小数的意义教案

时间:2024-09-27 22:25:19 教案 我要投稿

小数的意义教案 (通用15篇)

  作为一位杰出的老师,总归要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案应该怎么写呢?下面是小编整理的小数的意义教案 ,希望能够帮助到大家。

小数的意义教案 (通用15篇)

小数的意义教案 1

  【教学内容】 五年级上册第28页至30页例1和例2及相应的“试一试”和“练一练”,练习五1-5题。

  【教学目标】

  1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

  2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

  3.培养良好的学习习惯,提高学生的探究、归纳比较、抽象概括的能力。

  【教学重、难点】理解小数的意义。

  【教学过程】

  一、交流信息,引入课题

  课前我们收集了一些关于小数的资料,老师选择了一些,谁愿意给大家介绍一下?

  (1)一块橡皮0.3元;一张信封0.05元;一本练习本0.48元。

  (2)一枚1分硬币的厚度大约是0.001米。

  (3)老师用的签字笔笔芯是0.38毫米的。

  (4)艾兰德 “维生素C含片”净含量:0.65克×120片。

  (5)钱嘉容的家到学校大约有3.9千米,她的爸爸身高1.82米。

  像0.3这样的一位小数三年级时我们已经认识,这些小数和它们有什么不一样?会读吗?只读小数,谁来读一读。

  你们觉得读小数时需要提醒大家注意什么?(小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。)

  【设计意图:学生的知识起点是三下时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情。教材为什么三下就安排初步认识小数,因为生活中小数随处可见,孩子不陌生,早些了解也便于孩子在生活中交流。孩子对小数不陌生,因此两位小数、三位小数虽课本没安排学习,但孩子的读法早已在生活中习得,因此小数的读写方法不作为本节课的教学重点,只课之初始阶段稍做提醒,指出读法中的注意点,即尊重孩子的实际情况。】

  这节课我们将继续学习小数的意义。(板书课题:小数的意义)

  二、教学例1,初步感知

  1、出示例1。我们先来看第一条信息。

  这些小数表示物品的单价。

  如果你到商店去买这些物品,该怎样付钱呢?(课件出示: 3角 5分 48分)

  谈话: 这里的0.3元用分数可以怎么表示?你是怎么想的?(板书:0.3元)

  小结:1元=10角,3角是1元的3/10,可以写成0.3元。(板书:3/10元 0.3元)

  2、初步认识两位小数。

  你能仿照(0.3元)这样的思路说说0.05元和0.48元的意思吗?先独立想想,再同桌交流。(如果学生感到困难,提示:1元是多少分;1分是1元的几分之几;那5分呢?48分呢?可以怎样想?)

  0.05元,谁来说说你是怎么想的?(同桌互相说说)

  1元=100分,5分是1元的5100 ,可以写成0.05元;

  0.48元谁来说?

  1元=100分,48分是1元的48100 ,可以写成0.48元;

  板书:5100 元 0.05元 48100 元 0.48元

  3、看看这些小数,为什么(0.05)这里要写0?(因为是5分钱,1元=100分)几分钱用小数表示就是——,这里(0.48)为什么没有0?几角几分用小数表示就是——

  【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。但以元为单位的小数所表示的金额是学生在生活中已经初步认识了的,比较熟悉,这些经验能支持学生理解小数的意义,从而实现感性认识到理性认识的飞跃。在初步感知阶段,利用“0.3元该怎么付?”学生把元转化成角,进而追问0.3元用分数可以怎么表示?得出3角是1元的3/10,可以写成0.3元。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。】

  三、教学例2,概括意义

  (一)进一步理解两位小数的意义。

  1、刚才我们借助圆角分间的关系认识小数,其实还可以借助其它一些事物,这是一把米尺,把1米平均分成100份,每份长多少(1厘米)?为了方便看得清楚,我们截取一部分将它放大。想一想, 1厘米是1米的几分之一?用小数怎么表示?

  投影:1米=100厘米,1厘米是1米的1/100,可以写成0.01米。

  谁能这样完整的说说。(板书:1厘米 1/100米 0.01米)

  2、4厘米和9厘米写成以“米”作单位的分数和小数各是多少?拿出练习纸,在第一题处填一填。和屏幕校对。谁来说说(4厘米)你是怎么想的?0.09米有多长?

  (二)自主探究三位小数的意义。

  1、出示第一屏,收集的小数信息:请同学们看第2条信息,读——0.001米?你认为它比要0.01米的长度——短!究竟有多长?

  2、老师将米尺再截短再放大,现在你能在米尺上指出0.001米吗,并告诉大家你是怎样想。(能仿照刚才的思路说说想法)

  谁再来说说0.001米的意思?板书:11000 米 0.001米

  你能说一个毫米数,让大家像这样来说说吗?板书两个

  3、练习纸上找到材料2完成填空。(课件出示,直接校对)

  这些用米作单位的三位小数都表示1米的——千分之几。

  (三)观察发现,概括意义

  1、一起来观察板书,先竖着看看,再横着看,仔细观察这一行分数和对应的小数,你有什么发现?想一想四人小组交流。汇报

  竖着看,这3个数量都是——相等的!下面两个数量的单位都是——相同的!这说明分数、小数之间有着密切的`联系!(根据学生交流情况可适当擦去写板书,只留下分数、小数,便于观察、比较、抽象概括意义。)

  从分数往小数看,什么样的分数可以直接写成小数呢?

  看看下面的小数,可以分成几类?

  从小数往分数看,一位小数、两位小数、三位小数各表示什么?还能往下想吗?四位小数呢?(表示万分之几)能想的完吗?

