比例的意义和基本性质的教案

时间:2023-02-25 18:03:23 教案 我要投稿

比例的意义和基本性质的教案

  作为一名无私奉献的老师,就不得不需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。那么教案应该怎么写才合适呢?以下是小编整理的比例的意义和基本性质的教案,希望对大家有所帮助。

比例的意义和基本性质的教案

比例的意义和基本性质的教案1

  教学目标

  一、知识目标

  1、使学生理解比例的意义和比例的基本性质.

  2、认识比例的各部分名称,会组成比例.

  二、能力目标

  1、使学生学会应用比例的意义和基本性质判断两个比能否组成比例,并能正确组成比例.

  2、培养学生的观察能力和判断能力.

  三、情感目标

  1、对学生进一步渗透辨证唯物主义观点的启蒙教育.

  2、使学生感悟到美源于生活,美来自生产和时代的进步,提高审美意识

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学对象分析

  低年级学生思维的基本特点是:从以具体形象思维为主要形式过渡到以抽象逻辑思维为主要形式,针对这一特点,利用多媒体这一新颖、直观的现代教学手段创设引人入胜的教学情境,并通过动手操作,讨论探究,观察分析,给学生充分的时间和机会,让他们主动参与获取知识的全过程,从而培养学生问题意识、策略意识及创新意识。

  教学策略及教法设计

  教学时有意识创设情境,激发学生探索问题的欲望,不断发现问题,解决问题.通过动手操作,观察演示,小组讨论等活动,让学生运用知识和能力的迁移规律,将知识结构转化为学生的认知结构,突出学生的主体作用.

  1.多媒体教学

  运用微机精心设置问题情境,使学生自觉发现、意识到问题存在,可激活学生思维,促使问题意识的产生,又可以调动学生探索新知的积极性.

  2.动手操作法

  引导学生发现问题,提出问题,然后组织学生借助学具动手操作,寻求多种计算方法,同时运用多媒体,变静为动,直观形象,再结合语言表述,使学生的思维逐渐内化.

  教学步骤

  一、铺垫孕伏

  1、什么叫做比?

  2、什么叫做比值?

  3、求下面各比的比值:

  4、教师提问:上面哪些比的比值相等?( 和 这两个比的比值相等)

  教师: 和 这两个比的.比值相等,也就是说这两个比是相等的,因此它们可以用等号连接.(板书: = )

  二、探究新知

  (一)比例的意义

  例1、一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1、教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2、教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  或 .

  3、揭示意义:像 = 、 这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4、练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  ① 和 ② 和

  ③ 和 ④ 和

  填空

  ①如果两个比的比值相等,那么这两个比就( )比例.

  ②一个比例,等号左边的比和等号右边的比一定是( )的.

  (二)比例的基本性质

  1、教师以 为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2、练习:指出下面比例的外项和内项.

  3、让学生计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以 为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4、学生自己任选两三个比例,计算出它的外项积和内项积.

  5、教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  (板书课题:加上“和基本性质”,使课题完整.)

  6、思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7、练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  三、课堂小结

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习

  1、说一说比和比例有什么区别.

  比是表示两个数相除的关系,有两项;

  比例是一个等式,表示两个比相等的关系,有四项.

  2、在 这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  3、根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  (1) 和 (2) 和

  (3) 和 (4) 和

  4、下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业

  根据3×4=2×6写出比例.

  六、板书设计

比例的意义和基本性质的教案2

  教学目标:

  1、使学生理解和掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别,能应用比例的意义和比例的基本性质判断两个比能否组成比例。

  2、激发学生的学习兴趣,培养学生初步的'观察、分析、比较、判断、概括的能力,发展学生思维。

  教学重点:

  理解比例的意义基本性质。

  教学难点:

  应用比例的意义和性质判断两个比是否成比例。

  教学过程

  一、导入新课

  1、什么叫比?

  2、求出下面各比的比值(小黑板)

  12:16 1/4:1/3 和9:12 4.5:2.7 10:6

  二、教学新课

  1、教学比例的意义

  (1)出示例1:同学们能写出多少个有意义的比?观察这些比,哪此能用等号连接?把能用等号连接的比用等号连接起来。这些式子都是比例,你能用自己的语言说一说什么是比例吗?

  (2)归纳比例的意义

  (3)2:5和80:200能组成比例吗?你是怎样判断的?

  (4)完成第45页“做一做”

  2、教学比例的基本性质

  (1)在一个比例里,有四个数,这四个数分别叫什么名字?

  (2)请同们分别找出80:2=200:5和2分之80=5分之200的内项和外项。

  (3)你们任意找一个比例,把它们的内项和外项分别乘起来,双可以发现什么?

  (4)指导学生归纳后,在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  (5)指导学生完成第一46页“做一做”第1题。

  三、巩固练习

  四、课堂小结

  这节课你学到了哪些知识?

  创意作业:

  有一房间,窗子的长是6分米,宽是4分米;门的长和宽分别是21分米和14分米,你能用已知的四个数组成多少个比例?比一比哪个同学组成的多。

比例的意义和基本性质的教案3

  教学目标

  1.使学生理解并掌握比例的意义和基本性质.

  2.认识比例的各部分的名称.

  教学重点

  比例的意义和基本性质.

  教学难点

  应用比例的意义或基本性质判断两个比能否组成比例,并能正确地组成比例.

  教学过程

  一、复习准备.

  (一)教师提问复习.

  1.什么叫做比?

  2.什么叫做比值?

  (二)求下面各比的比值.

  12∶16 4.5∶2.7 10∶6

  教师提问:上面哪些比的比值相等?

  (三)教师小结

  4.5∶2.7和10∶6这两个比的比值相等,也就是说两个比是相等的,因此它们可以

  用等号连接.

  教师板书:4.5∶2.7=10∶6

  二、新授教学.

  (一)比例的意义(课件演示:比例的意义)

  例1.一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米.列表如下:

  时间(时)

  2

  5

  路程(千米)

  80

  200

  1.教师提问:从上表中可以看到,这辆汽车,

  第一次所行驶的路程和时间的比是几比几?

  第二次所行驶的路程和时间的比是几比几?

  这两个比的比值各是多少?它们有什么关系?(两个比的比值都是40,相等)

  2.教师明确:两个比的比值都是40,所以这两个比相等.因此可以写成这样的等式

  80∶2=200∶5或 .

  3.揭示意义:像4.5∶2.7=10∶6、80∶2=200∶5这样的等式,都是表示两个比相等的式子,我们把它叫做比例.(板书课题:比例的意义)

  教师提问:什么叫做比例?组成比例的关键是什么?

  板书:表示两个比相等的式子叫做比例.

  关键:两个比相等

  4.练习

  下面哪组中的两个比可以组成比例?把组成的比例写出来.

  (1)6∶10和9∶15 (2)20∶5和1∶4

  (3) 和 (4)0.6∶0.2和

  5.填空

  (1)如果两个比的比值相等,那么这两个比就( )比例.

  (2)一个比例,等号左边的'比和等号右边的比一定是( )的.

