了多少座路灯?

  2.想一想

  学校校园内一条小路的一旁从头到尾共有35棵树,每两棵树相距5米。这条小路共有多长?

  3.楼梯问题

  学校教学楼每层楼梯有24个台阶,老师从一楼开始一共走了72个台阶。老师走到了第几层?

  三、知识拓展

  广场上的大钟7时敲7下,12秒敲完,10时敲10下,需要几秒钟敲完?

植树问题教案15

  教学内容

  教科书第106-118页例题。

  教材分析

  本单元学习的是有关数学广角的“植物问题”,主要探讨的是关于在一条线段植树的问题,只栽一端、只栽中间、两端都栽等。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等探索过程,并启发学生透过现象发现其中的规律,再利用规律回归生活,解决生活实际问题。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单人手的思想。

  教学目标

  1、理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”,“间隔数=总长×间隔距离”的关系。

  2、使学生经历和体验复杂问题简单化的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  引导学生发现植树棵树与间隔数之间的关系。

  教学难点

  理解间隔与棵树之间的规律并运用规律解决问题。

  教学准备:

  多媒体课件、学具

  课时安排:

  1课时

  教学过程

  一、教学“间隔”

  1、教学“间隔”的含义。

  师:同学们,在我们的身边到处有数学。你们喜欢猜谜语吗?老师让你们猜个谜语好不好?出示谜面:(打一  我们在排队时,也出现了间隔数与人数之间的某种关系。下面,请几位同学上来排队(先请三人起来排队)问:有几个人?几个间隔?(再增加1人)再问:有几个人?几个间隔?(再增加1人)继续问有几个人?几个间隔?

  通过观察同学们刚才排队的情况,你们发现了人数与间隔数之间又有什么关系?(人数比间隔数多1,或者间隔数比人数少1……)

  3、引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,队列中间隔数与人数之间的关系。像这类隐藏着总数和间隔数之间的关系问题,我们称为植树问题。今天,我们一起来研究有关植树问题。

  板书课题:植树问题(两端都栽)。

  4、刚才我们谈到的手指和队列的问题都是植树问题,大家能说出生活中的相关实例吗?教师举例:(上课和铃声、整点敲钟报时、美国五年一届的总统选举)

  二、引导探究,发现两端要种的规律

  1、课件出示问题:同学们在全长100米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  让学生读题,理解题意。然后让学生说说这道题的关键词是什么。(每隔5米是指什么,两端要栽……,并重点理解“每隔5米”就是指两棵树之间的距离,也就是间距;两端:也就是这行树的两头)然后教师提问:咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到100米,数一数,是不是就能知道答案呢?(如果要求同学们通过画图证明,每5米1棵,那究竟要画到什么时候呢?其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看……?我们可以把这条路看作较短的10米、15米、20米……通过画图得出规律,再根据规律求100米路要植树的棵数),这是在我们数学上常用的一种方法叫做“花繁为简法”。

  2、简单验证,发现规律。

  ①简单验证,发现规律。

  学生实践记录单

  出示实践记录单后,教师先示范画线段图,并在线段图上标出“间距,间隔数,线路总长”等,让学生更进一步理解“线路总长、间距、间隔数”。

  同学们在全长10米的小路一边植树,每隔5米种一棵。(两端要种)一共需要多少棵树苗?

  b、在长15米的小路一边植树(两端要栽)每五米一棵,可植多少棵?(线段图),学生通过画图探究,逐渐对总长、间隔距离、间隔数之间的关系进行进一步建模。

  c、在长20米的小路一边植树(两端要栽),每五米一棵,可植多少棵?那么在长25米和30米的小路上呢?

  (1)学生自主活动,完成实践记录单。(学生完成这个表格后,教师展示学生完成情况并提问:怎样求间隔数?怎样求棵数?学生回答,教师板书)

  全长(米)10 15 20 ┉

  间距(米)5 5 5 ┉

  间隔数(段)

  ┉

  棵树(棵)

  ┉

  (2)观察表中的棵数和间隔数,你发现了什么规律?(板书:两端要种:棵数=间隔数+1或间隔数=棵数—1),全班齐读规律。

  ②应用规律,解决问题

  教师:应用这个规律,我们能不能解决例1的.问题?(全班学生独立完成)订正时教师提问:100÷5=20这里的20指什么?(间隔数)20+1=21为什么还要+1?(因为两端要种的棵数=间隔数+1)刚才我们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵数,知道该怎么做了吗?

  3、解决实际问题(口答)

  ①教师说间隔,学生说棵数。(或者教师说棵数,学生说有几个间隔。)

  ②小组内各同学互相出题。

  小结:

  刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种:棵数=间隔数+1,如果知道了间隔数和间距(每两棵树的距离),怎样求总长呢?(引导学生说出:总长=间隔数×间距(板书)

  4、完成“做一做”

  园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?(先让学生说一说这道题中的间隔数是多少,间距是多少,再让学生独立完成。订正后,教师可再进一步提问:如果在公路的两侧植树,又该怎么做?)

  教师:今天我们学习了怎样求植树的棵数,求间隔数,求植树的路线的总长度,解决这几个问题的关键是相同的,就是要运用好段数与点数之间的规律。

  三、应用规律,解决拓展

  1、植树问题(两端都栽)练习

  全路长(米)间隔距离(米)间隔数(个)棵数(棵)

  1 30 5

  2 50

  10

  3

  4

  21

  4 1000

  101

  2、广场上的大钟5时敲响5下,8秒钟敲完。10时敲响10下,需要多长的时间?

  3、小明要在全长20m的小路一边植树,每隔5m栽一棵(如下图),请你帮小明设计一下植树方案。(此题留待学生思考,为以后教学只栽一端和两端不栽做铺垫)

  四、谈谈你的收获?

  学生谈谈收获,教师总结。

  五、作业

  完成教科书练习

  六、板书设计

  植树问题(两端都栽)

  棵数=间隔数+1

  间隔数=棵数-1

  间隔数=总长÷间隔距离

  教学反思

  “植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在五年级上册第七单元的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。

  本节课我教学了课本106-108页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:

  一、重视数学模型的建立过程

  学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。

  二、注重数学思想的渗透

  在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。让学生体会到研究问题可以从简单入手,化繁为简,用这样的方法,可以有效的解决问题,把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。其次,通过画线段图,渗透了数形结合的思想;在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。

  三、注重探究精神和能力的培养

  教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。

  四、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:

  一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;

  二是进行变式练习。引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。

  这节课虽然取得了一些收获,但也有许多遗憾。

  一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。

  二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。

《植树问题教案15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

资深编辑 • 1对1服务

文章代写服务

品质保证、原创高效、量身定制满足您的需求

点击体验

【植树问题教案】相关文章:

《植树问题》教案03-12

植树问题教案02-26

《封闭图形植树问题》教案09-28

植树问题的教学设计10-20

植树问题教学反思(精选)07-06

植树问题教学反思11-18

《植树问题》教学反思07-18

《植树问题》教学设计05-21

《植树问题》的教学反思05-16

文章代写服务

网站编辑 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

植树问题教案15篇

  作为一位杰出的教职工,总不可避免地需要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那要怎么写好教案呢?下面是小编收集整理的植树问题教案,希望对大家有所帮助。

植树问题教案1

  一、教材

  《植树问题》是《义务教育教科书.数学》五年级册第七单元《数学广角》中的内容。

  教材将植树问题分为几个层次,有两端都栽、两端不栽、以及封闭曲线(方阵)中的植树问题。例1讨论的是在校园里的一条小路一边植树,需要多少棵树苗的问题,这是关于一条线段的植树问题。小路全长100米,每隔5米栽一棵树,两端都要栽,一共要准备多少棵树苗呢?让学生在解决这个问题的过程中发现规律,找到解决问题的有效方法,经历分析、思考问题的过程。例2是在例1的基础上继续探讨关于植树问题的另一种情况。教材给出动物园里绿化队在大象馆和猩猩馆之间的小路两旁栽树的问题,根据实际情况在这条小路两端都不栽树。本节课教学第106页——107页例1、例2和做一做的内容。

  本节课在教材的处理上我作了如下调整,把原例1中的路长“100米”改为“20米”,把“两端要栽”这个条件去掉了。数据改小有利于学生思考,也便于学生动手操作,但并不影响我们要研究的数学问题。“两端要栽”这个条件去掉了,旨在让学生在一个开放的情境中,通过动手操作、演示用一一对应的思想方法去探究一条线段上的植树问题三种情况中间隔数与棵数的关系,将例2分成两道题放到利用模型、解决问题环节,有利于学生用发现的规律尝试用数学的方法来解决实际生活中的简单问题,从而使学生建立起深刻、整体的表象,提炼出植树问题解题思想方法。

  二、教学目标

  1.在给定目标下,感受针对具体问题提出设计思路、制订简单的方案解决问题的`过程。通过应用和反思,进一步理解所用的知识和方法,了解所学知识之间的联系,获得数学活动经验。

  2.学生已经学习了《除法的含义》、《表内除法》、《除数是一位数的除法》、《除数是两位数的除法》以及用线段图来解决问题的方法。从学生的思维特点看,五年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  3.借助直观,通过间隔和数的对应,理解间隔数与植树棵数的规律,建立不同情境下植树问题的数学模型。

  4.学生在参与观察、动手操作、比较等数学活动中,发展解决问题的意识和能力,能清晰地表达自己的想法。学会独立思考,体会数形结合、一一对应、化归、建模等数学思想方法。

  5.能运用所得到的规律解决实际问题。能和他人合作交流。

  6.能积极参与数学活动,对数学有好奇心和求知欲。在数学学习过程中,体验获得成功的乐趣,建立自信心。感受数学在日常生活中的广泛应用,体验植树问题的价值和作用。

  三、重、难点

  重点:探索规律,建立植树问题模型,会应用植树问题的模型解决一些相

  关的实际问题。

  难点:理解“间隔”与“数“之间的对应关系,应用植树问题的模型灵活

  解决一些相关的实际问题。

  四、说教法与学法

  教法:以情境教学法为主,直观演示法、引导发现法、讨论法、讲解法为辅。

  学法:以学生发展为本,融观察、操作、合作、交流等方法为一体。

  五、教学流程

  (一)课前互动、引出课题

  师:想让自己的头脑变得更聪明的同学请以最佳的状态坐好,都有这个美好的愿望,光说不练可不行。这节课就让我们走上思维的道路,一起去迎接新的挑战吧。请看老师给你们带来的课前思维训练题:

  1.一根木头长10米,要把它平均锯成9段,需要锯几次?