  引导出示:分母是10、100、1000……的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  指出:这就是小数的意义,引导学生完整的看一看 。

  (四)回到第一屏学生收集的信息,解释3、4条信息中小数的意义。

  【设计意图:例2的教学分成三段进行。第一段继续教学两位小数,以“米”为单位改写成小数,从中体会不仅是“元”为单位的百分之几可以写成两位小数,其他百分之几的分数都可以写成两位小数。第二段教学三位小数,让学生把学习两位小数的经验迁移到三位小数上。数学学习的本质在于数学思维,第三段初步概括小数的意义,对一位、两位、三位……小数意义的具体分析后,抓住展示和交流这一时机,通过清晰直观的板书,从上往下又从左往右地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解。】

小数的意义教案 2

  一、复习

  用分数表示下面的数。

  1角=()元1分米=()米2角=()元

  1厘米=()米1分=()元1毫米=()米

  二、教学例1:

  1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。

  指名回答问题。注意学生回答问题时要完整。

  橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习簿的单价0.48元是4角8分或48分。

  2、教学小数的读法:

  你能读出下面的小数吗?鼓励学生大胆尝试。

  0.05读作:零点零五0.48读作:零点四八

  引导学生总结读整数部分为0的小数的方法:

  从左往右依次读出各位上的数。

  3、初步感受两位小数的含义。

  想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?

  小组讨论交流。

  汇报:0.3元是1元的十分之三。

  思路:1元=100分,1元平均分成100份,1份是1分,1分就是1元的1/100;0.05元是5分,是5个1/100,也就是1元的5/100。

  根据上面的思路,让学生说明0.48元是1元的48/100 。

  引导学生看到0.05和0.48都是两位小数,都表示百分之几。

  4、“试一试”

  A、理解:1厘米是1/100米,1/100米可以写成0.01米。

  B、用米为单位的分数和小数分别表示4厘米与9厘米。

  学生回答并说名理由。

  比较:这三个分数都是什么样的分数?(百分之几的分数)

  这三个小数呢?(两位小数)

  我们知道一位小数表示十分之几,那两位小数又表示什么呢?(百分之几)

  三、数形结合,建立小数的概念。

  1、出示例2:把什么看作“1”?(正方形)

  看着图形将1/10和1/100写成小数。学生自主填空后回答。

  提问:0.1表示什么?0.01又表示什么?

  2、试一试:学生自主练习,进一步体验小数的.意义。

  3、思考:

  观察前面出现的小数与分数的关系,你有什么发现?和小组内的同学交流一下自己的观点。

  结论:分母是10、100、……的分数可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几……

  4、想一想:

  1/1000写成小数是多少?29/1000呢?你能写一写、读一读吗?

  B、进一步体会读法:0.001读作:零点零零一

  0.029读作:零点零二九

  强调:小数部分的零要一个一个的读,不能只读一个零。

  我们知道了一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几,那么你知道四位小数表示什么吗?学生回答。

  5、练一练:

  学生自主填空,交流时注意让学生根据小数的意义进行说明。

  四、巩固练习:

  练习五的1—5题。

  练习时让学生自主练习,指名回答时要培养学生完整回答并应用自己学过的知识阐明观点的习惯与能力。

  注意:练习的第3题,出现了整数部分不是0的小数,读写应该不会有困难,但是在用小数的意义进行说明时,对于一部分学生可能会造成困难,虽然题目没有要求学生进行意义说明,但是在教学中还是应该有初步的渗透。

小数的意义教案 3

  教材分析

  本单元内容包括小数的意义和读写法,小数的性质和小数的大小比较,小数点位置移动引起小数大小的变化,小数和复名数的相互改写、求一个小数的近似数和把较大的数改写成用“万”、“亿”作单位的数。

  小数的意义是本单元的一个重点。这里教材把认数范围扩展到三位小数,加强了小数与分数的联系,使学生明确小数表示的书分母是10、100、10000……的分数,了解小数的记数单位以及单位间的进率,从而清楚地了解小数为什么可以仿照整数的写法。小数的性质也很重要。学生知道小数末尾添0、去0不改变小数的大小,就加深了对小数的理解。它还是小数四则计算的基础。应用它可以对小数进行化简,也可以根据具体运算的需要,在小数末尾添上0或者把整数改写成小数的形式。小数大小的比较也有助于加深学生对小数意义的理解。小数的性质已经涉及到小数大小的'比较问题,但只是说明在什么情况下两个小数相等的。小数点位置的移动引起小数大小的变化是小数的又一性质。它是进行小数乘除法计算的基础,同时也是学习小数和复名数相互改写的基础。小数和复名数的相互改写以及求小数的近似数在实际中有广泛的应用,其中把较大的数改写成用“万”、“亿”作单位的数是本单元所学的几部分知识的综合应用。

  学情分析

  这部分内容是学生在学生熟练地掌握了整数的四则运算,以及在四年级上学期学习了分数的初步认识的基础上进行教学的。这部分内容是学生系统学习小数的开始。通过这部分内容的学习,使学生进一步理解小数的意义和性质,为今后学习小数的四则运算打好基础。学生在学习小数和复名数的相互改写时,需要综合运用前面学过的计量单位和进率、小数的性质、小数点位置的移动引起小数大小的变化等知识,因此要求学生逐一扎实地学习。求一个数的近似数和把一个数改写成用“万”、“亿”作单位的数容易混淆,需注意区别。

  教学要求

  1、使学生理解小数的意义,认识小数的记数单位,会读、写小数,会比较小数的大小。

  2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。

  3、使学生会进行小数和十进复名数的相互改写。

  4、使学生能够根据要求会用“四舍五入法”保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用万或亿作单位的小数。

  教学重点:小数的意义和小数点移动引起小数大小变化的规律。

  教学难点:小数和复名数的相互改写。

  教学关键:正确理解小数的意义及小数和复名数的相互改写。

小数的意义教案 4

  教学目标

  1.使学生理解小数除法的意义.

  2.初步学会较容易的除法是整数的小数除法的计算方法.

  教学重点

  使学生学会除数是整数的小数除法的计算方法.

  教学难点

  理解商的小数点要和被除数的小数点对齐的道理.

  教学过程

  一、铺垫

  (一)列式计算:一筒奶粉500克,3筒奶粉多少克?