  (二)比例的基本性质(课件演示:比例的基本性质)

  1.教师以80∶2=200∶5为例说明:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.(板书)

  2.练习:指出下面比例的外项和内项.

  4.5∶2.7=10∶6 6∶10=9∶15

  3.计算上面每一个比例中的外项积和内项积,并讨论它们存在什么关系?

  以80∶2=200∶5为例,指名来说明.

  外项积是:80×5=400

  内项积是:2×200=400

  80×5=2×200

  4.学生自己任选两三个比例,计算出它的外项积和内项积.

  5.教师明确:在比例里,两个外项的积等于两个内项的积.这叫做比例的基本性质

  板书课题:加上“和基本性质”,使课题完整.

  6.思考:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  教师板书:

  7.练习

  应用比例的基本性质,判断下面哪一组中的两个比可以组成比例.

  6∶3和8∶5 0.2∶2.5和4∶50

  三、课堂小结.

  这节课我们学习了比例的意义和基本性质,并学会了应用比例的意义和基本性质组成比例.

  四、巩固练习.

  (一)说一说比和比例有什么区别.

  (二)填空.

  在6∶5=30∶25这个比例中,外项是( )和( ),内项是( )和( ).

  根据比例的基本性质可以写成( )×( )=( )×( ).

  (三)根据比例的意义或者基本性质,判断下面哪组中的两个比可以组成比例.

  1.6∶9和9∶12 2.1.4∶2和7∶10

  3.0.5∶0.2和 4. 和7.5∶1

  (四)下面的四个数可以组成比例吗?把组成的比例写出来.(能组几个就组几个)

  2、3、4和6

  五、课后作业.

  根据3×4=2×6写出比例.

  六、板书设计.

  省略

比例的意义和基本性质的教案4

  教学目标:

  1、 理解比例的意义,认识比例各部分名称,初步了解比和比例的区别;理解比例的基本性质。

  2、 能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、 在自主探究、观察比较中,培养学生分析、概括能力和勇于探索的精神。

  4、 通过自主学习,让学生经经历探究的过程,体验成功的快乐。

  教学重、难点:

  重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  难点:自主探究比例的基本性质。

  教学准备:CAI课件

  教学过程:

  一、复习、导入

  1、 谈话:同学们,我们已经学过了比的有关知识,说说你对比已经有了哪些了解?(生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?

  2、 课件显示:算出下面每组中两个比的比值

  ⑴ 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9

  ⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27

  [评析:从学生已有的知识经验入手,方便快捷,为新课做好准备。]

  二、认识比例的意义

  (一)认识意义

  1、 指名口答上题每组中两个比的比值,课件依次显示答案。

  师问:口算完了,你们有什么发现吗?(3组比值相等,1组不等)

  2、是啊,生活中确实有很多像这样的比值相等的例子,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:3:5=18:30 。

  (课件显示:“3:5”与“18:30”先同时闪烁,接着两个比下面的比值隐去,再用等号连接)

  最后一组能用等号连接吗?为什么?(课件显示:最后一组数据隐去)

  数学中规定,像这样的一些式子就叫做比例。(板书:比例)

  [评析:通过口算求比值,发现有3组比值相等,1组不等,自然流畅地引出比例。有效的课堂教学,就需要像这样做好已有经验与新知识的衔接。]

  3、今天这节课我们就一起来研究比例,你想研究哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  5、 那好,我们就先来研究比例的意义,到底什么是比例呢?观察这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  课件显示:表示两个比相等的式子叫做比例。

  学生读一读,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生读一读,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。]

  (二)练习

  1、 出示例1 根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  第一次

  第二次

  买练习本的钱数(元)

  1.2

  2

  买的本数

  3

  5

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第一题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  ⑴分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  ⑵分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。练习1其实是对例题的巧妙补充。]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、教学比例各部分的名称

  (1) 课件出示: 3 : 5

  前项 后项

  (2) 课件出示:3 : 5 = 18 : 30

  内项

  外项

  (3) 如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:3/5=18/30

  [评析:由练习题中先写比、再写比例,自然引出比和比例的.的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义、各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,有兴趣吗?

  三、探究比例的基本性质

  1、课件先出示一组数:3、5、10、6

  再出示:运用这四个数,你能组成几个等式?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6:3=10:5

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不同,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证:是不是任意一个比例都有这样的规律?

  ⑴课件显示复习题(4组),学生验证。

  ⑵学生任意写一个比例并验证。

  ⑶完整板书:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考3/5=18/30是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  四、 综合练习

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9

  1.4 :2 和 5 :10

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ② 20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  1.5:3=( ):4

  =

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,最后一道开放题答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、全课总结(略)

比例的意义和基本性质的教案5

  教学内容:

  课本第1~2页例1、例2,练习一第1、2、3题,比例的意义和基本性质。

  教学目的:

  1.理解和掌握比例的意义和基本性质,认识比例的各部分名称。

  2.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维。

  3.使学生进一步受到“实践出真知”的辩证唯物主义观点的启蒙教育。

  教学重点:理解比例的意义和基本性质。

  教学难点:应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学关键:

  观察众多的实例,概括出比例意义的过程;找出在比例里两个内项的积与两个外项的积相等的规律。

  教具:投影片、小黑板

  教学过程:

  一、谈话导入,创设情境

  (一)教师出示投影,结合画面谈话引入。

  师:同学们看了我们祖国各地的风景图片,美吗?我们的祖国方圆960万平方公里,幅员之辽阔,却能在一张小小的地图上清晰可见各地位置;科学家在研究很小很小的生物细胞时,想清楚地看见细胞各部分,就要借助显微镜将细胞按比例放大。这些,都要用到比例的知识,我们今天就来学习有关比例的一些知识。

  教师板书课题:比例的意义和基本性质。

  (二)让学生完成教材第1页复习题,根据学生回答教师板书:10:6=4.5:2.7。

  二、自主探究,学习新知

  (一)教学比例的意义

  1.合作互动,探求共性。

  先让学生在小组活动中完成“活动内容1”。

  活动内容1:

  (1)根据表中给出的数量写有意义的比。

  (2)观察写出的比,哪些比能用等号连接,为什么?

  (3)根据比与分数的关系,这样的式子还可以怎样写?

  然后让学生汇报活动情况,小学数学教案《比例的意义和基本性质》。结合学生回答,教师任意板书几个比例式。(如80:2=200:5, = ,2:5=80:200,5:200=2:80……)并指出这些式子就是比例。

  2.抽象概括,及时巩固。

  (l)教师指导学生观察以上比例式,概括出共性。

  (2)让学生用自己的.语言描述比例的意义。并板书:表示两个比相等的式子叫做比例。

  (3)完成第2页“做一做”,并说明理由。

  (4)让学生自己举出两个比例,并说明理由。

  (二)教学比例的基本性质。

  1.认识比例各部分名称。

  (l)让学生查阅教材,认识比例各部分的名称。根据学生汇报,教师板书:“内项”、“外项”。

  (2)让学生观察自己刚才举的比例,找出它的内项、外项。

  (3)引导学生观察把比例写成分数形式,比例的外项和内项的位置又是怎样的?教师板书:

  2.引导学生发现比例的基本性质。

  (1)让学生小组活动完成以下活动内容2:

  活动内容2:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②如果把比例写成分数形式,是否也有如上面发现的规律?