  2.四年级在三楼,每上一层要走20个台阶,一共要走多少个台阶才能到三楼?(每层台阶数相同)

  师:锯木头和上楼梯是生活中常见的现象,我们把它叫做“植树问题”,今天这节课我们就一起来研究有关植树问题的知识。(板书课题:植树问题)

  (这一环节,旨在使学生在轻松的活动中为新课的学习作铺垫,而且让学生体会到只要处处留心用数学的眼光去观察宽阔的生活情境,就能发现在平常事件中蕴涵的数学规律,并应用这些规律去解决实际问题。)

  (二)探索规律、建立模型

  1.创设情境,引入学习。

  园林工人打算在一条长20米的笔直小路一边植树,请同学们按照每隔5米栽一棵的要求帮忙设计一份植树方案,并说明理由. (创设为园林工人设计植树方案的情境,贴近学生生活,让学生感受到数学问题于生活,为生活服务的思想,并且激发学生积极参加到学习活动中。我还把教材例题100米,改成20米,主要因为我感觉100米的距离还是有些长,学生在动手操作时,不便于研究。同时也遵从了教参中把复杂问题简单化的思想)

  (二)动手操作,设计方案

  同桌二人合作,摆一摆或画一画。

  (先给学生创设宽松的思维环境,让学生打开思路,找到在一条线段上栽树时的不同方法,让思维如花般绽放。)

  3.交流汇报,演示。

  4.比较方案,探究规律。

  (1)间隔数与总长、间距的关系。

  ①出示植树的三种情况,学生观察相同点。

  ②学生汇报,教师板书。

  ③探究间隔数与总长、间距的关系。(向学生渗透此类问题的思想方法、让学生发现其中的规律,建立起数学模型的过程。)

  (2)间隔数与植树棵数之间的关系。

  ①学生观察不同点,教师讲解三种方法的名称。

  ②同桌交流棵树和间隔数的关系。

  ③汇报交流。(板书)

  ④共同探究原因。(演示:树与间隔之间的一一对应关系。)(让学生在一个开放的情境,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。)

  (3)小结:

  ①植树问题规律,②解决植树问题方法:先求出间隔数,再看属于哪种类型。

  (三)巩固应用、内化提高

  师:既然宝贝已经保存在你的大脑里了,那可不能让它天天睡懒觉,得常常拿出来发挥一下它的神奇作用。下面这几道题就需要它大显身手。请看:

  1.有一条500米的石子路,在石子路的一侧每隔5米栽一棵(只栽一端),需要准备几棵树?

  2.同学们在全长1000米的小路一边植树,每隔8米栽一棵(两端都栽)。一共需要多少棵树苗?

  3.大象馆和猩猩馆相距60米。绿化队要在两馆间的小路一侧栽树,相邻两棵树之间的距离是3米。一共要栽几棵树?

  4.在一条全长180米的街道两旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

  (练习题设计有层次性,充分体现本节课的重点,难点,并且利用学生熟悉的生活场景,带着浓厚的兴趣和高涨的积极性,解决实际生活中的问题,也体现让数学知识回归生活,为生活服务的思想,使学生进一步体会,现实生活中的许多不同事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。)

  (四)课堂总结,拓展延伸

  六、说板书设计

  (一条线段上的)植树问题

植树问题教案2

  课型新授使用人

  (学生会很快发现:植树的棵数比间隔数多1)

  三、巩固应用,内化提高

  作 业 设 计

  基础:

  1.填一填。

  (1)下面的线段有( )个点,共有( )小段,不封闭图形的点数和段数的关系是( )。

  (2)在一条长300米的.公路两边种树,每隔4米种1棵(两端都要种),这样一共要种( )棵。

  (3)如下图,在一条防风带上每隔30米种1棵树,这条防风带共种( )棵树,由此可以

  推断出两端都种树时,树的棵树比间隔数( )。

  综合:

  2.选一选:

  (1)一个圆形花坛的周长是36米,每隔4米摆一盆花,一共需要( )盆花。

  A.8 B.9 C.10 D.11

  (2)一座楼房每上一层要16个台阶,小红每天回家要走80个台阶,小红家住( )楼。

  A.5 B.6 C.7 D.8

  拓展提升:

  3.一条走廊长24米,每隔3米放一盆花,走廊两端都要放。一共要放多少盆花?

植树问题教案3

  教学内容:

  人教版小学数学四年级下册第八单元《数学广角--植树问题》

  教材分析:

  植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

  学情分析:

  从学生的思维特点看,四年级学生仍以形象思维为主,但抽象思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。这部分内容放在这个学段,说明这个内容本身具有很高的数学思维和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。

  教学目标:

  1.知识与技能性:利用学生熟悉的生活情境,通过动手操作的实践活动,让学生发现间隔数与植树棵数之间的关系。 了解同一直线上植树问题的三种基本情况,能阐述不同情况下棵数与间隔数的关系。通过小组合作、交流,使学生能理解间隔数与植树棵数之间的规律。 能够借助图形,利用规律来解决简单植树的问题。

  2.过程与方法:进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。 渗透数形结合的思想,培养学生借助图形解决问题的意识。 培养学生的合作意识,养成良好的交流习惯。

  3.情感态度与价值观 :通过实践活动激发热爱数学的情感,感受日常生活中处处有数学、体验学习成功的喜悦。

  教学重点:

  引导探究、发现两端都栽时棵数与间隔数之间关系。

  教学难点:

  运用棵数与间隔数之间的关系,解决逆向思维的实际问题。

  教学方法:

  植树问题虽然是日常生活中常见的生活现象,但对四年级的学生还是有很大的难度。美国教育家杜威说过:教育不是告知和被告知的事情,而是学生主动性建设的过程。因此教学中我让学生在动手实践中找方法--在方法中找规律在规律中学应用。

  教学过程:

  一、创设情境,引入课题

  1.我以学生的小手为载体引入本课

  【以学生身体的一部分为游戏主体,充分调动学生的参与积极性,利用学生的表现欲望和爱玩的天性,使学生对要学的内容产生好奇心理,顺利解决植树问题中的间隔含义,同时让学生在生活实例和亲身实践中,直观地感受一一对应的数学思想。】

  2.3月12日植树节对学生进行环境教育。

  通过创设生动有趣的情境,激发学生的求知欲望,顺利过渡到第二个环节。

  二、探索规律建立模型

  先出示引例:同学们在全长20米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

  指导学生读题

  1.从题目你们知道了什么?(说一说)

  2.题目中每隔5米栽一棵是什么意思?

  3.题目中有什么地方要提醒大家的吗?(一边,两端要栽)

  4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

  5.交流。

  6.反馈。

  (1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

  (2)学生分别说想法。使学生明确:间隔数+1=棵数。

  三、巩固练习实际应用

  在这一环节我还原例1,让学生解决

  四、回顾整理反思提升

  1、我会填,让学生现一次巩固总长,棵数,间隔数之间的关系。研究两端都种的情况。如果路长是10米、15米、25米、30米,每隔5米种一棵(两端都种),各要种多少棵树呢?先想一想,再用一条线段表示小路画一画,验证一下! 每隔5米种一棵(两端都种) 路长(米) 画一画 间隔数 棵数

  每隔5米种一棵(两端都种)

  路长(米) 画一画 间隔数 棵数

  (1)反馈交流:可以种几棵?你是怎么种的?

  (2)观察比较表格中的数据,有什么发现?小组内交流自己的发现。

  (3)全班交流汇报,引导学生概括规律(板书规律)。

  两端都种时: 棵数=间隔数+1

  间隔数=总长间隔

  2、我会算,设计两旁都要栽的练习。出示119页做一做

  3、智力大比拼,通过两端都要栽的情况顺理成章地使其明白另外两种植树问题。联系生活,完善建构。

  (1)感知植树问题的三种模型。

  看课件三种情况。(两端种、两端都不种、一端不种)

  (2)想一想,生活中有类似这样的植树问题吗?请举例说一说!

  课件出示例2(两端不种)

  【数学来源于生活,而又服务于生活。在学生初步感知植树问题基础上,引出另外不同的种法,创设与学生的生活环境和知识背景密切相关的、学生感兴趣的`、以便能更好的理解与植树问题有关的生活题型,让学生在具体生活中理解数学现象,并运用规律解决形式各异的生活问题,使学生深深地体会到数学的价值与魅力。】

  4、应用模型,解决问题(植树问题并不只是与植树有关,生活中海油许多现象和植树问题相似。)如

  (1)垃圾箱问题. 为净化环境,公园沿一条600米长的小路一侧设置垃圾箱,每隔30米放一个(路的一头不放),一共需要多少个垃圾箱?

  (2)一根木头长10米,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

  (3)学校召开秋季运动会,在笔直的跑道一旁插彩旗。跑道全长100米,每隔2米插一面(两端都要插)。需要多少面彩旗?

  (4)在全长20xx米的街道两旁安装路灯(两端也要装)。每隔50米安一座,一共要安装多少座路灯? 指名读题,引导学生理解题意后独立解题。教师追问思考过程。

  (5)园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离是多远?

  (6)广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间? 【练习紧扣中心,拓展情境,让学生运用规律独立解决简单的实际问题,。这样不但巩固了新知,而且完成了建构,更重要的是训练了学生的多向思维。】

  五、回顾整理反思提升

  1、谈谈这节课的收获。

  【如此设计是基于学生的思维状态,引导学生说说对这部分内容的学习收获,进一步深入总结,给学生留有回味和发展的空间。】

  2、只要我们细心观察,生活中还有更多更有挑战性的问题等着我们去解决,比如小朋友们排队,如果排成个圈儿,棵数与间隔数之间会藏着怎样的秘密呢?就留给大家课后去思考吧!

植树问题教案4

  教材分析

  植树问题一共分三种情况,教材在编排时将它们分成三个例题进行教学,分别是两端都种、两端都不种、只栽一端。本节课我对教材进行了整合,在第一课时就将三种情况全部呈现,并且将重心放在探究只种一端时,棵树和间隔数之间的关系。其实只要是只种一端,不管路是几米,间隔数和棵数始终相等,因为树和间隔始终一一对应。处理好了这层关系,理解了一一对应,那么两端都种和两端都不种就可以根据对应思想,通过迁移发现间隔数和棵数之间的关系。

  教学目标

  1、通过探究,发现在一条线段上植树的问题的规律,理解并掌握不同种法中间隔数和棵数之间的关系。

  2、经历探究规律的过程,培养学生观察、分析、合作等能力,初步渗透“一一对应”思想。

  3、感受数学来源于生活更应用于生活,培养学生应用意识和解决问题能力。

  教学重点:

  理解间隔数和棵数之间的关系,建构数学模型。

  教学难点:

  建立模型及“一一对应思想”的应用。

  教学过程

  1、恰好3月份,植树节即将到来,因此在第一环节通过询问植树的好处,渗透环保意识,并让学生感受数学问题来源与生活。

  2、第二环节我主要分三个层次进行教学,第一层通过小小设计师,将枯燥的解决问题转变成灵动的设计方案。先引导学生理解“每个5米种一棵”什么意思,有些学生可能认为只有两棵树之间的5米才是间隔,一边不种树的话那个5米就不是间隔,因此我将示意图这样设计,帮助学生更好地理解什么是间隔。再引导学生猜测并画图,让学生经历一个“猜想——验证”的过程。

  第二层是本堂课最关键的部分,首先请学生展示作品,说说自己是怎么想的,

  在说的过程中询问学生分了几个间隔,为什么分4个间隔,它是怎么来的。接着引导学生观察三种画法,它们有什么共同点和不同点,沟通三者之间的联系,并揭示每种种法的名称。然后将探究的重心放在只种一端的情况上,通过列算式,解释算式意义,并通过质疑,引导学生猜测棵数和间隔数之间有什么联系,为探究埋下伏笔。有些学生虽然对树和间隔的对应关系有点了解,但难以用语言概括,因此我在课件中用不同颜色描出树和它对应的间隔,闪烁树和间隔,并用圈一圈的方法,便于学生区分和发现,之后安排学生对照着左手,将自己的'发现告诉同桌,深化对对应关系的理解。因为本节课的规律属于不完全归纳法,单靠一个例子是不科学,没有说服力的,所以我增加了300米的小路种树,想象着种树的过程,理解为什么只一端种时,棵数始终等于间隔数。最后运用迁移,理解为什么一个加1,一个减1。