  教师板书:500×3=1500(克)

  (二)变式:

  1.3筒奶粉1500克,一筒奶粉多少克?

  2.一筒奶粉500克,几筒奶粉1500克?

  教师板书:1500÷3=500(克)

  1500÷500=3(筒)

  (三)小结:整数除法是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  二、探究新知

  (一)理解小数除法的意义.

  1.课件演示:小数除法的意义

  2.小结:小数除法的意义与整数除法的`意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算.

  3.练习:根据小数除法的意义,写出下面两个除法算式的商.

  1.8×0.5=0.9

  0.9÷0.5= 0.9÷1.8=

  (二)教学小数除法的计算方法.

  例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

  1.理解题意,并列式:21.45÷15

  2.小组讨论,理解算理,尝试计算.

  3.课件演示:除数是整数的小数除法(例1)

  4.练习:68.8÷4 85.44÷16

  5.总结计算法则:除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数的小数点对齐.

  三、全课小结

  这节课你都学到了哪些知识?除数是整数的小数除法和整数除法有什么联系?又有什么区别?

  四、课堂练习

  (一)计算下面各题.

  42.84÷7 67.5÷15 289.8÷18

  (二)只列式不计算.

  1.两数的积是201.6,一个因数是72,另一个因数是多少?

  2.把86.4平均分成24份,每份是多少?

  3.64.6是17的多少倍?

  (三)判断下面各题是否正确.

  五、布置作业

  (一)计算下面各题.

  101.7÷9 79.2÷6 716.8÷7

  (二)一台拖拉机5小时耕5.55公顷地,平均每小时耕地多少公顷?

  六、板书设计

  小数除法的意义

  例1.服装小组用21.45米布做了15件短袖衫,平均每件用布多少米?

小数的意义教案 5

  教学目标:

  1、使学生理解小数的意义。

  2、使学生认识数学知识源于实际生活,用于实际生活。

  3、通过分析、对比、概括培养学生的思维能力。初步渗透对应思想和分类思想。

  4、激发学生大胆质疑、问答,培养创新意识。

  教学重点:

  理解小数的意义

  教学难点:

  理解三位小数的意义

  教学准备:

  直尺、课件

  教学过程:

  课前谈话:同学们,你们逛过超市吗?大家在挑选商品的时候,一般看些什么?

  一、看价签,引出小数

  1、课前我知道了你们都挺爱逛超市的,在超市里买过食品、衣服,那么,你们买学习用品吗?我发现有一家文具店,那里的文具又好又便宜,你们想去看看吗?一会大家认真看,挑一件你们最喜欢或最需要的文具的价钱记下来,好吗?

  2、看课件。

  3、说说你记得都是什么?这些都是什么数?这些都是用小数表示的价钱,还能用别的方法表示吗?试一试。

  4、和小组里的同学说一说自己是怎样想的?如果组里有什么解决不了的困难,一会儿告诉全班同学我们一起来研究。

  5、汇报:(师选择板书)

  6、刚才,我们一起研究了这么多小数,还把他们用分数表示出来了,请你们仔细观察一下,小声读读,你们有什么发现吗?(独立思考)有想法了吗?快跟组里同学说一说。

  7、汇报:生发现小数与分数之间的`关系

  二、解决实际问题

  1、我们初步认识了小数,除了在价签上见过小数,你还在哪见过小数?举个例子说一说。你能说一说它是什么意思吗?

  2、测量。以小组为单位:

  (1)测量身边物体的长度。

  (2)以米为单位用小数表示出来。

  (3)把测量结果写在记录单上

  (主要解决三位小数)

  三、小结

  1、有关小数你还知道些什么?你是怎样知道的?

  2、小数还有许多有趣的知识,你们还想继续了解吗?你们有什么办法能学到这些知识呢?

小数的意义教案 6

  教学目标

  1、情感态度与价值观:增强学生民族自豪感和培养学生学习的积极性。

  2、知识与技能:使学生通过观察、测量了解小数是如何产生的。使学生理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。

  3、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。

  教学重点理解小数的意义

  教学难点掌握小数与分数的关系,深刻理解小数的意义。

  教法自主探索、合作学习

  教学准备多媒体课件、卡片、米尺

  教学课时1课时

  一、旧知复习

  二、生活中的小数

  1、小数的产生

  2、请同学们利用学具盒中的米尺分组测量课桌、书本、黑板的长与宽。

  小结:从日常生活和测量中,往往得不到整数的结果,除了可以用分数的形式表示以外,还可以用另外一种形式小数来表示。分数与小数之间有什么联系呢?带着这个问题我们共同来研究小数的意义。

  三、探究新知

  探索一:一位小数的意义

  把1米平均分成10份,每一份在尺子上是多少?写成分数是多少米?写成小数呢?

  小结:分母是10的分数,可以写成一位小数

  板书:一位小数表示十分之几

  探索二:二位小数的意义

  还记得1米等于多少厘米吗?根据这个知识,结合刚才一位小数的学习,再利用米尺图,以小组为单位对下面的三道小题进行探究学

  小结:分母是100的分数,可以写成两位小数。

  板书:二位小数表示百分之几

  探索三:三位小数的意义

  如果把1米的尺子平均分成1000份,其中的一份或几份的数怎么用分数表示?又怎么用小数表示?你能举例说明你的表示方法吗?

  小结:分母是1000的'分数,可以写成三位小数

  板书:三位小数表示千分之几

  总结:

  ①分母是10、100、1000 …的分数,可以用小数表示。这就是小数的意义。

  ②把1米看成一个整体,把一个整体平均分成10份、100份、1000份…这样的一份或几份可以用分母是10、100、1000…的分数来表示,也就可以用小数来表示。

  探索四:小数的计数单位及进率

  小数的计数单位是十分之一、百分之一、千分之一。用小数写作0.1、0.01、0.001

  那么相邻两个单位间的进率是多少?