  ③是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ④通过以上研究,你发现了什么?

  (2)学生汇报活动情况,认识到任何比例的两个内项的积与两个外项的积都存在相等的关系。

  (3)指导学生概括出比例的基本性质,并完成板书。

  三、分层练习,辨析理解

  1.完成练习一第1题区别比与比例。

  2.先让学生解答第2页“做一做”第l题,然后引导学生小结:判断两个比能否组成比例,不仅可以应用比例的意义,而且可以应用比例的基本性质。

  3.完成练习一第2题。

  4.下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。

  2、3、4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  练习一第3题。

比例的意义和基本性质的教案6

  教学目标:

  (1)通过计算、观察、比较,让学生概括、理解比例的意义和比例的基本性质。

  (2)认识比例的各部分名称。

  (3)学会用比例的意义或比例的基本性质,判断两个比能不能组成比例,并写出比例。

  教学重点难点:

  理解比例的意义和基本性质,会用比例的意义和基本性质判断两个比能不能组成比例,并写出比例。

  教具学具准备:幻灯片、学习卡。

  教学过程:

  一、创设情景,引入新课。

  出示三幅场景图。

  (1)图上描述的是什么情景?这几幅图都与什么有关?

  (2)这三面国旗有什么相同和不同的地方?(形状相同,大小不同)

  (3)你们有见过这样的国旗吗?或者这样的?

  我们的国旗,不论大小,之所以形状相同,是因为它们都是按照一定的比例来制作的,从今天开始,我们将要学习有关比例的知识。板书课题

  二、自主探究,明确意义

  1、提问:你们知道每一幅图中国旗的长和宽分别是多少吗?

  2、谈话:在制作国旗的过程中存在着有趣的比。请同学们拿出第一张自主学习卡,算一算这三幅国旗的长、宽之比,求出比值,并同桌互相说一说你有什么发现?

  3、学生汇报。

  4、我们以操场上和教室里的国旗为例,2.4:1.6= ,60:40= ,这两个比的比值相等,中间可以用等号连接起来,写成2.4:1.6=60:40,因为比还可以写成分数形式,所以还可以写成=。

  像这样表示两个比相等的式子叫做比例。(板书)

  5、在上图的三面国旗的尺寸中,还有哪些比可以组成比例?

  6、深入探讨:

  (1)比例有几个比组成?

  (2)是不是任意两个比都能组成比例?

  (3)判断两个比能不能组成比例,关键要看什么?

  7、完成“做一做”。

  三、探究比例的基本性质。

  1、学习比例各部分的名称。

  教师:我们知道组成比的两个数分别叫前项和后项,组成比例的'四个数也有自己的名字,你们知道它们分别叫什么吗?(课件出示)

  (1)指名读一读有关知识。

  (2)谁来介绍一下在2.4:1.6=60:40中,内项和外项分别是谁?

  随着学生的回答教师出示:

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ =

  └------外项-------┘ (内项)(外项)

  (3)如果把比例写成分数形式,你能找出它的内项和外项吗?

  (4)任意选择一个比例式,标出内项、外项,同桌两人互相检查。

  2、研究比例的基本性质。

  (1)活动探究,总结性质。

  谈话:比有基本性质,比例表示两个比相等的式子,也有它特有的性质,请同学们拿出2号自主学习卡,小组讨论一下,写一写,算一算,解决以下问题。

  ①计算下面比例中两个外项的积和两个内项的积,比较一下,你能发现什么?

  2.4:1.6=60:40 =

  ②你能举一个例子,验证你的发现吗?

  ③你能得出什么结论?

  ④你能用字母表示这个性质吗?

  (2)运用性质。

  ①提问:学了比例的基本性质,你觉得运用它能解决什么问题?

  ②运用比例的基本性质,判断下面哪组中的两个比可以组成比例。

  (1) 6:3和8:5 (2) 0.2:2.5 和 4:50

  (3) :和 : (4) 1.2: 和 :5

  四、巩固练习。

  1、填空

  (1)在a:7=9:b中,( )是内项,( )是外项,a×b=( )。

  (2)一个比例的两个内项分别是3和8,则两个外项的积是( ),两个外项可能是( )和( )。

  (3)在一个比例里,两个外项互为倒数,那么两个内项的积是( ),如果一个外项是 ,另一个外项是( )。

  (4)在比例里,两个内项的积是18,其中一个外项是2,另一个外项是( )。

  (5)如果5a=3b,那么, = , = 。

  2、判断。

  (1)在比例中,两个外项的积减去两个内项的积,差是0。( )

  (2)18:30和3:5可以组成比例。( )

  (3)如果4X=3Y,(X和Y均不为0),那么4:X=3:Y。( )

  (4)因为3×10=5×6,所以3:5=10:6。( )

  3、把下面的等式改写成比例:(能写几个写几个)

  16 × 3 = 4 × 12

  四、总结归纳

  1、这节课我们学习了什么知识?你有什么收获?

  2、判断两个比能不能组成比例,有几种方法?

  比例在生活中有着广泛的应用,比如:警察可以根据脚印的长短判断罪犯的大致身高,根据影子的长度可以算出一棵大树的高度等,都与比例有关,我们只要认真学好比例,就一定能帮助我们了解其中的奥秘。

  板书设计

  比例的意义和基本性质

  表示两个比相等的式子叫做比例。

  2.4: 1.6 = 60: 40 (外项)(内项)

  └-内项-┘ 或 =

  └------外项-------┘ (外项)(内项)

  在比例里,两个外项的积等于两个内项的积。

  A:B=C → AD=BC

比例的意义和基本性质的教案7

  教学内容

  教科书第48~50页例1、例2,课堂活动及练习十一1,2题。

  教学目标

  1.理解比例的意义,认识比例各部分的名称。

  2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。

  3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点

  理解比例的意义和基本性质。

  教学难点

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学准备

  课件,扑克牌10张(2~10以及A),圆规一个。

  教学过程

  一、复习准备

  (1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?

  (2)求下面各比的比值,你发现了什么?

  12∶16 34∶18 4.5∶2.7 10∶6

  教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

  二、探究新知

  1.提出问题

  这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质

  2.探究比例的意义

  课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

  竹竿长26

  影子长39

  教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

  学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。

  教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

  学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93

  教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

  引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

  教师:2∶9和3∶6能组成比例吗?你是怎么知道的?

  指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。

  组织并指导学生完成书上第50页的课堂活动。

  3.认识比例的`各部分

  教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

  指导学生看书后汇报。

  教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。

  学生找出后,随学生的汇报教师板书:

  要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

  4.教学比例的基本性质

  教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

  学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

  教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

  指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

  5.运用比例的基本性质判断两个比是否能组成比例

  教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?

