分数除法教案

时间:2024-09-27 02:15:45 教案 我要投稿

分数除法教案汇编15篇

  作为一位优秀的人民教师,可能需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。快来参考教案是怎么写的吧!下面是小编整理的分数除法教案,仅供参考,欢迎大家阅读。

分数除法教案汇编15篇

分数除法教案1

  教学目标:

  1、通过本课的复习使学生能很好的掌握本单元所学的知识,能很好的掌握分数乘除法的应用题。

  2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

  重难点:

  1、通过本课的复习使学生能很好的掌握本单元所学的知识,能很好的掌握分数乘除法的应用题。

  2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

  教学过程:

  一、复习提问

  1、我们如何来解答分数分数应用题的?

  2、解答分数应用题的解题的步骤是怎么样的?

  请学生进行回答。

  二、练习

  1、讲解分析对比题

  1)、甲数是30,是乙数的2/3,乙数是多少?

  分析:

  哪个是单位1的量?

  数量关系式是怎么样的?

  乙数×2/3=甲数

  判断:单位1的量有没有直接告诉我?

  我们选择用什么方法

  请学生独立的做,做好以后再请学生进行板演。

  2)、甲数是30,乙数是甲数的2/3,乙数是多少?

  分析:

  哪个是单位1的量?

  数量关系式是怎么样的?

  甲数×2/3=乙数

  判断:单位1的量有没有直接告诉我们?

  我们选择用什么方法

  请学生独立的做,做好以后再请学生进行板演。

  比较:这两题有什么相同和不同的地方?

  2、对比练习

  1)轿车每小时行120千米,卡车的速度是轿车的3/4,卡车每小时行多少千米?

  2)轿车每小时比卡车多行30千米,如果轿车的速度比卡车快1/3,那么卡车每小时行多少千米?

  3)卡车每小时行90千米,是轿车速度的3/4,轿车每小时行多少千米?

  请学生独立的做,做好以后再请学生进行板演,并说说是怎样想的。

  3、探索和实践

  1、做66页第8题

  引导学生联系分数的意义或通过画图进一步体会分数除法计算方法的合理性。

  2、做66页第9题

  题中提供的条件较多,涉及了倍比和单价、数量和总价,所以有一定的挑战性。

  请学生先进行尝试做,做好了以后请学生再和老师一起进行研究分析。

  4、根据算式补充条件

  学校买来5/8吨水泥,(),买来黄沙多少吨?

  1、5/8+3/8补充条件:()

  2、5/8-3/8补充条件:()

  3、5/8×3/8补充条件:()

  4、5/8÷3/8补充条件:()

  请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

  5、让学生进行评价和反思。

  反思本单元学习过程中的表现,说说自己学习中的体会及存在的问题,说说自己学会了什么,还有什么疑问。

  三、作业

  课前思考:

  潘老师设计的整理与复习练习,思路清晰,条理清楚,并且补充了相应的练习,让学生在对比中进一步认识分数两种类型应用题的联系与区别,设计的根据算式补条件与问题练习,更促使学生灵活掌握两种应用题的本质特点。

  是否还可增加练习的数量与密度?

  补充练习:

  一、先说出数量关系式,再判断解答方法。(安排在对比练习后)

  1、一条公路全长20xx千米,已经修好了2/5,已经修好了多少千米?

  2、六1班有20个女生,正好是男生人数的4/5,六1班男生有多少人?

  3、李明家8月份用电30千瓦时,9月份比8月份少用了1/10,9月份比8月份少用电多少千瓦时?

  4、果园里有200棵桃树,梨树的棵树是桃树的3/4,果园里有多少棵桃树?桃树的棵树是橘树的5/3,果园里有多少棵橘树?