  第三层引导学生观察三个算式,有什么相同点,它们第一步都是先算什么?数学广角这类题目建模是关键,但没有解决问题的策略,就会使课显得空洞,这一层主要让学生形成一个策略:要知道一共有几棵树,必须先求出间隔数。接着通过例题,使知识得到一个巩固,最后展示生活中的植树问题,感受数学不仅来源于生活,更要运用于生活。

  第三环节中设计了两道习题,第二题是生活中常见的例子,主要为了培养学生从字里行间寻找隐藏信息的能力,接着通过变式,隐去一座房子又会怎样种。其实在画图时会有这样一个疑惑,为什么那一端空在那不种树,而这道题目可以给出很好的说明,有时候在解决问题时还要注意联系生活实际。

  教学反思:

  作为新教师,对于这类课我是比较难把握,数学思维如此缜密,我在教学的过程中难免有所疏忽。

  1、语言不够精炼,会不自觉地重复学生的话。在讲解只种一端的时候,学生对一一对应还是明了。

  2、评价语有些生硬,对于学生的回答有时不能及时得做出点评。

  3、探究得太少,自己说得太多。使课堂不够开放。

  4、本节课虽然渗透了解决的方法,先求间隔数,但没有明确间隔数的求法。应该在板书上指明。

植树问题教案5

  一、教材内容分析

  1.人教版四年级下册第8单元书119页

  二、教学目标(知识与技能、过程与方法、情感态度与价值观)

  1、进一步理解和掌握在直线上植树问题的解题规律。

  2、会根据实际问题,灵活选择方法进行解答。

  3、经历解决植树问题的过程,体验比较、区别学习方法。

  4、感受数学与生活之间的密切联系,激发学习兴趣,培养学生的探究精神。

  三、学习者特征分析

  学生通过生活中的简单事例,初步体会解决植树问题的'思想方法和它在解决实际问题中的应用,应该让学生从实际问题入手,逐步发现隐藏于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。

  四、教学策略选择与设计

  认真观察分析,运用规律解决问题

  五、教学环境及资源准备

  投影仪

  六、教学过程

  教学过程 教师活动 预设学生行为 设计意图及资源准备

  一、复习回顾

  (1)教师:上节课我们共同学习探讨了有关植树的数学问题,植树问题中有哪几种情形?解答时应注意什么问题?组织学生在小组中议一议。相互交流。再组织学生汇报,教师根据学生汇报板书:

  ①两端都要栽:植树棵树=间隔数+1

  ②两端都不栽:植树棵数=间隔数-1

  ③只栽一端:植树棵数=间隔数 学生在小组中议一议。相互交流。

  二、指导练习

  (1)教材练习二十第1题。

  ①学生读题:理解题意。

  ②小组讨论:当大钟敲5下时,前后共有几次间隔?平均每次间隔时间有多长?

  ③大钟敲12下,需要多长时间呢?

  大钟敲12下,共有11次间隔,所以共需时间是:2×11=22(秒)。

  组织学生读题,理解题意。

  (2)教材练习二十第3题

  教师:从王村到李村之间设电线杆,会有几种情况?

  学生在小组中根据分析的情况,独立解答,并相互交流。根据可能会存在的三种情况,分别有三种解答结果。

  a.16-1=15 200×15=3000(米)

  b.16+1=17 200×17=3400(米)

  c.200×16=3200(米)

  教材第119页思考题。

  教材练习二十第4题。

  ①学生读题,理解题意。

  ②学生观察示意图,小组讨论:有多少个间隔?有多少盏灯?

  教师:你发现了什么?

  教师引导学生归纳总结:在封闭路线上植树时,间隔数=植树棵树。(板书)

  教师引导学生分析:3号在1号队员的前面,1号队员不是第4名,而3号队员不是第1名,所以3号队员是第2名,而1号队员是第3名,当1号队员第3名时,由于号码名次不同,所以2号是第4名,4号是第1名。

  所以排名是:

  1号 2号 3号 4名

  第3名 第4名 第2名 第1名

  学生小组讨论后汇报,可能会说出:大钟敲5下,共有4次间隔,平均每次间隔时间是8÷4=2(秒)。

  学生独立思考,并解答。教师指名汇报,然后集体订正。

  组织学生议一议,然后汇报。汇报时学生可能会说出:共有三种情况:

  a. 两端都设有电线杆。

  b. 两端都不设电线杆。

  c. 只在一端设电线杆。

  学生讨论后汇报,汇报时可能会说出:1号第3名,2号第4名,3号第2名,4号第1名

  三、应用练习

  (1)一度长180米的大桥两侧,每隔30米安装一盏路灯。

  ①两端要安装,需路灯几盏?

  ②两端不安装,需路灯几盏?

  (2)小刚到电影院看电影,他前面有8排,后面有9排,左边有15个座位,右边有17个座位。电影院一共有多少个座位?(每排座位一样多 学生独立练习,然后小组交流。

  指2名学生板演,再集体订正。

  学生读题,理解题意。

  小组合作讨论,交流解答。

  四、总结

  通过这节课的练习,你又有哪些收获?

  板书设计: 植树问题

植树问题教案6

  教学目标:

  1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

  2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

  教学重点:建立并理解“点数=间隔数+1”的数学模型。

  教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

  教学准备:课件。

  教学过程:

  一、情境出示,设疑激趣

  教师:同学们,我们都有一双勤劳的双手,它不仅能写,能画,其实我们的手指中还隐藏了许多数学知识!现在请大家伸出你们的左手,这里有几根手指呢?

  预设:5根

  教师:那手指与手指间的空隙叫什么呢?

  预设:间隔

  教师:在数学上,我们通常把两个手指间的空隙叫做间隔。大家观察一下,5根手指之间有几个间隔呢?

  预设:4个间隔

  教师:现在再看,现在伸出了几根手指呢?

  预设:4根间隔

  教师:4根手指之间有几个间隔呢?

  预设:3个间隔

  教师:5根手指之间有4个间隔,4根手指之间有3个间隔,你们发现手指数和间隔数之间有数量关系了吗?

  预设1:手指数比间隔数多1。

  预设2:间隔数比手指数少1.

  教师:那你能不能用数学式子来表示手指数与间隔数的关系呢?

  预设1:手指数=间隔数+1。

  预设2:间隔数=手指数-1.

  教师:连手上都有这么多数学奥秘,看来数学真是无处不在!这节课我们就来研究跟“间隔”有关的植树问题。(板书课题)

  二、引入新知,经历过程,感受方法

  教师:请看,请大家默读一下:(课件出示问题)。

  引例:同学们准备在全长20米的小路一边植树。每隔5米栽一棵(两端要栽)那么这条路的一边将被树隔成了几段?

  教师:告诉我们 哪些条件?(提问)要求什么问题?(提问)

  教师:同学们先用尝试用线段图来表示他们之间的.关系。(学生动手并提问完成)

  教师:这里的有几个间隔?

  预设:4个

  教师:那你们能不能用一个数学式子来表示?

  预设:20÷5=4

  教师:20表示什么?5表示什么?4表示什么?(分别提问)

  预设:20表示这条路的长度(一般我们把它称为总长),5表示每隔5米栽一棵(我们一般把它称为间隔长),4表示有4个间隔。

  教师:4个间隔相当于4段,所以我们数学上通常把有几段称为段数。所以4后面的单位是段。因此我们就得到了公式:全长÷间隔长=段数(提问)。根据除法算式中的关系,间隔长该怎么求?(提问)段数该怎么求?(提问)

  教师:那现在如果我想在这条路上种树,一共需要几棵树苗呢?

  预设:5棵。

  教师:怎么列数学关系式?(提问)

  预设:4+1=5(棵)

  教师:为什么这样列呢?

  预设:因为两端都栽。

  教师:你们都跟他一样吗?所以你发现了树的棵树与段数之间的关系了吗?(提问推出棵树与段数的两个公式)

  教师:刚才我们是在20米长的路上种树,那现在如果在100米长的路上种树呢?你还会吗?请看例1(课件出示例1)。大家在书本上完成。

  例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

  (请同学上台展示)

  三、利用新知,解决问题

  教师:连例题都难不倒你们!同学们真是太聪明了!可是,在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?大家请看(出示生活中的图片实例)可见植树问题的应用领域是非常广泛的,下面就请大家应用刚才学的知识帮老师解决几个问题。

  教师:今年的圣诞节刚结束,为了度过一个美好的圣诞节,张老师前几天在家可花了不少的心思!你们看——(分别出示3道练习)

  练习1.我买了装礼物的袜子,像这样每两只袜子之间隔0.5米,挂成一排长8米(两端都挂),一共买了几只袜子?

  教师:现在老师要把题目难度加大。(做完的同学可以把你的想法跟同桌说说)

  练习2.我又买了21只铃铛,挂成一排,长6米(两端都挂),每两只铃铛之间要隔几米?

  练习3.我还买了像圣诞树的衣服来装扮,15人排成一排,迎接圣诞老人(两端都排),每两个人之间隔2米,这个队伍有几米呢?

  四、回顾思考,全课总结

  教师:通过这一节的学习,你有什么收获?

  思考:假如只栽一端或两端都不栽,那又会是什么情形呢?同学们课后去探究吧!

  五、逆向思考,拓展新知

  教师:最后老师有一个难度很大的题目想留给同学们回家思考!请看:

  练习4.在圣诞节这天,老师看见100位圣诞老人一起来给我们送礼物,他们并列排成两队(两端都排),每前后两个圣诞老人之间相距1米,则这个队伍排了有多长?

  六、布置作业

植树问题教案7

  学情分析:

  四年级的学生以形象思维为主,而且抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。

  教材分析:

  “植树问题”原本属于经典的奥数教学内容,而解决植树问题的思想方法是实际生活中应用比较广泛的数学思维方法。本册“数学广角”主要是渗透有关植树问题的一些思想方法。通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  这个数学内容既需教师的有效引领,也需要学生的自主探究。而例1是探讨关于一条线段的植树问题并且两端都要栽树的情况,让学生先通过画线段,再来发现栽树的棵数和间隔数之间的关系,从而会应用植树问题的.模型解决一些相关的实际问题。

  设计理念:

  《新课标》提出:“学生通过学习,能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法。”所以解题不是本节课教学的主要目的,主要目的是从实际问题入手,引导学生在培养学生通过接触这些重要的数学思想方法,经历猜想、实验、推理等数学探索的过程,激发学生对数学的好奇心和求知欲,增强学生学习数学的兴趣。

  教学内容:

  人教版实验教科书数学四年级下册第117—118页的例1及相应的“做一做”。

  教学目标:

  知识与技能:

  1、理解间隔概念,知道间隔数与棵树之间的关系,初步建构植树问题的数学模型。

  2、能根据数模解决简单的实际问题,培养学生观察、分析及推理能力。

  数学思考:

  1、让学生经历观察、猜想、自主实验、探究、交流,从中发现规律,抽取数学模型过程。

  2、使学生经历和体验“复杂问题简单化”的解题策略和方法。

  解决问题:

  能够应用本节所建构的植树问题的数模以及探寻到的规律,针对实际情形灵活的来解决问题。

  情感态度与价值观:

  让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点:会应用植树问题的规律解决一些相关的实际问题。

  教学难点: 建构数模,探寻规律。

  教学准备:课件、实物投影仪、每组一张表格

  教学流程:

  一、创设情景,导入新课。

  1、猜谜语

  师:“两棵小树十个杈,不长叶子不开花,能写会算还会画,天天干活不说话。猜到了吗?”“对!就是这双勤劳的双手。请同学们伸出左手五指张开,看看你能想到哪个数?”“5是指5个手指,胡老师想到了4,你知道在哪吗?”“在数学上我们把这些空格叫做间隔(板书:间隔)也就是说5个手指之间有4个间隔,间隔数是4。”

  “现在看老师的手变魔术了,5个手指有4个间隔,4个手指有3个间隔……你们找出手指数与间隔数之间的关系了吗?”(指名说)

  2、找间隔

  “生活中的间隔随处可见,请看大屏幕。你找到间隔了吗?”(出示课件2—4)

  “我们的身边还有间隔吗,一起来找找吧!”