  学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。

  三、巩固提高

  (1)说一说比和比例有什么区别。

  讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

  (2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。

  (3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  (1)指导学生完成练习十一的第1题。

  要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

  (2)学生独立完成练习十一的第2题,教师订正。

比例的意义和基本性质的教案8

  一、教学目标

  知识与技能目标:在具体情境中,理解比例的意义和基本性质,会应用比例的意义和基本性质正确判断两个比能否组成比例。

  过程与方法目标:在探索比例的意义和基本性质的过程中发展推理能力。

  态度价值观目标:通过自主学习,经历探究的过程,体验成功的快乐。

  二、教学重点难点

  重点: 理解比例的意义和基本性质。

  难点:判断两个比是否成比例。

  三、教学过程设计

  (一)创设情境,提出问题

  1. 复习导入:

  (1)什么叫做比?

  两个数相除又叫做两个数的比。

  (2)什么叫做比值?

  比的前项除以比的后项所得商,叫做比值。

  (3)求下面各比的比值:

  12:16= 4、5:2、7= 10:6=

  谈话:今天我们要学的知识也和比有着密切的关系。

  2、创设情境,提出问题。

  谈话:同学们,你们知道青岛都有哪些产品非常有名?(学生根据自己的了解回答)青岛啤酒享誉世界各地,这节课,我们将一起去探索啤酒生产中的数学

  出示课件:这是一辆货车正在运输啤酒的主要生产原料大麦芽。

  这是它两天的运输情况:

  一辆货车运输大麦芽情况

  第一天 第二天

  运输次数 2 4

  运输量(吨) 16 32

  根据这个表格,让学生提出有关比的数学问题。同桌俩人,一个提问题,一个将问题的答案写在本上,看哪对同桌合作得最好,提出的问题最多。

  谈话:谁来交流?跟大家说一下你的问题是什么?

  学生可能出现以下的问题:

  货车第一天的运输量与运输次数的比是多少? (16 : 2)

  货车第二天的运输量与运输次数的比是多少?(32 :4)

  货车第二天的运输量与第一天运输量的比是多少?(32 :16)

  (师根据学生的回答,将答案一一贴或写于黑板)

  2 :16; 4 :32; 16 :2; 32 :4;

  16 :32; 2 :4; 32 :16; 4 :2。

  1、认识比例及各部分名称。

  谈话:学习数学,我们不仅要善于提问,还要善于观察。现在就请你观察这两个比(16 :2;32 :4)看能发现什么?(学生会发现比值相等)

  思考:这个比值所表示的实际意义是什么?(每次的运输量)

  既然它们的`比值相等,那我们可以用什么符号将两个比连接起来?

  学生用等号连接,并请学生把这个式子读一下。

  试一试:剩下的这些比中,哪两个也能用等于号连接?在你的练习本上写写看。(学生独立完成)

  介绍:像这样表示两个比相等的式子,数学上就把它叫做比例。我们知道,比有前项、后项,比例的各部分也有自己的名字。组成比例的四个数叫做比例的项,像16、4位于两端的两项叫做比例的外项,2、32位于中间的两项叫做比例的内项。比例,也可以写成分数形式。

  学生先把2 :16=4 :32这个比例写成分数形式,再同桌俩交流它的内项外项分别是谁。

  自学提示:同学们表现得都特别棒,现在请你看课本自主练习第1题,能否根据刚才所学知识解决。(学生独立完成)

  2、比和比例有什么区别?

  比

  4︰6

  比例

  2︰3=4︰6

  3.判断下面两个比能否组成比例?

  6∶9 和 9∶12

  总结方法:判断两个比能不能组成比例,要看它们的比值是否相等。

  4.谈话引入:刚才,你们是根据比例的意义先求出比值再判断两个比能否组成比例。我不是这样想的,可能很快就判断好了,想知道其中的秘密吗?其实秘密就藏在比例的两个内项和两个外项之中,它们两者之间可是存在着一种奇妙的关系,你想揭穿这个秘密吗?

  那就请你以16:2=32:4为例,通过看一看,想一想,算一算等方法,试试能不能发现这个关系!

  5、学生先独立思考,再小组交流,探究规律。

  出示研究方案:

  ①观察比例的两个内项与两个外项,用算一算的方法,找同学说一说,你发现了什么。

  ②是不是每一个比例的两个外项与两个内项都具有这种规律,请你再举出这样的例子来。

  ③通过以上研究,你发现了什么?

  6、全班交流。

  (1)哪个小组愿意将你们的发现与大家分享?

  (2)还有其他发现吗?

  (3)你们组所发现的是不是个偶然现象呢?咱们最好是怎么办?

  7、验证发现,共享成功。

  师:对,举例验证,这可是一种非常好的数学方法。那现在,咱们可以利用黑板上的比例,也可以自己组一个新的比例,验证看看,是不是所有的比例都是两个外项的积等于两个内项的积。(学生独立验证)

  8、利用一个比例通过课件形象的展示两个外项的积等于两个内项的积。

  9、小结:不错,看来同学们很会观察,很会思考,很会验证,自己发现了比例的一条规律。也就是,在比例里,两个外项的积等于两个内项的积。数学上我们把这条规律,叫做比例的基本性质。这也是我们在小学阶段,在继分数、比的基本性质之后学习的第三个基本性质。运用它,我们可以解决许多数学问题。

  10、比例的基本性质的应用:

  应用比例的基本性质,判断下面两个比能不能组成比例.

  6∶3 和 8∶5

  方法:a、先假设这两个比能组成比例

  b、说出写出的比例的内项和外项分别是几,再分别算出外项和内项的积。

  c、根据比例的基本性质判断组成的比例是否正确。

  (二)自主练习,拓展提升

  1、判断下面每组中两个比能否组成比例?

  1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5

  让学生根据比例的意义进行判断,教师结合回答板书:

  1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5

  2、连线:自主练习第3题。

  3、填空:自主练习第6题。

  4、自主练习第10题:

  2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5

  5、下面的四个数可以组成比例吗?把组成的比例写出来(能写几个写几个)。

  2、3、4 和 6

  因为 2 × 6 = 3 × 4 所以这四个数可以组成比例

  2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4

  2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4

  练习时,给学生充足的时间让学生独立完成,然后交流沟通。

  (三)回顾总结

  在这节课中你又有什么新的收获?

比例的意义和基本性质的教案9

  教学内容:

  比例的意义和基本性质。

  教学要求:

  使学生理解比例的意义,会用比例的意义正确地判断两个比是否 成比例,使学生理解比例的基本性质。

  教学重点:

  理解比例的意义和基本性质。

  教学难点:

  灵活地判断两个比是否组成比例。

  教 具:

  投影机等。

  教学过程:

  一、复习。

  1、什么叫做比?什么叫做比值?

  2、求出下面各比值,哪些比的比值相等?

  12:16 : 4.5:2.7 10:6

  二、提示课题,引入新课。

  1、引入:如果有两个比是相等的,那么这两个相等的比以叫做什么?它有什么样的性质?这节课我们就一起来研究它。

  2、引入新课。

  三、导演达标。

  1、教学比例的意义。

  (1)引导学生观察课本的表格后回答:

  A、第一次所行驶的路程和时间的比是什么?

  B、第二次所行驶的路程和时间的比是什么?

  C、这两次比的.比值各是什么?它们有什么关系?