  二、请你自己编一题生活中分数问题,先说给同学听题目,再将你的解答方法与同桌交流。(安排在评价与反思前)

  课后反思:

  通过对比题的讲解,学生对解决有关分数的实际问题有了一定的进步。对于第9题,由于题中的条件较多,而且还涉及到单价、数量和总价的数量关系,所以在讲解时先让学生根据关键句分别说出数量关系,并且可以求出哪一个量,再根据单价、数量和总价的关系,求各买了什么水果,使学生加深对用分数表示数量关系的理解。

  “评价与反思”引导学生对本单元的学习情况进行实事求是的评价,激励学生增强学好数学的信心。

  课前思考:

  综合两位老师的教学设计,我想这一课时的教学内容比较丰富了。单元练习课既要帮助学习困难生复习整理本单元的数学知识,又要使优秀学生在原有基础上有所提高。考虑到我所任教的两个班中都有几位学生的数学学得较出色,所以想再增加两道有挑战性的题目,让他们动动脑。

  补充如下题目:

  1、一辆电动玩具坦克,因为电池快耗尽,所以每分钟行的'距离都占前1分钟所行距离的4/5。开动后,这辆坦克第5分钟所行的距离是8米,求它开动后第1分钟所行的距离。

  2、南京举办一场明星演唱会,原定每张票价450元,组委会考虑到市场因素,决定降价。结果观众比计划增加了两倍,收入增加了2/3。每张门票降价多少元?

  课后反思:

  1、今天的练习课,教材上的内容比较少,我和潘老师针对学生掌握实际情况,补充了一些练习。确实,平时的练习课,要经常补充一些拓展性练习,发展学生思维。

  2、在昨天的练习中,学生已初步感知用列方程解的方法与列除法算式直接解答之间的联系。在今天的练习中,我要求学生用这两种解答方法进行巩固,并引导学生比较这两种解答方法的优劣,让学生体会到用方程解比较容易理解,用分数除法直接解答书写比较简便。允许学生在熟练掌握数量关系的基础上可直接用除法解答,但和学生约法三章:如果部分学生还没有熟练掌握分数应用题,解答方法弄错的话,那么订正时要求先用方程解订正,再用分数除法订正。

  3、书上第9题确实有一定难度,提供的信息多了,解答的步骤多了。幸亏刚才在上面让学生掌握巩固分数除法解答的方法,如果用方程解,学生的困难就更大了。

  4、孙老师补充的拓展题,我将利用自习课让学生尝试练习,这题容分数应用题与倒推思想为1题,综合性、趣味性很强。

  课后反思:

  今天的复习课主要是进行分数乘、除法实际问题的综合练习,重点是复习解题思路,尤其是数量关系式的分析。课上,我先组织学生练习教材第66页的第4题,即三道有关工作总量、工作效率与工作时间的实际问题。由于题中出现的两个信息都是分数,这给学生分析题目造成了一定的困扰,而且本题的数量关系也较抽象,学生理解起来也有些难度。我在教学中也遇到了高教导谈到的问题,在课中,我想到学生以前学过的行程问题和购物问题中的数量关系,请学生联系前面学习的内容来理解,并且指出理解其中一个,如:工作效率×工作时间=工作总量,然后遇到具体问题,再具体分析求哪一个量,可以怎样计算。

  从今天课堂上的学习看,对于数量关系的分析仍是不少学生的最大问题。由于不理解题中的关键句就造成不会分析数量关系,最后就导致错误列式。反思前面的教学,可能在这方面还存在一些问题,所以现在问题就反映出来了。我想在学习第二单元时,还要在回家作业中布置有关分数乘、除法的练习,这样不至于让学生因长时间不接触这一部分内容而造成遗忘。

分数除法教案2

  教学内容:

  教材第29~30页“分数除法(三)”。

  教学目标:

  1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题的重要模型。

  2.在解方程中,巩固分数除法的'计算方法。

  教学重难点:

  1.能够体会方程是解决实际问题的重要模型。

  2.能够用方程解决实际问题。

  教学过程:

  一、创设情景激趣揭题

  1.出示课外活动情况图问:从图中,你们能获得哪些数学信息呢?