  板书:每相邻两个计数单位之间的进率是10

  四、练习达标

  1、把下面各图中涂色的部分用分数和小数表示分数和小数表示出来。(课本P33页“做一做”)

  2、判断题

  (1)0.1、0.01、0.001…是小数的计数单位。

  (2)十分之一、百分之一、千分之一…是小数的计数单位

  (3)仿照整数的写法,写在整数个位的后面,用圆点隔开,用来表示十分之一、百分之一、千分之一…的数,叫做小数。

  3。填空

  0.8里面有个0.1;0.008里面有8个;

  0.32里面有32个;6个是0.6;

  0.5表示把整体;平均分成份,取其中的份。

  0.24表示把整体;平均分成份,取其中的份。

  板书设计

  《小数的意义》

  一位小数表示十分之几

  二位小数表示百分之几

  三位小数表示千分之几

  每相邻两个计数单位之间的进率是10

  课后反思

小数的意义教案 7

  教学目标:

  1.知识与技能:结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义。

  2.过程与方法:经历探索小数意义的过程,了解小数在生活中的广泛应用。

  3.情感目标:在探索交流的学习过程中,体验数学学习的乐趣。

  教学重点:

  理解小数的意义。

  教具准备:

  长方形、正方形的图片,多媒体课件等。

  教法学法:

  根据课程标准和教材内容,我将采用启发式教学法引导学生主动地进行观察、实验、猜测、验证、推理与交流。

  教学学法:

  动手实践、自主探索与合作交流成为学生学习的主要方式,促进学生的个性发展和能力提升。

  教学过程:

  为达成以上目标,突出重点,突破难点,我设计以下五个教学环节。

  一、创设情境,提供素材。

  这一环节分两步,第一步观察情境,读写小数。

  课件出示信息窗,引导学生观察,并提问:从图中你了解了哪些数学信息?学生观察图片,说出各种鸟蛋的质量,接着追问:你是怎样读写这些小数的?学生试着读写小数。教师随时订正学生读写小数的方法。因为学生已经学习过一位小数的读写方法,在此不必做过多讲解,放手让学生在读写的过程中总结出小数的读写方法,完成知识的迁移。

  第二步根据信息,提出问题。

  提问:根据这些信息,你能提出什么问题?学生可能提出:0.25千克中的0.25表示什么意思?0.365千克中的0.365表示什么意思?本环节的设计意图是创设问题情境,激发学生提出问题的兴趣。

  二、分析素材,理解概念

  这一环节分 两步,第一步认识两位小数的意义。

  这一步分四个小环节,第1个小环节,首先引导学生选择需要解决的问题;要解决0.25表示什么意思,首先要弄清0.01表示什么?(板书0.25 0.01)

  第2个小环节,出示一张正方形纸片【提问】:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?

  先请同学回答,学生应该知道0.1与1/10的关系,再让学生慢慢过渡到0.01与1/100的关系。

  (师板书:0.1——1/10 0.01——1/100)

  在正方形纸片上表示出0.25。

  提问:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

  先让学生小组讨论,然后小组合作完成,全班交流。

  教师引导学生明确0.25就是25/100,也就是25个1/100。

  板书:0.25 25/100

  第3个小环节,多媒体出示0.05、0.10的方格图,阴影部分表示什么? 板书:0.05 5/100 0.10 10/100

  第4个小环节,小组讨论:这些小数有什么共同特点?

  让学生先小组交流,请不同的同学说出自己想法,再进行全班交流。

  引导学生概括出两位小数表示的意义。

  【设计意图】学生已经知道一个小数的意义,我们通过对一位小数意义的复习,过渡到对两位小数意义的学习,让学生在探索新知识的时候将数学知识串联起来。 第二步,认识三位小数的`意义。

  这一步分四个小步,第一个小步【提问】:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?

  直接让学生口答,学生在两位小数的启发下,可以自然迁移到三位小数。

  第二小步,教师多媒体出示大正方体塑料块动态平均分产生0.365的过程,引导学生理解0.365就是365个1/1000,也就是365/1000。

  第三小步,多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么? 请同学们看着多媒体的方块图数一数。

  第四小步,引导学生概括出三位小数表示的意义。

  【设计意图】学生在复习一位小数意义,学习二位小数意义之后,可以通过自学,自己探索发现三位小数的意义,这利于学生归纳,探究能力的发展。

  三、借助素材,总结概念

  【提问】:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

  学生寻找生活中的小数,并结合实际说出它们的意义。集体交流,师引导学生总结出小数的意义。从而知道:像0.1 、0.25 0.365这样表示十分之几、百分之几、千分之几的数,叫做小数。(并出示课题:小数的意义。)

  【设计意图】通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。 第四个环节,巩固拓展,应用概念

  我设计两个层次的练习,第一个“自主练习1”,这是练习十进分数与小数的关系,进一步理解小数的意义,通过完成练习,了解学生对小数意义的理解情况。

  第二个是“自主练习2”,借助学具巩固小数的意义,学生用不同的方法表示出每个小数的意义,关注学生对小数意义的掌握情况。

  【设计意图】自主练习题的设计,是为了让学生巩固今天所学的内容,将新学习的知识点都适当的安排习题,可以检测学生当堂学习的效果。

  四、课堂总结

  谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  [设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

  为直观,简单,适合全班同学完成。

  自主练习12题

  这是思考题,对今天学习知识的实际应用,可以让感兴趣的同学进行练习。

小数的意义教案 8

  一、教学目标

  (一)知识与技能

  在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。

  (二)过程与方法

  在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。

  (三)情感态度和价值观

  在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。

  二、教学重难点

  教学重点:理解小数的意义,理解小数的计数单位及它们间的进率。

  教学难点:理解小数的计数单位及它们间的进率。

  三、教学准备

  米尺、彩带、磁条。

  四、教学过程

  (一)创设情境,导入新课

  1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度是多少?

  2.你们估计得对不对呢?让我们一起用直尺来验证一下。

  3.谁愿意把你测量的结果告诉大家?