  板书: 80:2=200:5 或 =

  (2)引出比例的意义。

  A、表示两个比相等的式子叫做比例。

  B、讨论:组成比例必须具备什么条件?如何判断两个比是不是组成比例的?比和比例有什么区别?

  C、判断两个比能不能组成比例,关键是看两个比的比值是否相等。

  D、做一做。(先练习,后讲评)

  2、教学比例的基本性质。

  (1)看书后回答:

  A、什么叫做比例的项?

  B、什么叫做比例的外项、内项?

  (2)引导学生总结规律?

  先让学生计算,两个外项的积,再计算两个内项的积,最后让学生总结出比例的基本性质,然后强调,如果把比例写成分数形式,比例的基本性质就是等号两端的分子和分母分别交叉相乘的积相等。

  3、练习:判断下面的哪组比可以组成比例。

  6:9和9:12 1.4:2和7:10

  四、巩固练习:第一、二题。(指名回答,集体订正)

  五、总结:今天我们学习了什么?

  比例的意义和比例的基本性质及怎样判断两个比是否可以组成比例的方法。

  六、作业:第二题。

比例的意义和基本性质的教案10

  教学目标:

  1、 使学生理解并掌握比例的意义,认识比例的各部分名称,探究比例的基本性质,学会应用比例的意义和基本性质判断两个比是否能组成比例,并能正确的组成比例。

  2、 培养学生的观察能力、判断能力。

  教学重点:

  比例的意义和基本性质

  学法:

  自主、合作、探究

  教学准备:

  课件

  教学过程:

  一:创设情境,导入新课

  1、 谈话,播放课件,引出主题图

  师:这节课我们上一节数学课,这节数学课有很多有趣的知识等待着同学们去探索和发现呢!同学们你们有信心接受挑战吗?

  (播放视频,生观察,并说看到的内容)

  师:看到这些画面你的心情怎么样?(激动、兴奋、骄傲、自豪……)

  师:是啊,老师和你们一样,每当听到雄壮的国歌声,看见鲜艳的五星红旗,老师的心情也十分激动,国旗是我们伟大祖国的象征,是神圣的。

  问:画面上这几面国旗有什么不同?(大小不一样)

  师:虽然这几面国旗大小不一样,但是长和宽的比值都是一样的,这节课我们就来研究有关比例的知识。(板书:比例)

  (课件出示主题图,让学生说出长和宽各是多少)

  问:你能根据这些国旗的长和宽的尺寸,写出长与宽的比,并求出比值吗?请同学们先写出学校内两面国旗长与宽的比,并求出比值。(生动手写比、求比值)

  二、引导探究,学习新知

  1、比例的意义

  (生汇报求比值的过程)

  师:请同学们观察你求出的学校内两面国旗的比值,你有什么发现?(这两个比的.比值相等)

  师:这两个比的比值相等,我用“=”把这两个比连起来,可以吗?(可以)

  师:从图上四面国旗才尺寸中你还能找出哪些比求出比值,也写成这样的等式呢?请同学们自己动笔试一试(生动手写比,求比值,写等式,并汇报)

  师:指学生汇报的等式小结,像这样由比值相等的两个比组成的等式就是比例,谁能概括出比例的意义?(板书课题,生汇报,是板书意义)

  问:判断两个比是否能组成比例,关键看什么?(关键看它们的比值是否相等)

  (小练习,课件出示)

  2探究比例的基本性质

  (1)自学比例的名称

  师:小结通过刚才的学习,我们理解了比例的意义,那么在比例中各部分名称是怎样的,各部分名称与各项在比例中的位置又有什么关系呢?打开书34页,自学34也上半部分,比例各部分的名称。(生自学名称,汇报,师板书名称)

  (2)合作探究比例的基本性质

  师:同学们,你们知道吗?在比例的内项和外项之间还存在着一个有趣的特性呢!你们想去发现这个特性吗?接下来就请同学们以小组为单位合作探究比例的基本性质。(板书:比例的基本性质) 课件出示小组合作学习提示,指名读

  各小组派一名代表汇报合作学习发现的规律。

  师:是不是所有的比例都具有这样的特性呢?分组验证课前写出的比例式。

  师:问想一想,判断两个比能不能组成比例除了根据比例的意义去判断外还可以根据什么去判断?(生回答:根据比例的基本性质)

  师:如果把比例改写成分数形式是什么样的?生回答。根据比例的基本性质,等号两边的分子和分母之间又有什么关系呢?生回答,师板书

  三、巩固练习(见课件)

  四、汇报学习收获

比例的意义和基本性质的教案11

  教学内容:教科书第9—10页比例的意义和基本性质.练习四的第1—3题。

  教学目的:使学生理解比例的意义和基本性质。

  教学过程():

  一、教学比例的意义

  1.复习。

  (1)教师:请同学们回忆一下上学期我们学过的比的知识.谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。教师把学生举的例子板书出来,并注明比的各部分的名称。

  (2)教师:我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?

  教师板书出下面几组比,让学生求出它们的比值。

  12:16 :1 4·5:2.7 10:6

  学生求出各比的比值后,再提

  “请同学们观察一下,哪两个比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?

  这就是这节课我们要学习的内容。(板书课题:比例的意义)

  2.教学比例的意义。

  (1)出示例1:“一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。”指名学生读题。

  教师:这道题涉及到时间和路程两个量的关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问边填写表格。)

  “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据学生的回答。

  板书:第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的比是200:5

  然后让学生算出这两个比的比值。指名学生回答,教师板书:80:2=40, 200:5=40。让学生观察这两个比的比值。再提问:

  “你们发现了什么?”(这两个比的比值都是40。)

  “所以这两个比怎么样?”(这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来。(板书:80:2=200:5或 = )像这样(指着这个式子和复习题的式子4. 5:2.7=10:6)表示两个比相等的式子叫做比例。

  指着比例式80:2=200:5,提问:

  “谁能说说什么叫做比例?”引导学生观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让学生齐读一遍。

  “从比例的意义我们可以知道.比例是由几个比组成的.?这两个比必须具备什么条件:因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

  根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的 比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一限看出两个比是不是相等?可以先分别把两个比化简以后再看。例如判断10;12和35:1:这两个比能不能组成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上举例边说边板书。)

  (2)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (3)巩固练习。

  ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表 示;不能就用两手的食指交叉表示。)

  6:3和12:6 35:7和45:9

  20:5和.16:8 0.8:0.4和 : :

  学生判断后,指名说出判断的根据。

  ②做第10页的“做一做”。

  让学生看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自己做得对不对。

  ③给出2、3、4、6四个数,让学生组成不同的比例(不要求举全)。

  ④做练习四的第3题。

  对于能组成比例的四个数,把能组成的比例写出来:组成的比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让学生写成分数形式。

  二、教学比例的基本性质

  1.教学比例各部分的名称。

  教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书第10页看第6行到9行。看看什么叫比例的项、外项、内项。(学生看书时,教师板书:80:2=200:5)

  指名让学生指出板书出的比例的外项、内项。随着学生的回答教师接着板书如下:

  80 :2=:200 :5

  内项

  外项

  2.教学比例的基本性质。

  教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:

  两个外项的积是80×5=400

  两个内项的积是2×200=400

  “你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×20“是不是所有的比例式都是这样的呢?”让学生分组计算前面判断过的比例式。

  “通过计算,大家发现所有的比例式都有这个共同的规律。谁能用一句话把这个规律说出来?”可多让一些学生说,说得不完整也没关系.让后说的同学在先说的同学的基础上说得更完整。

  最后教师归纳并板书出:在比例里.两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。

  “如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80;2=200:5)教师边问边改写成: =

  “这个比例的外项是哪两个数呢?内项呢?”