  2.引入并板书课题。

  二、扶放结合探究新知

  1.根据这些数学信息,你能提出哪些数学问题?

  2.引导学生逐一解答提出的问题。

  3.重点引导:跳绳的有6人,是操场上参加总人数的2/9,操场上有多少人?该怎样解答?

  4.引导观察,找出有什么相同点和不同点?

  三、反馈矫正落实双基

  1.指导完成P29的试一试的1,2题。

  2.你能根据方程

  X×1/5=30

  编一道应用题吗?

  3.请你想一个问题情景,遍一道分数应用题。

  四、小结评价布置预习

  1.引导小结

  通过本节课的学习你有哪些收获?

  2.布置预习

  整理前面所学知识。

  板书设计:

  分数除法(三)

  跳绳的小朋友有6人,是操场上参加活动总人数的2/9,操场上有多少人参加活动?

  参加活动总人数×2/9=跳绳的人数

  解:设操场有X人参加活动。

分数除法教案3

  教学目标

  1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.

  2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.

  教学重点

  理解分数乘、除法应用题的异同点,会正确解答.

  教学难点

  能正确解答分数乘、除法应用题.

  教学过程

  一、复习引新

  (一)下面各题中应该把哪个数量看作单位“1”?

  1.花手绢的块数是白手绢的

  2.白手绢块数的 正好是花手绢的块数.

  3.花手绢的块数相当于白手绢的

  4.白手绢块数的 倍相当于花手绢的块数

  (二)教师提问

  1.求一个数是另一个数的的几分之几用什么方法?

  2.求一个数的几分之几是多少用什么方法?

  3.已知一个数的几分之几是多少,求这个数,用什么方法?

  (三)谈话导入

  为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.

  二、讲授新课

  (一)教学例3

  1.课件演示:分数除法应用题

  2.比较.

  (1)我们把这三道题放在一起比较,它们有什么相同点?

  相同点:三个数量是相同的;需要找准单位“1”来分析.

  (2)它们有什么区别呢?

  不同点:已知和所求不同;解题方法不同.

  3.小结:分数应用题主要有以上三类:

  (1)求一个数是另一个数的几分之几.

  (2)求一个数的几分之几是多少.

  (3)已知一个数的几分之几是多少求这个数.

  4.解答分数应用题的方法是什么?

  抓住分率句;找准单位“1”;画图来分析;列式不必急.

  三、巩固练习

  (一)应用题

  1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

  (1)学生独立分析列式

  (2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.

  2.学校有故事书36本,是科技书的 ,科技书有多少本?

  3.学校有故事书36本,科技书是故事书的 ,科技书有多少本?

  (二)补充条件并列式解答.

  一条路长15千米,修了全长的 ,_________________?

  (三)选择正确答案

  1.修一条长240千米的公路,修了 ,修了多少千米?

  2.修一条长240千米的'公路,已经修了150千米,修了的占全长的几分之几?

  240× 240÷ 150÷240 240÷150

  (四)思考题

  有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?

  四、课堂小结

  这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?

  五、课后作业

  (一)解答下面各题

  1.六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?

  2.六一班有学生45人,女生占 .女生有多少人?

  3.六一班有男生25人,占全班的 .全班共有学生多少人?

  (二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?

  (三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?

  六、板书设计

  分数乘除法对比练习

  1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

  4÷12=

  2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?

  12× =4(只)

  3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?

  4÷ =12(只)

  教案点评:

  本教学设计把三类应用题放在一起进行教学,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。巩固练习形式多样,使学生的思维得到进一步发展。

分数除法教案4

  教学目标

  使学生掌握分数除法和加减法混合运算的运算顺序,能正确地进行运算,并能具体情况采用合理的'计算方法,提高学生四则计算的能力。

  教学重难点

  运算顺序,简便运算。

  教学准备

  教学过程设计

  教学内容

  师生活动

  备注

  一、复习引新

  二、教学新课

  三、

  四、作业

  1、说说下面各题的运算顺序。

  8÷2+9÷318÷(12-3)

  2、引入新课

  1、教学例1

  这道题要先算什么,再算什么?