  学生汇报预设:

  学生1:我测量课桌面的长度是120厘米。

  学生2:我测量课桌面的长度是1米2分米。

  教师:课桌的长度如果以米为单位就是1.2米。

  (1)在生活中,人们进行测量和计算时,往往不能正好得到整数的'结果。这时常用小数表示。

  (2)认识小数吗?在哪儿见过小数?今天我们一起学习小数的意义。

  【设计意图】联系生活实际提出问题,让学生通过动手操作,在实际测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必要性。

小数的意义教案 9

  (一)教学目标

  1.能体会分米、厘米、毫米的含义,建立相应的长度观念 。

  2.记住这些单位之间的进率。

  3.能估计一 些较短物体的长度。

  4.会量较短物体的长度。

  (二)教学重点与难点

  1.教学重点:理解1分米、1厘米、1毫米的实际含义。

  2.教学难点:建立分米、厘米、毫米的具体观念。

  (三)教学准备

  1.教具准备:实物投影仪、米尺、透明塑料尺、壹分硬币 、两支铅笔。

  2.学具准备:每人学生尺一把、壹分硬币一枚、线一根、长铁钉一枚。

  (四)教学过程

  1.搭好桥梁。

  (1)小朋友,想知道一个人有多高,黑板有多长,数学书本 又有多宽,可采用什么方法?(用尺量)

  (2)你怎么想到要用尺量呢?(尺上有刻度)

  (3)出示米尺:小朋友比划一下一米大约有多长?

  (4)估计:黑板大约有多长?教师实际量一量,得黑板长3米多。

  多的`部分不到1米,究竟是多少?我们需要用比米小的单位来帮忙。

  2.实践操作。

  (1)认识厘米。

  ①实物投影仪上放上塑料尺,请学生观察,从“0”刻度线 到标有“1”刻度线之间的长度就是1厘米。(板书:厘米cm)

  ②学生在自己的尺上找1厘米的长度(手指宽,橡皮厚,1分 硬币的最大宽……),并用尺比量一量。

  ③量一量:铁钉有多长?(3cm)

  ④出示两支铅笔,一支10厘米,一支1厘米多一些,估计这两支铅笔大约有几个厘米长。

  (2)认识分米。

  ①这支铅笔长10厘米,还可以叫做1分米长(板书:分米dm) ,所以1分米=()厘米。

  ②同上,学生在尺上找1分米的长度,找身边的物品长(宽) 大约是1分米的物品,可实际去量一量。(衬衣两纽扣之间、手掌宽……)

  ③在米尺上数一数,1米有几分米?也就是几个10厘米。1分米=10厘米,那么1米=()厘米。

  ④想一想:1米、1分米、1厘米有多长?

  小游戏:伯;说我比划,即同桌1人说1米(或1分米、1厘米) ,另一人马上用手比划出来。

  (3)认识毫米。

  ①还有一支铅笔为1厘米多一些,究竟是多少长呢?我们需要认识更小的长度单位——毫米(板书:毫米一)

  ②1毫米用手难以比划·了,我们就用铅笔芯来点吧。

  ③长度是1毫米的物品很难找吧?(1分硬币的厚度,数学练习簿的厚度……)

  ④猜一猜,再在尺子-上数一数()毫米=1厘米,

  3.归纳运用。

  (1)今天我们学习了什么单位?(长度单位)(完成课题 )

  你会给这些单位从大到小排排队吗?

  你知道它们之间有什么关系吗?(进率)

  (2)看看课本上是这样说的吗?(课本第85-86页)

  (3)练一练:课本第87页“练一练”1、2、3。(先观察,估计一下各物品的长度,再测量)

  (4)练一练:课本第87页“练一练”4、5、6。(其中6为同桌 合作题)

  (5)拿出线,同桌合作量一量是多少长?(1米2分米,4厘米6 毫米)

小数的意义教案 10

  教学内容:教科书第76页的例1、例2,第76页做一做中的题目和练习十八的第1-2题。

  教学目的:

  1、使学生理解小数加、减法的意义,初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  2、培养学生的迁移类推的能力。

  教学重点:初步掌握计算法则,能够比较熟练地笔算小数加、减法。

  教学难点:培养学生的迁移类推的能力。

  教学过程

  一、复习

  1.少先队采集中草药。第一小队采集了1250克,第二小队采集了986克.两个小队一共采集了多少克?

  让学生先解答,再说一说整数加法的意义和计算法则。

  2.笔算。

  4.67+2.5=6.03+8.47=8.41-0.75=

  让学生列竖式计算,指名说一说自已是怎样算的,并注意检查学生竖式的书写格式是否正确。

  二、学习新知

  1、学习例1。

  (1)通过旧知识引出新课.

  教师再出示一次复习的第l题,把已知条件和问题稍作改动,变成例1让学生读题;理解题意。

  (2)引导学生比较整数加法和小数加法的意义。

  教师:例1与复习中的第1题有什么相同的.地方?例1应该用什么方法计算?为什么要用加法算?

  引导学生通过比较说出从复习的第1题可以看出整数加法的意义是把两个数合并成一个数的运算,从例1可以看出小数加法的意义和整数加法的意义相同,也是把两个数合并成一个数的运算。因为要把两个小队采集中草药的千克数合起来,所以要用加法计算.

  (3)引导学生理解小数点对齐的道理。

  教师板书横式以后,让学生说一说怎样写竖式,并提出以下问题进行讨论

  (1)为什么要把小数点对齐?

  (2)整数加法应该怎样算?

  然后让学生计算,算完后接着讨论:

  (3)得数7.810末尾的0怎样处理?能不能去掉?为什么能去掉?