  “因为两个内项的积等于两个外项的积,所以,当比例写成分数的形式.等号两 端的分子和分母分别交叉相乘的积怎么样?”边问边画出交叉线,如: =

  学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。板书: = 80×5=2×200

  3.巩固练习。

  教师:前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。

  (1)应用比例的基本性质判断3:4和6:8能不能组成比例。

  教师:我们可以这样想:先假设3:4和6:8可以组成比例。再算出两个外项的积(板书:两个外项的积:3×8=:1)和两个内项的积(板书:两个内项的积:4×6=24)。因为3×8=4×6(板书出来).也就是说两个外项的积等于两个内项的积,所以

  3:4和6:8可以组成比例。(边说边板书:3:4=6:8)

  (2)做第11页“做一做”的第1题。

  三、小结

  教师:通过这节课,我们学到了什么知识?什么是比例?比例的基本性质是什么?应用比例的基本性质可以做什么?

  四、作业

  练习四的第2题。

比例的意义和基本性质的教案12

  教学目标:

  1、理解比例的意义,认识比例各部分名称,能通过观察、猜想、验证等方法得出分数的基本性质。

  2、能根据比例的意义和基本性质,正确判断两个比能否组成比例。

  3、培养学生猜想与验证、观察与概括的能力。

  4、让学生经经历探究的过程,体验成功的快乐,收获数学学习的兴趣和信心。

  教学重点:理解比例的意义和基本性质,能正确判断两个比能否组成比例。

  教学难点:自主探究比例的基本性质。

  教学准备:投影片、练习纸

  三案设计:

  学案

  一、自学质疑

  [探究任务一] 比例的意义

  1、投影出示几组比,让学生写出各组的比值,

  二、比例的基本性质

  教案

  一、回顾旧知、孕伏新知:

  1、谈话:同学们,我们已经学过了比的许多知识,说说你已经知道了比的哪些知识?

  (生答:比的意义、各部分名称、基本性质等。)

  还记得怎样求比值吗?能很快算出下面每组中两个比的比值吗?

  2、 师板书题目:

  (1)4:5 20:25 (2)0.6:0.3 1.8:0.9

  (3)1/4: 5/8 3:7.5 (4)3:8 9:27

  [评析:开门见山,从学生已有的知识经验入手,方便快捷,循序渐进,为新课做好准备。因为这些题目还要用到,所以不惜费时板书——有效的呈现方式]

  二、丝丝入扣,深挖比例的意义

  (一)认识意义

  1、 指名口答每组中两个比的比值,在比例下方写上比值。

  师问:你们有什么发现吗?(三组比值相等,一组不等)

  2、是啊,这种现象早就引起了人们的重视和研究。人们把比值相等的两个比用等号连起来,写成一种新的式子,如:4:5=20:25

  师:最后一组能用等号连接吗?为什么?

  数学中规定,像这样的一些式子就叫做比例,今天这节课我们就一起来研究比例(板书:比例)

  [评析:通过口算求比值,不经意间学生就有了发现,有三组式子比值相等,一组不等,如行云流水般引出比例。有效的课堂教学,就需要像这样做好新旧知识的完美衔接。]

  3、同学们想研究比例的哪些内容呢?

  (生答:想研究比例的意义,学比例有什么用?比例有什么特点……)

  4、那好,我们就先来研究比例的意义,到底什么是比例呢?观察黑板上这些式子,你能说出什么叫比例吗?

  (根据学生的回答,教师抓住关键点板书:两个比 比值相等)

  同学们说的比例的意义都正确,不过数学中还可以说得更简洁些。

  板演:表示两个比相等的式子叫做比例。

  学生议一议,明确:有两个比,且比值相等,就能组成比例;反之,如果是比例,就一定有两个比,且比值相等。

  5、质疑:有三个比,他们的比值相等,能组成比例吗?

  [评析:比例的意义其实是一种规定,学生只要搞清它“是什么”,而不需要知道“为什么”。本环节让学生先观察,再用自己的话说说什么是比例,学生都能说出比例意义的关键所在——两个比且比值相等,教师再精简语句,得出概念,注重了对学生语言概括能力的培养。在总结得出概念之后,教师没有嘎然而止,而是继续引导学生议一议,从正反两方面进一步认识比例,加深了学生对比例的内涵的理解。让学生像一个数学家一样真正经历知识探索和形成的全过程,无时无刻不享受成功的快乐!]

  (二)练习

  1、投影出示例1,根据下表,先分别写出两次买练习本的钱数和本数的比,再判断这两个比能否组成比例。

  (1)学生独立完成。

  (2)集体交流,明确:根据比例的意义可以判断两个比能否组成比例。

  2、完成练习纸第1题。

  一辆汽车上午4小时行驶了200千米,下午3小时行驶了150千米。

  (1)分别写出上、下午行驶的路程和时间的比,这两个比能组成比例吗?为什么?

  (2)分别写出上、下午行驶的路程的比和时间的比,这两个比能组成比例吗?为什么?

  [评析:这两道练习题既帮助学生巩固了比例的意义,学会根据比例的意义判断两个比能否组成比例;又让学生进一步体验到比例在生活中的应用。这一环节,一学生对于“为什么”设计到了正反比例的知识,教师也不失时机予以评价,不但使该生兴致勃勃,也引得其他学生投来艳羡的目光,生成地精彩!]

  3、刚才我们先写出了比,然后再写出了比例,你觉得比和比例一样吗?有什么区别?

  (引导学生归纳出:比例由两个比组成,有四个数;比是一个比,有两个数)

  4、认识比例各部分的名称

  (1)板书出示: 4 : 5

  前项 后项

  (2)板书出示:4 : 5 = 20 : 25

  (3)如果把比例写成分数的形式,你能指出它的内、外项吗?

  课件出示:4/5=20/25

  [评析:由练习题中先写比、再写比例,自然引出比和比例的的区别,再由比的各部分名称到比例的各部分名称,环环相扣、自然流畅、一气呵成。]

  5、小结、过渡:

  刚才我们已经研究了比例的意义及其各部分名称,也知道了比例在生活中有很多的应用,接下来我们一起来研究比例是否也有什么规律或者性质,大家有兴趣吗?

  三、探究比例的基本性质

  1、投影出示:

  你能运用3、5、10、6这四个数,组成几个等式吗?(等号两边各两个数)

  2、 独立思考,并在作业本上写一写。

  学生组成的等式可能有:10÷5=6÷3

  或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……

  根据学生回答,师相机引导并板书: 3×10=5×6 3:5=6:10

  3:6=5:10

  5:3=10:6

  6: 3=10:5……

  3、 引导发现规律

  (1)还有不同的乘法算式吗?(没有,交换因数的位置还是一样)

  乘法算式只能写一个,比例却写了这么多,这些比例一样吗?(不一样,因为比值各不相同)

  (2)那么,这些比例式中,有没有什么相同的特点或规律呢?仔细观察,你能发现比例的性质或规律吗?