  3、揭示课题

  出示课件5、6。师:“你更喜欢那组画面?怎样才能拥有这样美丽的环境呢?”

  “对!植树造林,美化环境是我们每个人应尽的义务!说到植树,大家知道吗?在我们数学王国里植树可是有一定的学问的。这节课我们就来探讨植树问题。”(板书:植树问题)

  二、自主探究,构建模型

  师:“春天到了,为了美化校园,我们学校也要植树,想当环境设计师吗?看看具体要求。”(出示课件7、8)

  1、设计不同方案

  师:“画一条线段表示12米的小路,你想怎么载就用示意图或线段图画出来吧!”教师巡视。

  2、展示不同方案

  投影仪展示学生的设计方案,问:“你是怎么画的?”

  师板书三种情况,分别是:两端都栽,只栽一端,两端都不栽。

  师:“今天这节课我们先来探讨两端都栽的情况。”

  3、小组探索、加强体验

  (1)提出问题

  出示例1(课件9)学生默读题目,找出关键词并做解释。

  师:“需要多少棵树苗呢?”指名说出不同的答案并板书。

  师:“现在出现了3种不同的答案,而且每种都有不少的支持者,到底哪种答案对呢?”小组讨论,并说出理由。

  (2)验证猜想

  演示课件9师:“我们用这条线段表示这条路,两端都种,先在头上栽一棵,再一棵一棵的栽……这样栽下去,你有什么感受?”(太麻烦)“老师也有同感,其实像这种比较复杂的问题,在数学上还有一种更好的研究方法,想知道吗?就是将复杂问题简单化,在这里100米太长了,我们可以先在短距离的路上种种看。”(出示课件10)

  分组画出不同路长的栽法,小组展示栽的棵数。师“为什么这么画?”

  (3)总结规律

  小组内填写表格,观察:“你发现了什么规律?”板书规律

  “刚才通过画图知道了棵数,能不能通过计算得到呢?”

  师:“根据刚才发现的规律你知道例1的答案了吗?会列式计算吗?”(出示课件11)

  4、运用规律

  (1)现在我们的小手的5个手指看成5棵树,你能说说今天发现的规律吗?同桌相互说一说。

  (2)出示课件12“比一比谁的反应快” 在两端都栽的情况下,有8个间隔共要种几棵树?有10个间隔共要种几棵树?如果已种了6棵树有几个间隔?如果已种了10棵树有几个间隔?

  三、巩固应用,内化提高

  师:在日常生活中,在我们周围有许多类似于植树问题的现象小明就在不同的地方找到了,咱们来看看吧。

  1、公共汽车上(出示课件13)

  2、公路上(出示课件14)

  3、上楼梯(出示课件15)

  4、钟表上(出示课件16)

  引导:师边模仿钟响边板书,学生击掌感受第一响与第二响之间有间隔。

  四、回顾整理,反思提升

  师:通过今天的学习,你有什么收获?

  “对!今天你们发现了植树问题中的重要规律,我们是怎么得到的?”“你还学到了什么方法?”(复杂问题简单化)

  “收获方法比收获知识更重要,祝贺大家!”

  板书设计:

  植树问题

  两端都栽

  棵数=间隔数+1

  间隔数=路长÷间距

  路长=间隔数×间距

  100÷5+1=21(棵)

植树问题教案8

  教学内容:

  《义务教育课程标准实验教科书数学(四年级下册)》第P117- P118

  教学目标:

  知识技能目标:

  1、利用学生熟悉的生活情境,通过动手操作的实践活动,使他们发现间隔数与植树棵数之间的关系;

  2、通过小组合作、交流,在理解间隔数与棵数之间规律的基础上解决简单的植树问题。

  过程目标:

  1、使学生经历感知、理解知识的过程,培养学生从实际问题中发现规律,并应用规律来解决问题的能力;

  2、渗透数形结合的思想,培养学生借助图形解决问题的意识;

  3、培养学生的合作意识,养成良好的交流习惯。

  情感目标:

  1、通过实践活动激发热爱数学的`情感;

  2、感受日常生活中处处有数学,体验学习成功的喜悦。

  教学重点:

  理解“植树问题(两端要种)”的特征,应用规律解决问题

  教学难点:

  理解“间距数+1=棵数,棵数-1=间距数”

  教学准备:

  课件

  教学过程:

  一、创设原型

  1、教学“间隔”的含义

  师:每位同学都有一双灵巧的手,他不但会写字、画画、干活,在他里面还藏着有趣的数学知识,你想了解他吗?请举起你的右手。(五指伸直、并拢、张开)

  师:张开的五指中有几个空隙?(4个)数学中我们把这个“空隙”叫“间隔”。(板书)我们发现5根手指中有4个间隔,那么4根手指呢?3根呢?

  2、举例生活中的“间隔”

  师:生活中的“间隔”到处可见,你能举几个例子吗?(两棵树之间、两个同学之间、钟声…)

  3、根据生活实景信息回答问题。

  (1)公园的一侧一些树,数了数有6个间隔,一共栽了几棵树呢?(7棵)

  (2)庄老师家在6楼,从1楼到6楼要爬几层楼?(5层)

  (3)河边的护栏有5根铁链,需要几根柱子?(6根)

  4、引入课题

  师:同学们刚才我们了解的5根手指间有几个间隔;爬楼梯要几层。铁链需要几根柱子等,数学中统称为植树问题。(板书)

  二、构建模型

  1、用图象语言描述“植树棵数与间隔数”之间的关系。

  师:(右手)我把5根手指看作5棵树,他有4个间隔。那么,6棵树、7棵树之间有几个间隔呢?你能用一个图来展示说明吗?(生作图,展示)

  2、构建植树问题的数学模型

  (1)我们一起来看一下这几位同学画的图,你能说说你是怎么画的吗?

  (2)比较一下这几种作图方法,你觉得哪种方法简便,看起来清楚?(是啊,用线段图的方法最简便,因此它也是我们最常用的。)

  (3)通过画图,我们发现这条路的两端都栽了树,这就是我们今天研究的植树问题的一种类型。(板书:两端都栽)

  (4)在线段图上,我们用点表示栽的树,几个点就是几棵树,通过画图,我们知道6棵树之间有5个间隔,7棵树之间有6个间隔,那么你能想象一下10棵树之间、50棵树之间、100棵树之间有几个间隔吗?你发现了什么规律?

  植树棵数间隔数

  6 7

  (板书:棵数-1=间隔数间隔数+1=棵数)

  师:今天表现真不错,一下子就能找到这其中的规律,老师真为你们感到高兴!

  三、利用模型解决问题

  1、教学例1

  师:现在老师要考考你们了,谁敢接受检查?既然大家都想来,那么我们一起来。

  课件出示:同学们要在全长50米的小路一边植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  (1)谁能大声清楚朗读这个题目?

  (2)从中你了解了哪些数学信息?(小路长50米,两端都要栽、每隔5米。)

  (3)两端都要栽是什么意思?每隔5米是什么意思?哪两棵树之间相隔5米?

  (3)这题也可以用画线段图的方法来解答,你能试着画线段图吗?

  (4)展示学生线段图,你能说说你是怎么画的吗?

  (5)为了看起来更清楚,老师把这张图移到了电脑上,你能猜猜许老师画图的意思吗?从这张图上你可以了解些什么信息?谁也知道了也想来说给大家听一听的?

  (6)线段图里其实就反映着题目的意思,你能看着线段图用算式来解答吗?学生独立列算式。

  (7)汇报:说说你的想法。

  ①出示学生各种答案,板书在黑板上。

  ②对于这几种方法,你们有什么看法吗?(生:我认为……)

  ③擦去错误答案,剩下正确答案:100÷5=10(个)10+1=11(棵)

  ④师追问:大家都认为这种方法是正确的,那么谁能告诉我算式中的“50”表示什么吗?“5”表示什么?“100÷5=10(个)”又表示什么?(板书:间隔)为什么“+1”?(两端要栽,它比间隔多1)“10+1=11(棵)”表示什么?(植树棵树)这其实就是运用了“间隔数+1=棵数”这个规律。

  ⑤谁能够完整地说一说这个算式的意思?有谁听明白了,也想来说一说的?既然大家都想来说,那么我们就同桌互相说一说。

  2、试一试

  师:如果老师把题目改一改,看看谁还会?

  课件出示:“六一”儿童节快到了,学校决定在全长120米的求索大道一边插上彩旗,每隔8米插一面旗(两端都插),一共需要准备多少面彩旗?

  (1)生轻轻读题,说说从这个题目中你了解了些什么信息?

  (2)和刚才这题比较,你想说什么?

  (3)学生独立列式并汇报。

  3、巩固新知

  师:恭喜大家,顺利通过检查!你们还想接受新一轮的挑战吗?

  课件出示:园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵,从第1棵到最后一棵的距离有多远?

  (1)生独立阅题,说说这个题目中又有哪些数学信息呢?

  (2)这个题目和前面做的两题有什么不同呢?(①前面那题告诉路的长度,而这题求路的长度。②前面那题求植树棵树,而这题已经告诉了植树棵树。)

  (3)在做前面那题时,我们是先求什么的?(间隔数)那在这个题目中,我们应该先算什么?

  (4)学生独立解答并汇报:

  (5)板书学生的各种答案,你有什么看法?说说理由。生列式:36-1=35(个)35×6=210(米)

  (6)擦去错误答案,师追问:“36”表示什么意思?再“-1”表示什么?(板书:间隔数)这其实就是运用了“棵数-1=间隔数”这个规律。再“×6”又是什么意思?(板书:总距离)

植树问题教案9

  教学目标

  1.借助围棋盘探讨封闭曲线(方阵)中的植树问题;

  2.初步培养学生从实际问题中探索规律,找出解决问题的有效方法的能力;

  3.让学生感受数学在日常生活中的广泛应用。

  教学重难点

  教学重点:从封闭曲线(方阵)中探讨植树问题。 教学难点:用数学的方法解决实际生活中的简单问题。

  教学过程

  一、复习旧知,情境导入(课件出示)

  (1) 在100米的小路边,每隔5米种一棵柳树,两端都要种,一共种了多少棵?

  (2) 校园图书馆和体育馆两栋楼之间长40米,每隔4米种一棵柏树,一共种了多少棵? 师:(第一题)1000÷20求的是什么?为什么要加1?(两端都栽:棵数=间隔数+1) 师:40÷4求的是什么?又为什么要减1呢?(两端不栽:棵数=间隔数-1)。让学生说出每个算式所表示的意义。

  你能说说棵数与间隔数之间的'关系

  二、探索新知。

  1、圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

  板书课题:封闭图形的植树问题

  2、运用规律。 圆形花坛的一周全长12米,如果沿着这一圈每隔2米摆放一盆花,一共需要多少盆花?

  (1)引导学生读题,理解题意。独立完成。

  (2)理解圆形的株数与间隔数相等,

  列出算式:12÷2=6(盆)

  3、课件出示一个圆形,在圆形的花坛上种树,棵数=间隔数

  4、发现规律:在圆形的花坛上种树,棵数=间隔数 。

  圆形花坛的一周全长50米,如果沿着这一圈每隔2米摆放一盘花,一共需要多少盘花?