  2.让学生做第76页做一做中的题目。

  让学生独立做,教师巡视,检查学生是否把小数点对齐了,最后集体订正。

  3.引导学生比较小数加法和整数加法的计算法则。

  教师:小数加法与整数加法在计算上有什么相同的地方?启发学生说出小数加法和整数加法都要把相同数位上的数对齐,小数加法只要把小数点对齐就能使相同数位对齐。

  4.学习例2。

  (1)引导学生通过比较得出小数减法的意义。

  教师:例2的条件和问题与例1比有什么变化?例2的数量关系是什么?启发学生说出例2是已知两个小队采集中药材的总数和第一小队采集的千克数,求第二小队采集的千克数;

  可以看出小数减法也是已知两个加数的和与其中的一个加数;求另一个加数的运算,所以它的意义与整数减法的意义是相同的。

  (2)利用知识迁移使学生理解小数点对齐的算理。

  让学生联系小数加法小数点对齐的算理,说一说小数减法小数点为什么要对齐。

  然后教师把千克数改写成克数并列出竖式,提问:个位上是几减几?接着让学生看小数减法竖式,提问:被减数千分位上没有数计算时怎么办?利用小数的性质使学生理解被减数千分位上没有数可以添0再减,也可以不写0,把这一位看作0来计算,以后在计算时遇到这种情况也可以这样处理。接着让学生计算,教师巡视,检查学生小数点是否对齐,被减数千分位的处理是否正确,得数的小数点点得是否正确。

  5.比较小数减法与整数减法的计算法则。

  让学生讨论小数减法与整数减法在计算上有什么相同的地方。使学生明确这和小数加法与整数加法在计算上的关系是一样的。

  6、小结。

  教师:通过学习上面的知识,小数加法和小数减法的计算法则有什么共同的地方?启发学生说出小数加减法计算时都要把小数点对齐(也就是相同数位上的数对齐),都要从最低位算起。然后教师把小数加减法的计算法则完整地说一说。并让学生看书上的法则,齐读一遍。

  7、做第78页最上面做一做中的题目。

  订正时,让学生说一说是怎样计算并验算的。

  三、巩固练习

  做练习十八的第1-2题。

  1.做第1题,教师先说明题意,要根据加法算式来写减法算式的得数,不用再列式计算。学生做完之后,可以提问:你是根据什么来写减得的差的?使学生加深对小数减法的意义和加减法关系的认识。

  2.做第2题,让学生独立做,可以要求学生验算。教师巡视,进行个别辅导。订正时,针对学生易出错的地方重点说一说。

  板书设计:小数的加法和减法

  例1:少先队采集中草药,第一小队采集了3.735千克,第二小队采集了

  4.075千克,两个小队一共采集了多少千克?

  3.735+4.075=7.81(千克)

  答:一共采集了7.81千克。

  例2:少先队采集中草药,两个小队一共采集了7.81千克。第一小队采集了3.735千克,第二小队采集多少千克?

  7.81-3.735=4.075(千克)

  答:第二小队采集了4.075千克。

小数的意义教案 11

  教材位置

  人教版九义教材六年制小学第八册教科书第111——112页的例1及相应“做一做”和练习二十六第1题。

  教学目的

  1、使学生理解小数加法的意义,初步掌握计算法则,能够较熟练地笔算小数加法。

  2、培养学生的迁移、类推能力。

  3、渗透数学“来源于生活,又运用于生活”。

  教具准备

  多媒体课件。

  学具准备

  草稿纸若干

  教学重点

  相同数位对齐

  教学难点

  小数点对齐

  教学方法

  探究式学习法

  学情分析

  学生已对多位数笔算方法有较深的认识及熟练准确的计算,对小数的数位也在上一章节有明确的认识,只是在“怎样才能尽快地使小数的相同数位对齐”这一观念上需要摸索、比较,得到明确的认识,形成计算小数加法的能力。

  学生在整数加法的`计算法则中已有相当的了解,并对其重要性已有较深的认识。

  整数加法笔算时是先将个位对齐以达到相同数位对齐的目的,小数则应抓住小数的特征,将小数点对齐来达到相同数位对齐的要求。

  学生在整数加法的基础上,通过类比推理,将知识迁移,很容易理解。

  教学过程

  一、复习。

  1、谁的竖式最漂亮,计算更准确。

  4235+5478 3251+438

  7621+37543 4320+317

  小组内完成后,讨论下列问题。

  1列竖式时要注意什么?怎样列竖式更快捷?

  2计算时要注意什么?

  2、整数加法的意义是什么?它的计算法则是什么?

  二、激趣导入。

  1、提问:夏天到了,你最喜欢吃什么水果?

  2、听故事,做数学。

  明明和妈妈到自选商场买西瓜。妈妈选了一个小一点的瓜,在电子称上一称,是3735克。明明选了一个大一点,有4075克。你能算出他们一共买了多少西瓜吗?

  3、抽一生列式板演,全班齐练。

  4、继续听,继续算。

  后来,他们到收银台,可收银台阿姨的称量数据却发生了变化,上面全是以“千克”为单位的,你能说出他们西瓜的重量吗?

  你还会求出他们一共重多少千克吗?

  5、揭示课题:

  小数加法的意义和计算法则

  三、新授。

  1、小数加法的意义。

  同整数加法一样,都是把两个数合并成一个数的运算。

  2、小数加法的计算法则。

  刚才有的同学说会,现在各小组一齐完成竖式计算并讨论以下问题:

  (1)小数与整数比较,有什么特征?

  复习整数加法的计算,让学生进一步巩固相同数位对齐的认识。

  为小数加法的意义和法则的类推作理论铺垫。

  设问起疑,引起学生的兴趣,提高学生的注意力。

  体现数学来源于生活,生活中到处存在数学问题。

  进一步复习巩固单位换算的知识,为引出课题作准备。

  类比推理的运用,训练学生知识迁移能力。

  (2)列竖式时注意:整数先将个位对齐,小数应先将什么对齐,以达到相同数位对齐的

  目的?

  (3)小数计算后,结果末尾是“0”应怎么办?它的理论依据是什么?

  3、指导看书P111。

  4、试练。

  完成P111做一做并回答问题。

  四、延伸拓展。

  1、你会用两种方法计算吗?