  (3)学生先独立思考,再小组交流,探究规律。

  (板书:两个外项的积等于两个内项的积。)

  [评析:“运用这四个数,你能组成几个等式”,不同的学生写出的算式各不相同,也会有多少之别,这里充分发挥交流的作用,让每一个学生的思考都变成有用的教学资源。考虑到直接探究比例的基本性质学生会有困难,教师作了适当的引导,通过乘法算式和比例式的横向联系,让学生在变中寻不变,从而探究出性质。]

  4、验证猜想:

  师:这是你的猜想,有了猜想还必须验证。

  (1)请看黑板上这几个比例的内项的积与外项的'积是不是相等?(学生进行验证,纷纷表示内项积等于外项积)

  (2)学生任意写一个比例并验证。师巡视指导。

  师:有一位同学也写了一个比例,他认为这个比例的内项积与外项积是不相等的,大家看看是什么原因?

  板书:1/2 ∶1/8 = 2∶ 8

  众生沉思片刻,纷纷发现等式不成立。

  生:1/2∶1/8 = 4,而 2∶8 =1/4,这两个比不能组成比例。

  师:看来刚才发现的规律前要加一个条件——在比例里(板书),这个规律叫做比例的基本性质。

  [评析:给学生提供大量的事例,要求他们多方面验证,从个别推广到一般,让学生学会科学地、实事求是地研究问题。]

  5、思考4/5=20/25是那些数的乘积相等。课件显示:交叉相乘。

  6、小结:刚才我们是怎样发现比例的基本性质的?(写了一些比例式,观察比较,发现规律,再验证)

  [及时总结评价,不但可以帮助学生理清知识脉络,而且可以让他们感受创造的快乐,树立学习的信心。尤其是教师的评价:科学家也是这样研究问题的!更给了学生无上的荣耀!]

  四、反馈提升

  完成练习纸2、3、4

  附练习纸:2、下面每组中的两个比能组成比例吗?把组成的比例写下来,并说说判断的理由。

  14 :21 和 6 :9 1.4 :2 和 5 :10

  让学生明确可以通过比例的意义和基本性质两个途径判断两个比能否组成比例。

  3、判断下面哪一个比能与 1/5:4组成比例。

  ①5:4 ②20:1

  ③1:20 ④5:1/4

  4、在( )里填上合适的数。

  ①1.5:3=( ):4

  12:( )=( ):5

  [评析:习题的安排旨在对比例的意义和基本性质进行进一步的巩固和应用,第4题中第②题属于开放题,答案不唯一,意在进一步让学生体验和感悟数学的“变”与“不变”的美妙与统一。]

  五、课后留白

  同一时间、同一地点,人高1.5米,影长2米;树高3米,影长4米。

  (1)人高和影长的比是( )

  树高和影长的比是( )

  (2)人高和树高的比是( )

  人影长和树影长的比是( )

  你有什么发现?

  为什么同一时间、同一地点两个不同物体高度与其影长的比可以组成比例?请大家课后查找有关资料。

  [设计意图:数学服务于生活,在生活中能更好地检验数学学习的成色!“带着问题离开教室”是新课程的理念,没有完美的课堂,缺憾不失为一种美!]

  六、全课总结:这节课你有什么收获?

  (最后的机会仍然给学生,学生通过清晰的板书总结的很到位)

比例的意义和基本性质的教案13

  教学内容:教材第30~31页比例的意义和基本性质,练习六第1~5题。

  教学要求:使学生理解比例的意义和基本性质,能用比例的意义或性质判断两个比成不成比例;通过教学培养学生初步的综合、概括能力。

  教学重点:理解比例的意义和基本性质。

  教学难点:用比例的意义或性质判断两个比成不成比例。

  教学理念:以学生为主体,把较多的时间和空间留给学生探索、交流、概括。

  教具、学具准备:小黑板,教学课件

  教学步骤

  一、复习铺垫

  l.什么叫做两个数的比?请你说出两个比。(教师板书)

  2.什么是比的比值?上面两个比的比值是多少?

  3.引入新课。

  我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)

  二、导入新课

  1.教学比例的意义。

  让学生算出下面各比的比值,再比较每组里两个比的'比值有什么关系。(指名板演)

  (1) 3 :5 24 :40 (2) :7.5 :3

  追问:比值相等,说明每组里两个比怎样?

  指出:表示两个比相等的式子叫做比例。

  说一说,上面两个等式表示的是怎样的式子?

  2.下面两个比之间的哪些○里能填“=”,为什么?

  1 :2○3 :6 0.5 :0.2○5 :2

  1.5 :3○15 :3:2○:1

  提问:填了等号后的式子是什么? 1.5 :3和15 :3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。

  3.教学例1。

  出示例1,让学生先写出两次买练习本的钱数和本数的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。

  让学生根据比例的意义,在( )里填上适当的数。

  3 :6=5 :( ) 0.8 :( )=1 :

  4.教学比例的基本性质。

  向学生说明比例各部分的名称。

  让学生看开始组成的两个比例,说一说其中的内项和外项。让学生计算上面比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。

  5.判断能否组成比例。

  出示“3.6 :1.8和0.5 :0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。提问:2.6 :1.8和0.5 :0.25能组成比例吗?

  强调指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

  如果学生有困难,启发用比值相等的方法推算。填写以后,学生回答:为什么填这个数?

  让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?

  三、巩固练习

  1. 提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组成比例?

  2. 完成“练一练”。

  指名4人板演.集体订正.说说是怎样判断的?

  3.做练习六第1题。

  让学生做在练习本上。如果能组成比例就再写出比例。提问练习情况并板书,让学生说明“为什么”。

  4.做练习六第2题。

  让学生判断,在练习本上写出来。提问:哪一个比和:4组成比例?为什么,(比值相等,或化简后两个比相同)

  5.完成练习六第3题。

  学生先观察、计算,然后口答,说明理由。

  四、全课小结

  这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?

  五、布置作业

  练习六第4、5题。

比例的意义和基本性质的教案14

  第一课时

  教学内容:P32~34 比例的意义和基本性质

  教学目的:1、使同学理解比例的意义和基本性质,能正确判断两个比是否能组成比例。

  2、通过引导探究、概括归纳、讨论、合作学习,培养同学笼统概括能力。

  3、使同学初步感知事物间是相互联系、变化发展的。

  教学重点;比例的意义和基本性质

  教学难点:应用比的基本性质判段两个数能否成比例,并正确的组成比例。

  教学过程:

  一、回顾旧知,复习铺垫

  1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。

  教师把同学举的例子板书出来,并注明比的各局部的名称。

  2、我们知道了比的前后项相除所得的商叫做比值,你们会求比值吗?教师板书出下面几组比,让同学求出它们的比值。

  12:16 : 4.5:2.7 10:6

  同学求出各比的比值后,再提问:哪两个比的比值相等?