  5、学习例题:

  (1)课件出示例题。例:在围棋的每边都放19个旗子,最外层一共可以放多少个旗子? (2)生读题,独立列出算式

  学生小组合作,寻求解决问题的方法。学生自主探索会出现如下几种方法:

  方法1:直接点数出最外层一共可以摆放72个棋子。

  方法2:列式:19 ×2+(19-2)× 2=72(个)

  方法3:列式:(19-1)×4=72(个)

  方法4:列式:4+(19-2)×4=72(个)

  方法5:列式:19×4 - 4=72(个)

  以上方法,教师引导比较:除方法1外,其余算法都抓住了4个角上的棋子不能重复计算的关键点。

  6、探究规律。

  (1)首先理解封闭图形 围棋盘的最外层是一个正方形,像这样首尾相连没有开口的图形就是封闭图形。(课件出示)

  (2)提问:我们学过的封闭图形有哪些?根据学生的回答课件出示部分学过的封闭图形。学生任选一个,用小圆点代替棋子在封闭图形中画一画,数一数,想一想,会有怎样的发现? (3)引导学生运用数形结合思想寻找规律,学生交流说出:棋子数=间隔数的结论。

  提问:这和我们学过的哪种植树情况一样呢?(帮助学生进行新旧知识的链接,迁移到一端栽一端不栽的植树情形。)这是巧合吗?想不想继续研究? 学生研究发现 :如果将画好的封闭图形沿着一圆点断开拉直就变成一端栽一端不栽的植树问题模型,利用原理逆向思维再次验证棋子数=间隔数这一规律。

  (4)回到原题:围棋盘最外层每边有19个棋子,即每边有(19-1)个间隔,4边共有18×4=72(个)间隔。因为最外层的棋子数=间隔数,所以72个间隔也就说明有72个棋子。 列式:(19-1)×4=72(个)

  (5)请一学生板演,并说出每个算式所表示的意义 19-1=18(段) ----表示19个旗子有18段间隔 18×4=72(个)----表示最外层的总数 答:最外层一共可以放72个旗子。 (6)引导学生说出公式: 最外层的总数=(每边的棵树-1)×边数

  7、运用规律解决问题。

  (1)摆棋子:一个四边形,每个顶点都摆一个。

  (2)如果最外层每边能放100个,最外层一共可以摆放多少个棋子?

  设问:100-1求的是什么?乘4呢?(为什么要乘4?)

  (3)如果最外层每边能放200个,最外层一共可以摆放多少个棋子?

  (4)如果在一个正五边形的边上摆,怎么算?一个三角形呢?

  小结:看来,在封闭图形中的植树,只要先求出每边间隔数,再乘边数就可以求出最外层的总棵树。但是要注意在求每边间隔数时,要用棵数减1,你知道为什么吗?

  8、摆花盆:完成做一做第2题 问题:

  沿正方形的池塘边植树,要求每边都植4棵,一共需要多少棵树苗?

  三、巩固延伸

  解决问题:

  1、沿一个正三角形实验田的外边,每边种8棵向日葵最少能种几棵?

  2、16名学生在操场上做游戏,围成一个正方形,每边人数相等。四个顶点都有人,每边各有几名学生?若相邻两个同学之间相隔1米,围成的正方形的边长是多少米?

  课后延伸题

  1、“四(4)班”召开班会时,同学们围坐在一起,如果每边做5人,(如下图),这个班一共有多少个同学?每边都有5张课桌,一共要多少张课桌子?

  2、公园里的花坛有以下几种形状,请选择一种你最喜欢的形状,计算一下如果每边放4盆花,至少一共可以摆放多少盆花?

  四、全课小结 师:同学们,马上就要下课了,这节课你又收获吗?一起来分享分享吧? 封闭图形的植树问题,株数=间隔数

  最外层总数=间隔数×边数

  五、作业布置

  教材122页的第4、6、7、8题

植树问题教案10

  设计理念

  本课通过生活中的事例,调动学生已有的生活经验,接触一些重要的数学思想方法,经历猜想、实验、推理等数学探索过程,激发学生对数学的好奇心和探求新知的兴趣,增强学习数学的兴趣。以学生发展为本,着眼于数学思维能力的培养。注重引导学生充分体验探究过程,感受数学在日常生活中的广泛应用,培养学生的观察比较、动手操作、分析概括能力以及语言表达能力。

  教学内容

  《义务教育课程标准实验教科书数学》(人教版)四年级下册第117页。

  学情与教材分析

  “植树问题”是人教版四年级下册“数学广角”这个单元的一节内容。和前几册教材一样,主要是向学生渗透一些重要的数学思想方法。本课主要是渗透有关植树问题的一些思想方法,教学时通过现实生活中的一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  教学目标

  1、通过动手操作、小组合作,使学生能理解间隔数与植树棵数之间的规律,并将这种规律应用到解决类似的实际问题之中。

  2、培养学生在解决实际问题中探索规律,找出解决问题的有效方法的能力。渗透数形结合的思想,培养学生借助图形等方式解决问题的意识。

  3、培养学生的合作意识,养成良好的交流习惯。通过实践活动激发热爱数学的情感,感受数学与现实生活的.密切联系,体验学习成功的喜悦。

  教学重点

  引导学生发现不封闭线路上,两端都栽时间隔现象的简单规律。

  教学难点

  运用规律解决类似的实际问题的方法。

  教学准备

  电脑课件、泡沫条、小树模型、表格等等。

  教学过程

  一、创设情境,引入新课

  1、初步感知植树方法的多样化

  师:春天是个植树的好季节,你们知道植树有哪些好处吗?

  植树原来有这么多的好处啊。这节课,我们就一起来研究植树中的数学问题。(板书课题)

  (课件出示)兰兰想在门前小路的一侧种上三棵小树苗来美化环境。你们能帮她设计出一种方案吗?

  请学生上台用课件演示:鼠标移动书苗介绍设计方案

  【学情预设:有的学生在小路两端各栽一棵,中间栽一棵;有的学生把三棵都栽在中间;有的学生从一端栽起,另一端不栽。】

  师示范给一种方案命名,其他方案请学生命名。

  结论:(1)两端都栽。

  (2)只栽一端。

  (3)两端都不栽。

  (板书)

  【设计意图:将生活中常见的植树问题,整体地呈现出来,培养学生“用数学”的意识,渗透“生活中处处有数学”的思想。放手让学生设计方案并冠名,充分体现学生的主体地位。】

  二、动手操作,探究新知

  1、教学例1

  本节课我们主要学习两端都栽的植树问题。

  (1)出示例1:六年级的学生想在全长100米的校园小路一边植树,每隔5米栽一棵(两端都栽),一共要准备多少棵小树苗?

  读完题目,你们获得了哪些信息?

  猜猜看,一共要准备几棵小树苗?

  【设计意图:培养学生认真审题的好习惯。学生在猜想的过程中可能会出现几种不同的答案,到底哪种答案对呢?留下悬念,引发思考,激发学生探究新知的欲望。】

  (2)学具操作,初步探究

  到底谁的答案是对的呢?我们先取100米中的一小段20米来研究。

  小组合作,用学具模拟栽树。思考:两端都栽的时候,应该栽多少棵?

  学生展示学具,汇报模拟结果。

  【学情预设:学生汇报:每隔5米栽一棵,所以在5米,10米,15米,20米的地方各栽一棵。两端都要栽,所以在0米的地方又栽一棵,一共是5棵。】

  (3)教学画线段图

  我们用一条线段来代表20米长的小路,用几个点来代表小树苗。这就是我们经常要用到的线段图,线段图可以很好地帮助我们思考。(课件展示)

  师:这几个点除了可以代表小树苗,还能代表其他的东西吗?引导学生发现点可以表示很多物体。

  师:两点间的距离可以用哪个词语来表示呢?(间隔)

  生活中你们还见过哪些间隔,能举些例子吗?

  刚才在植树中,你们发现了几个间隔(数)呢?是怎么知道的?

  【学情预设:学生可能会说是数出来的,可能会说是算出来的……每一种方法教师都予以肯定。】

  【设计意图:老师呈现解决问题常用的方法:遇到复杂问题想简单的,从简单问题入手去研究。让学生利用学具模拟实际种树去检验,学生兴趣比较大,做到人人动手实践,丰富了学生的感性材料,并自然过渡引出线段图,为学生顺利发现并总结规律打下了基础。】

  师:同学们在刚才栽树的过程中,还发现了什么?

  【设计意图:给学生一个思考的空间,使学生发现植树时要准备树苗的问题并不能简单地用除法来解决。】

  (4)感知规律

  如果让你们来栽树,在这条20米的小路上,要使每棵树之间的距离相等,还可以每隔几米栽一棵树?

  【学情预设:学生会提出每隔1米,2米,4米,10米,20米栽一棵。】

  出示表格,根据学生的回答将间隔填上。

  小组合作:选择一、两种间隔,用喜欢的方法找出间隔数和棵数,填入表格中。

  总长

  间隔(米)

  间隔数(个)

  棵数(棵)

  20米

  (两端都栽)

  5米

  4个

  5棵

  1米

  2米

  4米

  10米

  20米

  填好表格后,小组派代表汇报结果。

  【学情预设:学生可以用画线段图、算一算、数一数等方法完成。】

  【设计意图:学生自由选择方案,并选择用自己喜欢的方式来找出间隔数和棵数,体现教学方法的开放性。展示学生不同的探究方法,体现“不同的学生学习数学的水平可以不同”的教育思想。】

  谈论交流:两端都栽时,植树的棵数与间隔数之间有什么关系?

  得出结论:两端都栽树时,棵数比间隔数多1。也可以说间隔数比棵数少1。

  板书:(两端都栽)间隔数+1=棵数

  质疑:为什么两端都栽时,棵数比间隔数多1?

  配合学生的回答,课件展示

  【设计意图:启发学生透过现象发现规律,也就是在两端都栽时,棵数比间隔数多一。】

  (5)练习

  老师有几个问题想请你们用刚才所学的规律以抢答的形式来帮忙解决。

  两端都栽时,7棵树有几个间隔呢?9个间隔有几棵树?12棵树有几个间隔呢?20个间隔有几棵树?……

  【设计意图:全体学生一起抢答,知识得到了巩固,同时也活跃了课堂的气氛。】

  (6)验证

  我们利用这个规律来算一算,两端都栽时,100米到底应该种多少棵树?看看前面哪些同学猜对了。

  【设计意图:学生经历了分析、思考、解决问题的全过程,同时利用所学的规律加以验证。从中得到解决问题的方法,丰富了学生的解题策略,体验到成功的喜悦。】

  三、应用规律

  (1)任意一纵队的学生起立

  师:谁能应用刚才所学的知识提几个数学问题?

  【学情预设:学生可能会提:有几个间隔?头尾两个同学相距多少米?每相邻两个同学间隔有多少米?】

  (2)学校小路一侧插上12面彩旗,两头各插一面,每两面彩旗之间相隔6米,这条小路长多少米?

  (3)工人架设电线杆,每两根电线杆之间的电线长100米,从第1根到第9根之间要拉多长的电线?

  (4)学校组织40名同学参加车鼓队排练,请你设计一下队形?可能会排成几排?

  【学情预设:1排、2排、4排、5排、8排……】

  师:如果老师想排成一排,每两个同学的间隔是2米,想想,这个车鼓队伍头尾相距多少米?

  如果老师想排成两排呢?