  1元8角7分+3角2分

  7角6分+3元4角4分

  2、听故事,列算式:

  小玲到商场买来3米2分米绳子,付了1元9角2分钱,后来发现不够,小丽又去买了2.8米,付了1元6角8分。一共买了多少绳子?付了多少钱?

  五、巩固训练。

  4235+5748 37251+438

  4.235+5.748 3.7251+4.38

  42.35+5.748 37.251+4.38

  4.235+57.48 372.51+4.38

  六、板书设计。

  小数加法的意义和计算法则

  3 7 3 5克 3. 7 3 5千克

  + 4 0 7 5克 + 4. 0 7 5千克

  7 8 1 07. 8 1 0千克

  7810克=7.81千克 3.735+4.075=7.81(千克)

  在完成小数的意义的推理以后,让学生思考小数加法法则向整数加法法则的类推。

  初步学会对加法法则的运用。

  加深学生对整数加法和小数加法法则的理解及综合运用知识的能力。

  训练学生分类整理知识的能力,体现出运用知识解决生活中实际问题的观念。

  加深对计算法则的理解,能运用法则准确计算。

小数的意义教案 12

  设计说明

  本节课是第一单元的起始课,是在学生学习了分数的基础上进行教学的,所以要特别重视学生在新知的学习中运用已有知识经验,使学生经历独立思考、自主探究的过程,并将已有知识经验迁移到新知的学习中。因此,本节课在教学设计上有以下特点:

  1.注重学生已有的知识经验。

  在本节课的教学过程中,教师利用元、角、分和米、分米、厘米的现实情境,启发学生从多个角度通过解释1.11元、1.11米是什么意思,认识到0.1与,0.01与是同一个数的不同形式,为探究小数的意义奠定了基础。

  2.给学生创设自主探究的空间。

  本节课创设了让学生借助米尺探究小数意义的活动,并让学生通过独立思考、合作交流,认识一位小数表示十分之几,两位小数表示百分之几……充分调动学生学习的积极性。课堂上,学生通过观察、思考,认识一位小数表示十分之几;通过猜测、验证,认识两位小数表示百分之几;通过思考、交流,发现三位小数表示千分之几……直至总结概括出小数的意义,学生在自主探究与合作中经历了知识的形成过程,同时在这个过程中锻炼和提高了各方面的能力。

  课前准备

  教师准备 PPT课件 正方形纸

  学生准备 正方形纸 水彩笔 直尺

  注:本书“上课解决方案”中的“备教学目标”“备重点难点”见前面的“备课解决方案”。

  教学过程

  ⊙创设情境,导入新课

  1.出示一些商品价格标签,让学生说说商品的单价。(课件出示商品的价格标签)

  2.谈话引入。

  同学们都能正确地读出这些商品的标价,这是因为我们在三年级时学习了“元、角、分和小数”,一些商品的标价用元作单位时,要用小数表示。那除了商品的标价可以用小数表示外,你们还在哪些地方见过小数?

  预设 生1:测量身高时,我的身高是1.42米。

  生2:跳远比赛时,我的成绩是2.1米。

  ……

  3.过渡:生活中有很多小数,教材中也举了一些例子,请同学们翻到教材2页,自己读一读。这些小数到底表示什么呢?我们一起来学习一下。

  设计意图:从学生熟悉的'商品的价格引入小数,既激发了学生的学习兴趣,又调动了学生学习的积极性,同时也为学习新知做好铺垫。

  ⊙动手操作,自主探究

  活动:探究小数的意义。

  1.做一做,说一说。

  (1)课件出示教材附页1中的图片,根据所给的图片做一做,说一说,1.11元和1.11米分别是什么意思?(学生以小组为单位,合作学习)

  (2)全班交流:1.11元是1元1角1分,1角是1元的,也可以写成0.1元,1分是1元的,也可以写成0.01元。

  1.11米是1米1分米1厘米,1分米是1米的,也可以写成0.1米,1厘米是1米的,也可以写成0.01米。

  2.画一画,涂一涂。

  (1)(出示一张正方形纸)引导学生操作:用一张正方形纸表示“1”,把这张正方形纸平均分成10份,将其中的1份涂色,并想一想涂色部分用分数怎样表示。

  (学生展示操作成果并汇报)

  师:我们把这张正方形纸看成“1”,平均分成10份,涂色部分用分数表示是,用小数表示是0.1。0.1表示把“1”平均分成10份,取其中的1份。比较一下“1”和“0.1”的大小,“1”里面有几个“0.1”?

  预设 生:1比0.1大,1里面有10个0.1。

  (2)引导学生讨论:如果把其中的3份涂上颜色,用分数怎样表示?小数呢?

  ①学生先独立思考,然后独立完成。

  ②汇报交流。

小数的意义教案 13

  教学目标:

  1、结合具体情境,体会生活中存在着大量的小数。

  2、通过实际操作,体会小数与十进制分数的关系,了解小数的意义,知道小数部分各数位名称的意义,会正确读写小数。

  3、结合具体情境,体会生活中存在着大量的小数。

  基本教学过程:

  一、生活中的小数

  谈话引入:新的学期开始了。同学们又长大一岁了。今年是——20xx年。你们多大了?板书出数据。总结出“整数”。生活中除了碰到这些整数,我们还会碰到——小数。你在哪里遇到过小数?说一说。

  二、小数的意义

  1、阅读书上P2的生活中的小数。(了解学生对小数读法掌握情况)

  2、学生试着解释这些小数的意义。(初步感知小数的意义。)

  3、一同探究小数意义。从长度单位“米”来研究小数产生的必要性。用1米的尺子来测量物体的长度有诸多不便。有时不足1米,因此我们可以把1米怎么样?——平均分成10份,每一份也就是1分米。如果测量更小的物体,1分米的单位长度还是大了,我们还可以继续将1分米平均分成10份……这时小数就产生了。

  4、结合刚才长度的线段图,分上、下板书出十分之一,一百分之一;0.1,0.01。再让学生观察、分类。上层的数都是什么数。(分数)这些分数都可以直接写成相应的'小数形式。观察这些分数都有什么共同的特征:分母都是10、100、1000……

  5、观察这些小数和分数,你有什么发现?