  (4.5:2.7的比值和10:6的比值相等。)

  教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:4.5:2.7=10:6)像这样表示两个比相等的式子叫做什么呢?这就是这节课我们要学习的内容。(板书课题:比例的意义)

  二、引导探究,学习新知

  1、教学比例的意义。

  (1)出示P32例1。

  每面国旗的长和宽的比分别是多少?指名分别算出一面国旗长和宽的比。

  5: 2.4:1.6 60:40 15:10

  每面国旗长和宽的比值有什么关系?(都相等)

  5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40

  象这样表示两个比相等的式子叫做比例。

  比例也可以写成: = =

  (2)我们也学过不同的两个量也可以组成一个比,如:

  一辆汽车第一次2小时行驶80千米,第二次5小时行驶200千米。列表如下:

  时间(时) 2 5

  路程(千米) 80 200

  指名同学读题。

  教师:这道题涉和到时间和路程两个量的.关系,我们用表格把它们表示出来。表格的第一栏表示时间,单位“时”,第二栏表示路程,单位“千米”。 这辆汽车第一次2小时行驶多少千米?第二次5小时行驶多少千米?(边问 边填写表格。)

  “你能根据这个表,分别写出第一、二次所行驶的路程和时间的比吗?”教师根据同学的回答,板书:

  第一次所行驶的路程和时间的比是80:2

  第二次所行驶的路程和时间的比是200:5

  让同学算出这两个比的比值。指名同学回答,教师板书:80:2=40,200:5=40。让同学观察这两个比的比值。再提问:你们发现了什么?”(这两个比的比值都是40,这两个比相等。)

  教师说明:因为这两个比相等,所以可以把它们用等号连起来组成比例。(板书:80:2=200:5)像这样表示两个比相等的式子叫做比例。

  指着比例式4.5:2.7=10:6提问: “谁能说说什么叫做比例?”引导同学观察是表示两个比相等。然后板书:表示两个比相等的式子叫做比例。并让同学齐读一遍。

  “从比例的意义我们可以知道,比例是由几个比组成的?这两个比必需具备什么条件?因此判断两个比能不能组成比例,关键是看什么?假如不能一眼看出两个比是不是相等的,怎么办?”

  根据同学的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。假如不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。例如判断10:12和35: 42这两个比能不能组成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上举例边说边板书。)

  (3)比较“比”和“比例”两个概念。

  教师:上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

  引导同学从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  (4)巩固练习。

  ①用手势判断下面卡片上的两个比能不能组成比例。(能,就用张开拇指和食指表示;不能就用两手的食指交叉表示。)

  6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6

  同学判断后,指名说出判断的根据。

  ②做P33“做一做”。

  让同学看书,不抄题,直接把能组成比例的两个比写在练习本上,教师边巡视边批改,对做得不对的,让他们说说是怎样做的,看看自身做得对不对。

  ③给出2、3、4、6四个数,让同学组成不同的比例(不要求举全)。

  ④P36练习六的第1~2题。

  对于能组成比例的四个数,把能组成的比例写出来。组成的比例只要能成立就可以。

  第4小题,给出的四个数都是分数,在写比例式时,也要让同学写成分数形式。

比例的意义和基本性质的教案15

  设计说明

  本节课的教学内容包含“比例的意义和比例的基本性质”两部分。本节课的内容是这个单元的起始,属于概念教学,是为以后解比例,讲解正比例、反比例做准备的。学生学好这部分的知识,不仅可以初步接触函数的思想,还可以解决日常生活中的一些具体问题。遵循“自主探索与合作交流”的《数学课程标准》理念,本节课在教学设计上有以下特点:

  1.重视有效学习情境的创造。

  新课伊始,通过谈话激活学生对国旗的已有认识,引出本节课要用的中国国旗的三种不同规格的相关数据,激发学生的学习兴趣,使学生在熟悉的现实情境中,情绪饱满地进入到对比例知识的探究学习中。

  2.重视引导学生自主探究。

  教学比例的意义时,先引导学生依据三面国旗的长与宽写出多个比,再引导学生发现它们的比值相等,可以写成一个等式,引出比例,最后引导学生通过自己的分析、思考,进行归纳总结出比例的意义。

  3.重视引导学生合作交流。

  《数学课程标准》指出:“合作交流是学生学习数学的重要方式。”为此,我们在教学中,不但要引导学生进行自主探究,还要引导学生进行合作交流。以“比例的基本性质”的.探究为例,在教学中,通过小组合作交流,让学生思维互补,既有利于知识的学习,又有利于学生概括能力及语言表达能力的培养。

  课前准备

  教师准备 PPT课件

  教学过程

  ⊙渗透情感,导入新课

  1.课件出示国旗画面,学生观察,激发爱国情操。

  (天安门升国旗仪式、校园升旗仪式、教室场景)

  师:这三幅不同的场景都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽分别是多少吗?

  2.课件出示国旗的长和宽,并提出问题。

  天安门升旗仪式上的国旗:长5 m,宽 m。

  操场升旗仪式上的国旗:长2.4 m,宽1.6 m。

  教室里的国旗:长60 cm,宽40 cm。

  师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同的特点呢?

  3.导入新课。

  师:每面国旗的大小不一样,但是它们的长和宽中却隐含着共同的特点,是什么呢?这节课我们就结合国旗的知识来学习比例的意义和基本性质。

  (板书课题:比例的意义和基本性质)

  设计意图:通过谈话,激发学生的爱国情感和求知欲,在加强学生对国旗知识了解的同时,有效地引入学习资源,为学生探究比例的意义和基本性质提供第一手资料。

  ⊙合作交流,探究新知

  1.教学比例的意义。

  (1)自主尝试。

  课件出示教材40页主题图,根据图中给出的数据分别写出不同场景中国旗的长和宽的比,并求出比值。

  (2)汇报、交流。

  预设

  生1:天安门升旗仪式上的国旗。

  长∶宽=5∶=

  生2:操场升旗仪式上的国旗。

  长∶宽=2.4∶1.6=

  生3:教室里的国旗。

  长∶宽=60∶40=

  (3)感知比例的意义。

  观察写出的比,想一想,这些比能用等号连接吗?为什么?用等号连接的两个比的式子可以怎样写?

  预设

  生1:可以用等号连接,因为它们的比值相等。

  “2.4∶1.6=”和“60∶40=”可以写作“2.4∶1.6=60∶40”。

  生2:可以用等号连接,两个比的比值相等,说明这两个比也是相等的。

  生3:根据比与分数的关系,“2.4∶1.6=60∶40”

  也可以写成“=”。

【比例的意义和基本性质的教案】相关文章:

《比例的意义和基本性质》教案02-17

《比例的意义和基本性质》说课稿09-27

比例的意义和基本性质教学反思02-16

分数的意义和性质教案01-24

《比例的基本性质》教学反思03-30

《比例的基本性质》教学设计01-20

《比例的意义》教案12-02

《比例的意义》教学教案02-25

《分数的意义和性质》教学反思05-15

分数的基本性质教案01-20