  上下练习。

  引导观察计算过程,说明递等式书写的规范过程,并说明理由。

  2、组织练习。

  练一练1

  说顺序后练习。

  3、例2

  说运算顺序,这里除法的两步按照计算法则要怎样算?

  观察转化成乘法后的算式,想一想,是不是可以简便运算?

  上下用简便算法。

  问:用了什么运算定律?

  4、练习;

  练一练2

  这里除一个数要怎样算?

  用简便算法。

  说说各运用了什么运算定律,是怎样算的?

  说说运算顺序,要注意什么?

  练习111~3、4、5

  课后感受

  混合运算学生做起来很简单,只是在简便运算上还要注意灵活运用。

分数除法教案5

  教学目标:

  1、运用所学知识解决一些生活中的实际问题。

  2、加强列方程的思维训练。

  3、培养学生分析问题解决问题的能力。

  教学过程:备注

  活动一:复习与准备

  1、爸爸的体重75千克,小明的体重是爸爸的`7/15。

  (1)、小明的体重是多少千克?

  (2)、小明体内水份的质量占小明体重的4/5,小明体内有多少千克水份?

  (3)让学生说出数量关系并列式计算

  活动二:出示例1

  1、与复习题比较有什么不同?

  2、要求小明的体重应该知道什么条件?为什么?

  3、以知小明体内有水份28千克,要求小明的体重,需用到哪个数量关系?

  4、学生自己列式计算

  5、与复习题比较有什么相同点和不同点?你发现了什么?

  小结:(略)

  1、要求学生自己做第二问

  (1)、要求画图分析

  (2)、与第一问比有什么不同?

  (3)、根据什么等量关系列方程?

  小结:

  活动三:巩固练习

  1、38页做一做

  2、40页1、2

  板书设计

分数除法教案6

  学习目标:

  1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

  2 .掌握一个数除以分数的计算方法,并能正确进行计算。

  学习重点:理解一个数除以分数的意义和基本算理。

  学习难点:运用分数除法的'计算方法解决实际问题。

  学习内容:

  一、分一分

  有4张同样的圆形纸片。

  (1)每2张一份,可以分成多少份?

  画一画:

  列示:

  (2)每1张一份,可以分成多少份?

  画一画:

  列示:

  (3)每1/2张一份,可以分成多少份?

  画一画:

  列示:

  (4)每1/3张一份,可以分成多少份?

  画一画:

  列示:

  (5)每1/4张一份,可以分成多少份?

  画一画:

  列示:

  二、画一画

  1.有1根2米长的绳子。

  (1)截成每段长1/3米,可以截成几段?

  画一画:

  列示:

  (2)截成每段长2/3米,可以截成几段?

  画一画:

  列示:

  2.3/4里面有几个1/8?

  画一画:

  列示:

  三、填一填,想一想

  在〇里填上“>”“<”或“=”。

  4÷1/2〇4×2 4÷1/3〇4×3 4÷1/4〇4×4

  2÷1/3〇2×3 2÷2/3〇2×3/2 3/4÷1/8〇 ×8

  你发现了什么?( )

  四、试一试

  8÷6/7 5/12÷3

  你能把“除以一个整数(零除外),等于乘这个整数的倒数。”和“除以一个分数,等于乘这个分数的倒数。”这两句画合并成一句话吗?