  (5)我们的城市建设正在火热进行中,市里决定在一条长20xx米的街道两侧安装节能路灯,(两端都要安装),每隔50米安一座,算算看一共要安装多少座路灯?

  【设计意图:应用知识解决孩子们身边的问题,解决学校的问题,解决社会公益问题,提高了学生解决生活实际问题的能力。充分体现了新课标“数学学习内容应当是现实的,有意义的,富有挑战性的”的理念。】

  四、全课总结

  学完这节课,你有什么想对老师或者同学们说的呢?

  五、课外思考

  为了进一步美化我们的校园,学校准备沿着宣传廊一旁摆上漂亮的花。宣传廊全长约60米,如果每隔6米摆一盆花,你想怎么摆?一共需要购买多少盆花?

  【设计意图:把探究活动延伸到课外,为下一节课的教学做好铺垫。】

  设计思路:

  《植树问题》是人教版小学数学实验教材四年级下册新增的一个内容,其目的是向学生渗透一些重要的数学思想方法。教材通过现实生活中一些常见的实际问题,让学生从中发现规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。

  上课伊始,对学生们进行环境保护教育,让学生意识到植树和生活有紧密的联系,而且植树中还藏着有趣的数学问题,激发学生的求知欲。

  导入新课后,让学生成为学习的主人,学生经历了猜猜,试试,画画,填填等多种学习形式,自主探究出规律。整个过程培养了学生的动手操作能力,自主探究能力,小组合作交流能力。学生自由选择方案,体现教学方法的开放性,在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型,为下一节课的教学打下坚实的基础。

  在练习巩固环节,让学生运用新获得的数学知识来解决生活中的实际问题,让学生意识到生活中处处有数学,数学源于生活,又用于生活,激发学生的学习热情。

  本课设计的立足点在于学生的发展,把学生探索规律的过程作为课堂的中心点,把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。

植树问题教案11

  教学目标:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.进一步培养学生从实际问题中发现规律,应用规律解决问题的能力。

  教学重难点:

  1.利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。

  2.培养学生从实际问题中发现规律,应用规律解决问题的能力。

  3.提高解决问题,让学生感受日常生活中处处有数学,激发热爱数学的情感。

  教学、具准备:

  课件、表格、尺子等。

  教学过程:

  一、教学间隔

  1.教学间隔的含义。

  师:同学们,在我们的身边到处有数学。请你们伸出一只手张开手指,仔细观察,你看到了什么?(5个手指,4个空)这4个空也可以说成4个间隔,5个手指之间有4个间隔。那4个手指之间有几个间隔?3个手指之间呢?(请生在自己的手上指一指)2个手指之间呢?(全班一起找)通过刚才我们找手指数和间隔数,你发现了什么?谁来说说。(手指数比间隔数多1或间隔数比手指少1。)

  2.引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,像这类问题其实就是植树问题(揭示课题)。今天这节课我们就一起来研究植树问题。

  二、自主探究 找出规律

  1.课件出示:为迎接2008奥运会,北京市城市规划局准备在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  师:我们一起来读读题。谁知道每隔5米栽一棵是什么意思?那共需多少棵树苗,谁来猜一猜?

  预设:学生可能大多数对得到20棵。

  师:你们的猜测正确吗?下面我们就一起想办法来验证一下,但是100米这个数字有点大,不好验证,怎么办呢?在遇到比较复杂的问题是我们可以先用比较简单的例子来验证。假设路长只有20米,每5米栽一棵(两端都栽),要栽几棵呢?

  师:下面就请小组同学一起想办法验证一下你们的猜测是否正确?

  全班交流汇报。(重点让用线段图来验证的小组来说明理由。)

  师:这个小组的同学真会想办法,他们用一条线段表示这条小路,平均分成4份,这时出现了几个间隔和几个间隔点?

  生:4个间隔和5个间隔点。也就是把一条小路平均分成4份后,如果两端都要栽树的话,共要栽几棵?(5棵)205不是等于4吗?怎么是5棵呢?多的`这一棵是怎么来的?

  师:如果每隔4米栽一棵、每隔2米栽一棵又需要栽多少棵树苗呢?请小组同学一起讨论一下,并将你们解决的方法写在练习纸上。

  根据学生的回答,师填写表格:

  总 长(米)

  20

  全班观察表格寻找规律。

  师:同学们非常能干,通过猜测、讨论、验证发现了植树问题中一个非常重要的规律,那就是在一条路上植树,如果两端都要栽的话,栽树的棵数比平均分的份数也就是间隔数多1。(板书:棵数=间隔数+1。)

  师:对得到的这个规律有没有不同意见?

  三、巩固练习

  师:现在我们用得到的这个规律来验证一下你开始的猜测正确吗?

  (1)基础练习。

  师:请看题目,谁愿意来说一说?

  A1. 在长100米的迎宾道一侧栽树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

  A2. 如果是每隔10米栽一棵呢?(口答)

  B.师:同学们真能干!其实在我们的生活周围存在许多类似的植树问题,这是陈老师家乡重庆的鹅公岩大桥,想知道这座桥上有多少盏路灯吗?

  课件出示:大桥全长1420米,大桥的两侧每隔10米安装了一盏路灯。一共安装了多少盏路灯?

  C.这是我们重庆的轻轨列车,陈老师每天就坐轻轨列车回家。

  课件出示:从学校到老师家一共有14个站,每相邻两个站之间的距离平均是1千米,你知道陈老师的家离学校大约有多少千米吗?

  (2)拓展练习。

  师:老师的家乡重庆是一个美丽的城市,在重庆有一个解放碑,想听听它的钟声吗?

  课件出示解放碑的大钟及题目。

  解放碑的大钟5时敲响5下,8秒钟敲完。12时敲响12下,需要多长时间呢?

  师:请同学们独立的在练习本上完成。

  小结:同学们真棒!不仅能通过自己的观察、思考找到植树问题中当两端都栽树时棵数=间隔数+1,而且还运用规律解决了生活中的实际问题。

  四、数学文化

  介绍二十棵树植树问题:有20棵树,若每行四棵,问怎样种植,才能使行数更多?

  五、全课总结

  1.通过这节课的学习你有什么收获?

  2.其实植树问题里还有许多有趣的知识,如植树时有时需要一头栽一头不栽,在圆形的球场一周栽树以及围棋盘上摆棋子的问题等(课件图片展示),这些都需要同学们在以后的学习中开动脑筋,积极思考才能找到解决问题的好方法。

植树问题教案12

  第一课时

  教学目标

  1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2、掌握“植树问题”的第一种情况:“两端都要种”(即间隔数比株数少1的情况)。

  3、培养学生认真审题的好习惯。

  重难点

  重点:掌握“两端都要种的植树问题”的解题方法。

  难点: 掌握已知间隔长度和全长,求间隔数的方法,以及已知间隔数和间隔长度,求全长的方法。

  教学过程

  一、引入。

  1、春天是植树的季节,同学们,你们每年都参加植树造林的活动吗?美化绿化自己的家园,你们可曾注意到植树中也有很多学问,由于植树的线路不同,植树的情况也就不同,你们想了解植树中的学问并学会怎样解决植树问题吗?这个单元我们共同来研究你们想要解决的问题。

  2、小游戏。

  师生共同在毛线两端系个扣,然后等距离每隔一段系个扣,看一看,数一数,一共可以系几个扣。 学生动手试一试。

  小组讨论,看一看能得出什么结论。

  集体交流,通过刚才的游戏,你得出了什么结论。

  通过操作,观察讨论后得出系扣的个数比间隔数多1。

  3、验证。

  学生拿出一根20厘米的毛线绳,每隔5厘米系一个扣,绳子两端也要系,数一数,一共系了几个扣。

  指名说说自己系了几个扣。 验证扣的个数与间隔数的关系。

  4、练习。

  同桌两人各拿一张纸条,互提要求在纸上分段,要求两端均画上标志。 相互评价,互提建议。

  二、新授

  1、出示教学教材第106页例1。

  (1)读题,理解题意。

  (2)交流从题目中获取的信息和所要解决的问题。

  (3)学生动手试一试。

  (4)小组看图讨论,各自交流。

  想法一:100÷5=20,所以要准备20棵树苗。

  想法二:我用画线段图的方式帮助思考,如果把一条线段平均分成4段,两端也要栽树,这样就可以栽5棵。照此思路,可以推出间隔数比棵数少1。

  (5)猜测。

  猜一猜,谁的思路对。

  (6)集体反馈,发现规律。

  经过集体交流,发现栽树的棵数比间隔数多1。在100米长的小路上共有20个间隔,那么就可以栽21棵树。

  (7)教师讲解,帮助学生理解规律。

  因为植树总数比间隔数多1,这样我们就可以先求出树与树之间一共有多少个间隔,而每个间隔的长度是已知的,就可以求出一共植树多少棵。

  (8)研究列式的方法。

  100÷5=20(段)

  20+1=21(棵)

  教师表扬能自己正确列式的学生,并请他们阐明思考过程。

  2、尝试。

  (1)出示例题:在一条18米长的水泥路上,从头开始每隔3米摆一盆花,一共摆多少盆花?

  (2)读题,理解题意。

  (3)明确已知条件和所求问题。

  (4)找寻数量间的关系。 同伴探究,并得出结论。

  (5)独立列出算式。

  (6)集体反馈。

  指名板书:18÷3=6(段)

  6+1=7(盆) 请学生分别说出每步的意思。

  3、巩固练习

  1)有一根绳子,每隔2米挂一盏灯笼,起点和终点都挂,共挂了14盏灯笼。这根绳子长多少米?

  2)学校领操台前从起点开始每隔2米插一面彩旗。一共需要多少面彩旗?

  3)新建小区要在一条长1000米的路两旁安装路灯,每隔8米装一盏(两端都装)。一共需要多少盏路灯?

  4)一个小学生从一楼上到三楼用了40秒。照这样计算,他从三楼上到六楼需要多长时间?

  第二课时

  教学目标

  1、理解并掌握“植树问题”的基本解题方法,能解决一些实际生活中的与“植树”有关的问题。

  2、掌握“植树问题”的第二种情况:“两端都不种”(即间隔数比株数多1的情况)。

  重难点

  重点:掌握“两端都不种的植树问题”的解题方法。

  难点:掌握已知棵数和全长,求间隔长度的方法,以及已知棵数和间隔长度,求全长的方法。

  教学过程

  一、复习

  提问:已知全长和间隔长度,怎样求棵数?

  教师根据学生回答板书:棵数=全长÷间隔长度+1 那么已知间隔长度和棵数,怎样求全长呢? 答后板书:全长=间隔长度×(棵数-1)

  二、新授

  今天我们继续来研究另一种植树问题。

  1)出示教材第107页例2。

  (1)读题,理解题意。

  (2)投影出示教材图,帮助理解。

  (3)分组看图讨论。

  (4)尝试列式计算。

  (5)集体交流。

  教师板书:60÷3=20(段) 20-1=19(棵) 19×2=38(棵)

  (6)质疑。

  为什么减1?(因为两端都不种树,所以植树的棵数比间隔数少1)为什么要乘2?(因为是在两馆间的路两旁植树,所以要乘2) (7)比较与例1的不同。 先分组讨论,再集体交流。

  例1是两端都要栽树,所以棵数比间隔数多1。 例2是两端都不栽树,所以棵数比间隔数少1。 (8)教师讲解,帮助学生理解。

  教师讲述:相邻两棵树之间的距离是3米,60米里面有多少个3米,就是多少个间隔。我们知道大象馆和猩猩馆在路两端,也就是说两端不栽树,所以间隔数就比植树的棵数多1。

  2)小游戏。

  这里有一张彩纸条,老师想把它等分成2份,需要用剪刀剪几次?(一次) 请你们拿出彩纸条,分别把它们分成3段、4段、5段,看一看要剪几次。 看一看能得出什么结论。

  总结:剪的次数比纸条的段数少1。

  3)巩固练习

  1、两根栏杆之间每隔3米放一个障碍物,一共放了8个。这两根栏杆相距多少米?