  6、我们在写整数时都可以按照数位顺序表来写,小数可不可以呢?看P4的计数器。了解数位顺序。明确十分位、百分位、千分位上的各数表示什么。边想边填。

  三、运用拓展

  1、 出示一个正方形,这个正方形是1,请你表示0.01可以吗?小组讨论一下,你打算怎么样表示?为什么?

  2、完成试一试。注意学生的读、写小数。

  3、完成练一练。

  教学反思:

  1、整数和整十数、整百数学生不明确。因此,虽然教材上没有整数这个概念出现,但要提一提,对理解小数意义有帮助。

  2、对于17/1000,3/1000,409/1000学生容易出错。因此,在理解小数意义时,可以进一步引导学生观察、总结:1/10可以写成0.1,一位小数。小数点后面有一位数。1/100写成0.01,是两位小数……。

小数的意义教案 14

  教学目标

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义.

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  (三)培养学生的观察、分析、推理能力.

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点.

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(——)元=( )元

  (2)3角=(——)元=( )元

  (3)9分=(——)元=( )元

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数.(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外,在量屋子的高度时,它不够整米时,以米作单位也常用小数表示.

  2.教学小数的意义.

  (1)利用旧知识继续研究.

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1

  是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示.

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺.提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是

  3分米是多少米?用分数、小数怎样表示?

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示.

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把1米平均分成100份,1份是1厘米,写

  怎样把7厘米写成以米作单位的分数和小数?

  启发学生想:15厘米怎样写成以米作单位的分数和小数? 经小组

  第一位写1.所以15厘米是0.15米.

  明确把1米平均分成100份,一份或几份都可以用两位小数表示.

  ③把1米平均分成1000份,1份在尺子上是多少?(1毫米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001.

  9毫米、63毫米以米作单位写成小数分别是多少米?

  63毫米是0.063米.

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数.

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成IO00份,1份或几份可以用三位小数表示……)

  (3)启发学生概括小数的意义.

  启发性提问:

  ①上面例子都是把1米平均分成多少份?(10份,100份,1000份)

  ②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之几,千分之几)

  所以相邻两个单位间的'进率也是10.

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数.

  小数的计数单位是十分之一、百分之一、千分之—……,分别写作0.1,0.01,0.001…等.

  阅读课本:95页结论.

  反馈:95页“做一做”.

  订正时说明意义,计数单位.

  (4)强化概念.

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题.

  2.填空(投影).

  3.判断下面各题是否正确?为什么?

  (四)作业

  练习二十第1~3题.

  课堂教学设计说明

  学生在第七册中已初步学习了小数,本节课使学生进一步明确了小数的产生,理解小数的意义,小数与分数的联系,小数的计数单位,从而对小数概念有更清楚的认识.

  教学小数的意义分两段进行.

  第一段,理解小数的意义,分两个层次.第一层利用日常生活实例和学生已有的知识经验,引导学生认识小数;第二层引导学生观察米尺的刻度,把1米平均分成10份、100份、1000份……,其中的1份或几份用一位小数,两位小数、三位小数……表示,使学生对小数的认识深入一步.

  第二段:抽象概括、明确小数的意义.

  通过一系列的启发提问,引导学生概括出小数的本质特征,使学生进一步掌握分数、小数的联系及其所表示的意义,掌握小数的计数单位及相邻单位间的进率.

  练习设计围绕重点,巩固概念,并针对易错、易混题,让学生在正误对比中加深对知识的理解,同时达到提高学生思维能力的目的.

  板书设计

  小数的意义

  1米=10分米

  =100厘米

  =1000毫米

  把1米平均分成10份,每份长1分米.

  把1米平均分成100份,每份长1厘米.

  把1米平均分成1000份,每份长1毫米.

  一位小数表示十分之几,计数单位是0.1

  两位小数表示百分之几,计数单位是0.01

  三位小数表示千分之几,计数单位是0.001

  相邻两个计数单位间的进率都是10.

小数的意义教案 15

  教学目标:

  1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

  2.经历探索小数意义的过程,培养归纳能力。

  3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

  教学重难点:理解小数的意义和小数的计数单位。

  教具准备:米尺、课件。

  教学过程:

  一、回顾导入

  1.读一读信息(课件出示)想一想,这样写符合实际吗?

  (1)老师的体重是565千克。

  (2)小明的身高是145米。

  (3)笑笑的数学测验成绩是935分。

  2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?

  3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。

  二、探索新知识

  1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?

  指名测量,其他同学观看。

  2.汇报测量结果。

  3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。

  4.出示米尺图。

  上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?

  5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?

  十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

  6.出示米尺。

  指着板书:有什么新发现?学生汇报。

  7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

  让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。

  学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。

  8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

  小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

  进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。

  三、巩固练习

  第一层练习:分数小数互化。

  第二层练习。

  1.填空

  (1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。

  (2)1里面有( )个0.1和( )个0.01。

  (3)0.52是由( )个0.1和( )个0.01组成的。

  2.判断:

  (1)0.8是把1个整体平均分成10份,表示这样的`8份。 ( )

  (2)1毫米写成小数是0.01米。 ( )

  第三层练习: 猜数游戏。

  小明和小红的数各是多少?

  四、总结

  师生共同回顾本节课内容。

  反思:

  “小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。

  小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。

  在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。

  引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。

  最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。

  反思这节课,也有一些地方预设的不够充分:

  1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。

  2.练习量较大,没有考虑学生实际。

  “课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

【小数的意义教案 】相关文章:

《小数的意义》的教案02-17

小数的意义教案12-05

《小数的意义》教案01-23

小数的意义教案【精】02-23

小数的意义教案【热】02-23

小数的意义教案【荐】02-21

【荐】小数的意义教案02-18

【热】小数的意义教案02-18

【热门】小数的意义教案02-21

【推荐】小数的意义教案02-22