  2、两栋楼之间每隔2米种一棵树,共种了 15棵。这两栋楼相距多少米?

  3、甲、乙两地相距4千米,每隔800米设一个站牌(甲、乙两地各设一个)。甲、乙两地一共设有多少个站牌?

  4、小明家门前有一条35米的小路,绿化队要在路旁栽一排树。每隔5米栽一棵树(一端栽,一端不载)。一共要栽多少棵数?

  学生独立思考小组讨论,后集体交流。 教师指导:棵数=间隔数

  第三课时

  教学目标

  1、使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。

  2、掌握“植树问题”的第三种情况:“关于一个封闭图形的植树问题”。

  3、培养学生认真审题的学习习惯。

  重难点

  重点:掌握封闭图形中“植树问题”的解题方法。

  难点:掌握已知株数和全长,求株距的方法,以及已知株数和株距,求全长的方法。

  教学过程

  一、复习

  1、前两节课都学习了有关“植树问题”的哪些情况?

  根据学生的回忆内容,教师整理板书:

  (1)两端都植树,则棵数比间隔数多1。 全长、棵数、间隔长度之间的关系:

  全长=间隔长度×(棵数-1)

  棵数=全长÷间隔长度+1

  间隔长度=全长÷(棵数-1)

  (2)一端植树,则棵数就比在两端植树时的棵数少1,也就是棵数与间隔数相等,全长、棵数、株距之间的关系:

  全长=间隔长度×棵数

  棵数=全长÷间隔长度

  间隔长度=全长÷棵数 (3)两端都不植树,则棵数比间隔数少1。

  棵数=全长÷间隔长度-1

  间隔长度=全长÷(棵数+1)

  2、设想。

  你还知道有关“植树问题”的`哪种情况?给同伴做一个介绍,说一说你是从哪知道或学到的。

  3、谈话。

  同学们,今天我们继续来研究第三种“植树问题”,这种情况比较特殊,也很有意思,看谁最先发现规律。

  二、新授

  1、出示教材第108页例3。

  (1)引导学生审题,从图中知道哪些信息?

  生:从情境中知道张伯伯要在圆形池塘周围栽树,池塘的周长是120m,每隔10m栽1棵树,问题是求一共要栽多少棵树。

  (2)引导学生:把这类问题转化成在封闭的图形上植树的问题。

  师:什么是封闭图形呢?

  学生思考后回答:无论什么图形,只要起点和终点重合,即首尾相连就是封闭图形。

  师:观察封闭图形上的棵数与间隔数,你有什么发现?

  生:棵数等于间隔数。 教师板书。

  师:本题该怎么解答呢?

  生:因为圆形池塘是封闭图形,根据“棵数等于间隔数”解答。120÷10=12(棵)

  师:如果把圆拉成直线,你能发现什么?

  出示下图:

  生:间隔数与棵数相同,也就是相当于一端栽树,另一端不栽树的情况。

  2、解决实际问题。

  (1)完成教材第108页“做一做”。

  (2)读题,理解题意。

  (3)分析数量关系。

  (4)自主探究或同伴共同探究。

  (5)集体交流。

  (6)教师讲解,帮助学生理解。

  (7)套用关系式进行验证。 (8)解答。150÷15=10(盏)

  三、巩固练习

  1、一个圆形花坛,它的周长是150米,每隔2米栽一棵树。共需树苗多少棵?

  2、社区有一块正方形活动区,每边都栽种19棵树,四个角各种1棵。共种树多少棵?

  3、时钟6时敲6下,10秒敲完。那么12时敲几下,需要几秒?

  第四课时

  教学目标

  1、使学生能够根据实际条件,解决“植树问题”。

  2、熟练应用解决“植树问题”的方法。

  3、培养学生研究问题的科学素养。

  重难点

  重点:能根据条件研究计算方法。

  难点:熟练运用解决“植树问题”的方法。

  教学过程

  同学们,今天我们用这几天学习的知识来解决一些生活中的实际问题。

  1、解决实际问题。

  四(1)班同学办安全小报,全班48人每人展示一张。在每张作品的四个角都钉上图钉,一共需要多少个图钉?

  (2)读题,理解题意。

  (3)分小组讨论,制订方案。

  学生动手试一试。

  小组讨论,看一看能得出什么结论。 重点是根据条件研究计算方法。

  (4)分小组汇报设计方案。 根据不同的方案进行计算。

  ①共1行,每行48张。列式:(1+1)×(48+1)=98(个)

  ②共2行,每行24张。列式:(2+1)×(24+1)=75(个)

  ③共3行,每行16张。列式:(3+1)×(16+1)=68(个)

  ④共4行,每行12张。列式:(4+1)×(12+1)=65(个)

  ⑤共6行,每行8张。 列式:(6+1)×(8+1)=63(个) 还有其他方法吗?

  最简单的方法是48×4=192(个)。

  但是,这种方法比较浪费图钉,生活中一般不会采用这种方法。

  (5)说一说,你会选择哪种方法布置展板。

  (6)观察算式,发现规律。

  2、拓展。

  (1)板书练习。

  李明上楼,从第一层到第三层要走36级台阶。如果从第一层走到第六层,需要走多少级台阶?(各层之间台阶数相同)

  (2)理解题意。

  (3)尝试解答。

  (4)交流反馈。

  (5)教师讲解,帮助学生理解。

  讲述:我们把从第一层到第二层看作1个间隔,第二层到第三层看作1个间隔,所以李明从第一层到第三层共走了2个间隔,根据“植树问题”的数量关系,可求出每相邻两层楼梯之间的台阶数为36÷(3-1)=18(级)。而从第一层到第六层共走了5个间隔,根据“植树问题”的数量关系可得,18×(6-1)=90(级)。 (6)归纳。

  这道题从表面看并不是“植树问题”,但是我们把层数看成棵数,可以抽象成为一条线段上的点数与间隔数之间的关系。

  3、巩固练习

  (1)计划在一条长8064米的水渠的一条边上植树,包括两端在内,共植169棵。每相邻两棵树之间的距离是多少米?

  (2)椭圆形的跑道周长是400米。每隔40米装一盏红灯,两盏红灯之间装2盏绿灯。一共装多少盏灯?

  (3)舞蹈队排成一个方阵,最外一层的人数为60人,舞蹈队外层每边有多少人?这个方阵共有多少人?

  4、学生独立完成练习二十四的题目,并逐一校对。

植树问题教案13

  教学内容:教科书106页例1及相关内容。

  教学目标:

  1.通过猜测、实验、验证等数学探究活动,使学生初步体会两端都栽的植树问题的规律,构建数学模型,解决实际生活中的有关问题。

  2.培养学生通过“化繁为简”从简单问题中探索规律,找出解决问题的有效方法的能力,初步培养学生的模型思想和化归思想。

  教学重点:

  发现并理解两端都栽的植树问题中间隔数与棵树之间的关系。

  教学难点:

  运用“植树问题”的解题思想解决生活中的实际问题。

  教学准备:多媒体课件、直尺、学习纸。

  教学过程:

  一、 谜语引入做铺垫:

  1.师:同学们,记得上一次上课前老师给同学们除了一个谜语,同学们一下子就猜出来了,今天老师又带来了一个谜语。

  师说谜语,学生回答(手)

  师:真厉害!现在举起你们的右手,手心向我,尽量把五指张开,大家看,每两个手指间都有一段?(距离)。在数学中,我们把这一段距离就叫做一个间隔。(板书:间隔)5个手指间有几个间隔呢?(4个),4个手指呢?(3个),3个手指呢?(2个),2个手指呢?(1个)。好,同学们可以把手放下了。

  2.现在请第一小组的.前5位同学站起来,站起来的这5位同学之间有没有间隔?(有)。从第一位同学到最后一位,一共有几个间隔呢?(4个)后面一位同学也请站起来,现在有几位同学?几个间隔呢?(6位,5个),再站起来一位,现在是?(7位同学,6个间隔)。好,请坐,谢谢你们。

  手指之间有间隔,刚才站起来的同学间有间隔,我们在植树时,树与树之间也要有间隔,那么今天我们就以植树为例探讨与间隔数有关的问题。

  板书课题:植树问题

  二、探索新知

  1.出示例题:植树节到了,同学们要在100m的小路一边植树,每隔5m栽一棵(两端要栽)。一共要栽多少棵树?

  2.理解题意:

  师:在这道题中,你们发现了什么数学信息?

  生回答(总长度100m,5m一棵)。课件演示。

  师:每隔5m一棵是指两棵树之间的距离是5m,我们把这个距离叫做间隔长度。

  师:还要注意哪些重要的信息?生:一边。师:一边是什意思?路有左右两边,只要在一边栽树,另一边不栽。生:两端要栽。师:路的起点和终点都要栽。

  课件演示。

  3.学生猜想:

  师:你们猜一猜,一共要栽多少棵树?谁来说说。

  生回答。怎样得到的。师板书:100÷5=20(棵)等等。

  师:到底要栽多少棵呢?哪一种猜想是对的,我们要检验一下,你们认为怎样检验?(画图)100m的小路每5m画一棵,5m画一棵,这样画下去你们觉得?(太麻烦)。为什么麻烦?(100里面有20个5m),怎么办呢?

  像这样数据大、比较复杂的问题,我们可以先从简单的情况入手进行研究,我们可以选择100m中的一小段,如果是15m的小路,可以栽几棵?20m呢?

  4.学生操作:

  师:请同学们拿出学习纸,我们用线段表示小路,把小路的长度缩小100倍,学习纸上15cm的线段表示15m的小路。20cm表示20m,我们用5cm一个间隔表示5m一个间隔。可以用你喜欢的图案表示一棵树。画好后,完成下面的表格。

  学生操作。师巡视。画好的互相检查。

  5.学生汇报:

  师:请一个同学汇报一下结果,15m的小路?生:3个间隔,4棵树。

  师:同意吗?我们来演示一下栽的情况。首先起点处栽一棵,隔5m栽一棵。

  第3棵树时,师问:还要栽吗?(要)为什么?(两端都要栽)起点栽一棵,终点也就是末尾也要栽一棵。

  大家看,15里面有几个5m?(3个),也就是3个间隔。1、2、3,3个间隔,1、2、3、4,4棵树。3个间隔4棵树。刚才那位同学的回答是正确的。20m的小路?(4个间隔,5棵树)。我们来看,(课件演示)还是5m一个间隔,终点还要栽一棵。20里面有几个5m?(4个)几棵树?(5棵)。4个间隔5棵树,回答正确。

  6.尝试列式:

  师:你发现了什么规律,不画图,你知道25m要栽几棵树吗?试一试。

  学生尝试列式。汇报,师板书:25÷5=5(个间隔)5+1=6(棵)

  学生说列式想法:5m一个间隔,25m里有几个5m就有几个间隔,求出的是间隔数,棵数比间隔数多1,所以要加1。

  师:为什么要加1,你怎么知道棵数比间隔数多1(从刚才表格得到的规律)你们同意吗?(同意)。

  7.理解规律:

  如果说5个间隔就栽5棵树会出现什么情况呢?我们来看,一个间隔对应一棵树,5个间隔就是5棵树,这样栽完了吗?(没有)为什么?(末尾没栽,这是一端栽一端不栽)5个间隔栽5棵树行吗?(不行),应该栽几棵?(6棵)。

  要使两端都栽树,棵树和间隔数有一个怎样的关系呢?谁来说。

  (棵树比间隔数多1,反过来,间隔数比棵树少1)

  8.巩固强化,得出结论:

  师:同学们都明白了两端都栽的情况下,棵树和间隔数之间的关系,现在老师出几道题考考大家,7间隔栽几棵树?20个间隔栽几棵树?9棵树之间有几个间隔?20棵树之间有几个间隔?非常好!

  如果用一个等式来表示间隔数和棵数之间的关系,应该怎样写?

  间隔数+1=棵树(棵树—1=间隔数)

  大家把这个关系齐说一次。

  要求棵数必须要知道?(间隔数)

  已知总长度和间隔长度怎样求间隔数?

  总长度÷间隔长度=间隔数齐读一次。

  9.运用方法,验证例题:

  师:现在我们回到例题,100m的小路一边植树,每隔5m栽一棵(两端要栽),到底要栽多少棵树?你猜对了吗?

  看看黑板上这种做法对吗?生回答,集体讲评。课件出示正确列式。

  三、巩固练习:

  1.同学们在全长400m的小路一边植树,每隔8m栽一棵树(两端要栽),一共要栽多少棵树?

  学生完成,板演,讲评。、

  把一边改为两旁,生独立完成,集体讲评。

  2. 工人叔叔正在架设电线杆,相邻两根间的距离是200m。在总长3000m的笔直路上,一共要架设多少根电线杆(两端都架设)?

  师:这道题和我们今天学的植树问题有联系吗?(有)谁来说一说。

  生回答,师引导找到联系,在课件上标示。

  学生独立完成,板演,集体讲评。

  3.在一条笔直的公路一侧植树,每隔6m种一棵,一共种了36棵。从第一棵到最后一棵的距离有多远?

  学生独立完成,师提醒:先求间隔数。

  四、课堂小结。

  (略)

植树问题教案14

  学习目标:

  1.让学生学会在摆一摆、画一画、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。

  2.学会在小组合作、交流中,进一步理解间隔数与棵数之间规律,并解决简单的植树问题。

  3. 在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。

  学习过程:

  一、自主探究

  1.从图中你都知道了什么?

  2.思考:你认为一共要栽多少棵树?

  3.出示表格

  总长 每两棵树之间的距离,即间隔(米) 两端都种

  间隔数 棵数

  我的.发现

  可以独立完成,也可以小组合作完成。

  二、课堂达标

  1.算一算

  在全长20xx米的街道一旁安装路灯(两端都装),每隔50米安装一座。一共安装了多少座路灯?

  2.想一想

  学校校园内一条小路的一旁从头到尾共有35棵树,每两棵树相距5米。这条小路共有多长?

  3.楼梯问题

  学校教学楼每层楼梯有24个台阶,老师从一楼开始一共走了72个台阶。老师走到了第几层?

  三、知识拓展

  广场上的大钟7时敲7下,12秒敲完,10时敲10下,需要几秒钟敲完?

植树问题教案15

  教学内容

  教科书第106-118页例题。

  教材分析

  本单元学习的是有关数学广角的“植物问题”,主要探讨的是关于在一条线段植树的问题,只栽一端、只栽中间、两端都栽等。教材以学生比较熟悉的植树活动为线索,让学生选用自己喜欢的方法来探究栽树的棵数和间隔数之间的关系,经历猜想、试验、推理等探索过程,并启发学生透过现象发现其中的规律,再利用规律回归生活,解决生活实际问题。数学的思想方法是数学的灵魂,本册安排“植树问题”的目的就是向学生渗透复杂问题从简单人手的思想。

  教学目标

  1、理解在线段上植树(两端要栽)的情况中“棵数=间隔数+1”,“间隔数=总长×间隔距离”的关系。

  2、使学生经历和体验复杂问题简单化的解题策略和方法。

  3、让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

  教学重点

  引导学生发现植树棵树与间隔数之间的关系。

  教学难点

  理解间隔与棵树之间的规律并运用规律解决问题。

  教学准备:

  多媒体课件、学具

  课时安排:

  1课时

  教学过程

  一、教学“间隔”

  1、教学“间隔”的含义。

  师:同学们,在我们的身边到处有数学。你们喜欢猜谜语吗?老师让你们猜个谜语好不好?出示谜面:(打一  我们在排队时,也出现了间隔数与人数之间的某种关系。下面,请几位同学上来排队(先请三人起来排队)问:有几个人?几个间隔?(再增加1人)再问:有几个人?几个间隔?(再增加1人)继续问有几个人?几个间隔?

  通过观察同学们刚才排队的情况,你们发现了人数与间隔数之间又有什么关系?(人数比间隔数多1,或者间隔数比人数少1……)

  3、引入植树问题的学习。

  师:你们真聪明!发现了手指数与间隔数之间的关系,队列中间隔数与人数之间的关系。像这类隐藏着总数和间隔数之间的关系问题,我们称为植树问题。今天,我们一起来研究有关植树问题。

  板书课题:植树问题(两端都栽)。

  4、刚才我们谈到的手指和队列的问题都是植树问题,大家能说出生活中的相关实例吗?教师举例:(上课和铃声、整点敲钟报时、美国五年一届的总统选举)

  二、引导探究,发现两端要种的规律

  1、课件出示问题:同学们在全长100米的小路一旁植树,每隔5米栽一棵(两端要栽)。一共需要多少棵树苗?

  让学生读题,理解题意。然后让学生说说这道题的关键词是什么。(每隔5米是指什么,两端要栽……,并重点理解“每隔5米”就是指两棵树之间的距离,也就是间距;两端:也就是这行树的两头)然后教师提问:咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到100米,数一数,是不是就能知道答案呢?(如果要求同学们通过画图证明,每5米1棵,那究竟要画到什么时候呢?其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,那就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:100米的路太长了,我们可以先在短距离的路上种一种,看一看……?我们可以把这条路看作较短的10米、15米、20米……通过画图得出规律,再根据规律求100米路要植树的棵数),这是在我们数学上常用的一种方法叫做“花繁为简法”。

  2、简单验证,发现规律。

  ①简单验证,发现规律。

  学生实践记录单

  出示实践记录单后,教师先示范画线段图,并在线段图上标出“间距,间隔数,线路总长”等,让学生更进一步理解“线路总长、间距、间隔数”。

  同学们在全长10米的小路一边植树,每隔5米种一棵。(两端要种)一共需要多少棵树苗?

  b、在长15米的小路一边植树(两端要栽)每五米一棵,可植多少棵?(线段图),学生通过画图探究,逐渐对总长、间隔距离、间隔数之间的关系进行进一步建模。

  c、在长20米的小路一边植树(两端要栽),每五米一棵,可植多少棵?那么在长25米和30米的小路上呢?

  (1)学生自主活动,完成实践记录单。(学生完成这个表格后,教师展示学生完成情况并提问:怎样求间隔数?怎样求棵数?学生回答,教师板书)

  全长(米)10 15 20 ┉

  间距(米)5 5 5 ┉

  间隔数(段)

  ┉

  棵树(棵)

  ┉

  (2)观察表中的棵数和间隔数,你发现了什么规律?(板书:两端要种:棵数=间隔数+1或间隔数=棵数—1),全班齐读规律。

  ②应用规律,解决问题

  教师:应用这个规律,我们能不能解决例1的.问题?(全班学生独立完成)订正时教师提问:100÷5=20这里的20指什么?(间隔数)20+1=21为什么还要+1?(因为两端要种的棵数=间隔数+1)刚才我们通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵数,知道该怎么做了吗?

  3、解决实际问题(口答)

  ①教师说间隔,学生说棵数。(或者教师说棵数,学生说有几个间隔。)

  ②小组内各同学互相出题。

  小结:

  刚才,我们应用发现的规律,解决了一个实际问题。我们已经知道,两端要种:棵数=间隔数+1,如果知道了间隔数和间距(每两棵树的距离),怎样求总长呢?(引导学生说出:总长=间隔数×间距(板书)

  4、完成“做一做”

  园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?(先让学生说一说这道题中的间隔数是多少,间距是多少,再让学生独立完成。订正后,教师可再进一步提问:如果在公路的两侧植树,又该怎么做?)

  教师:今天我们学习了怎样求植树的棵数,求间隔数,求植树的路线的总长度,解决这几个问题的关键是相同的,就是要运用好段数与点数之间的规律。

  三、应用规律,解决拓展

  1、植树问题(两端都栽)练习

  全路长(米)间隔距离(米)间隔数(个)棵数(棵)

  1 30 5

  2 50

  10

  3

  4

  21

  4 1000

  101

  2、广场上的大钟5时敲响5下,8秒钟敲完。10时敲响10下,需要多长的时间?

  3、小明要在全长20m的小路一边植树,每隔5m栽一棵(如下图),请你帮小明设计一下植树方案。(此题留待学生思考,为以后教学只栽一端和两端不栽做铺垫)

  四、谈谈你的收获?

  学生谈谈收获,教师总结。

  五、作业

  完成教科书练习

  六、板书设计

  植树问题(两端都栽)

  棵数=间隔数+1

  间隔数=棵数-1

  间隔数=总长÷间隔距离

  教学反思

  “植树问题”原本属于经典的奥数教学内容,是一种情况较为复杂的问题,但在生活中有许多类似的原型,新课程教材把它安排在五年级上册第七单元的“数学广角”中。其教学侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,借助内容的教学发展学生的思维,提高学生解决问题的能力。

  本节课我教学了课本106-108页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:

  一、重视数学模型的建立过程

  学习数学的目的是为了应用数学,在应用数学去解决各类实际问题时,建立数学模型是十分关键的一步。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。因此,我在教学中设计了“形成猜想—化繁为简—合作交流—发现规律—梳理方法—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。

  二、注重数学思想的渗透

  在教学中,我直接例题导入,引导学生用画图方法模拟实际栽树。让学生体会到研究问题可以从简单入手,化繁为简,用这样的方法,可以有效的解决问题,把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。其次,通过画线段图,渗透了数形结合的思想;在这个过程中,学生通过猜想、实验、推理、交流等活动,既培养了数学思想能力,学会了一些解决问题的方法,又逐步形成实事求是的科学态度和精神。

  三、注重探究精神和能力的培养

  教学中,我创设情境,鼓励学生用画图的方法来验证猜想的合理性。其后,改变间距,让学生通过画图的方法再次验证,并完成表格,从而发现规律。在用“数形结合”方法探究规律的过程中,学生的动手能力、合作能力和实践精神都得到一定的培养。

  四、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,我做了两方面的工作:

  一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;

  二是进行变式练习。引导学生进一步体会,现实生活中的许多事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,从而使学生感悟数学建模的重要意义。

  这节课虽然取得了一些收获,但也有许多遗憾。

  一是操作的实效性。在学生画图探究间隔数和棵数的规律时,在规定时间内完成任务的小组比较少。这有两方面的原因:首先是我没有充分调动学生动手的积极性,其次是操作方法交待不够清楚,以致部分学生无从下手,出现操作困难,影响操作效果。

  二是练习设计不够精。因为希望把尽可能多的题型呈现给学生,所以没有把握好教学时间。因此,在教学中应该把握好教学的度,相信学生的能力,合理取舍教学内容。