  ( )

分数除法教案7

  【教学内容】

  【教学目标】

  知识目标:

  体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  能力目标:

  培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  【教学重点】整数除以分数的计算法则推导过程。

  【教学难点】理解一个数除以分数的计算法则的推导过程,

  【教学过程】

  一、创设情境导入新课

  唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

  二、自主探究合作交流

  1、小组活动

  (1)出示教材27页“分一分”的第(1)、(2)题

  学生拿出准备好的圆片代表饼,动手分一分。

  每2张一份,可以分成多少份?4÷2=2(份)

  每1张一份,可以分成多少份?4÷1=4(份)

  师:每1/2张一份,可以分成多少份?

  学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

  师:每1/4张一份,可以分成多少份?

  学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

  4÷1/4=16(份)

  (1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

  (2)学生独立完成教材28页“填一填”“想一想”

  师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

  生:一个数除以分数等于乘这个分数的倒数。

  1、学生独立完成28页的“试一试”。

  集体反馈,同桌之间订正。

  师:通过刚才的计算你发现了什么?

  生:一个数除以一个数(零除外)等于乘这个数的倒数。

  三、课堂练习,巩固运用

  书本练一练

  四、课堂小结畅谈收获

  聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

  (学生谈收获)

  【板书设计】

  整数除以分数

  a÷=a×(b、c≠0)

  【教学反思】

  本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的`意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

  第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

  第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

  第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

  第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

分数除法教案8

  【晒课说明】这是笔者在我校省级骨干教师献课活动中的一节示范课,这节课受到了听课老师们的高度评价和赞美,本课以本班学生的人数为原料,把学生们的最爱“串串烧”引入课堂教学,设计非常巧妙、新颖、别致。又根据口味的不同,练习设计层层推进有梯度,让学生经历三次制作“串串烧”的过程(编一步、两步、三步计算的应用题),一次次吊起学生的胃口,在交流碰撞中高潮迭起,学生的思维真正被激活了,一直处于兴奋和积极状态下,课堂异常活跃,学生的参与面广,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。这节课的“串串烧”学生不但吃香了,我们听课的老师们也吃香了,印象深刻,不易忘记。就连学校请来录课的摄影师说,我录过的数学课很多,还没有听过这么好的有趣的数学课,如果我小时候能遇到这么好的老师讲课,我的数学也能学好。笔者想:既然有这么高的评价,我何不整理出来,让更多的老师们来分享。(此教学设计在20xx年全省中小学教育优秀论文、教学设计评选活动中荣获一等奖。)

  【教学内容】

  人教版六年级数学上册分数乘除法应用题。

  【教材及学情分析】

  本节课主要将学生学过的分数乘除法应用题集中编排,通过学生编题、解题,让学生经历三个层次的练习,进一步理解分数乘除法的意义,让学生进一步掌握分数乘除法应用题的结构特点和数量关系,提高解决问题的能力。

  【教学重点、难点】

  学生通过自己编题,解题,进一步理解并掌握分数乘除法应用题的结构特点和数量关系。

  【教学目标】

  1、通过学生编题、解题,进一步理解分数乘除法的意义。

  2、使学生进一步理解并掌握分数乘除法应用题的结构特点和数量关系,提高解决实际问题的能力。

  3、让学生感受数学和实际生活的紧密联系,培养学生学习数学的兴趣。

  【教具准备】

  电子白板、PPT

  【复习程序】

  一、导入新课

  师:同学们你们知道今天这么多的老师来听我们班的什么课(数学课)既然是来听我们的数学课,我们就要拿数来说事了。请同学们给在座的老师们介绍一下我们班的人数情况,共有多少人?女生多数人?男生多少人?(根据学生的介绍出示课件:我们班共有75人女生30人,男生45人)(设计意图:本班人数是学生们最熟悉的啦,所以同学们争先恐后的向听课的老师们介绍本班人数,一下子和听课的老师们拉近了距离,消除了同学们的陌生感,课堂气氛马上活跃了。)

  二、建构关系

  师:同学们刚才我们只是向老师们用75、30、45三个数介绍了我们班的人数情况,对我们六年级的学生来说这种介绍是不是太过于简单了,不是我们六年级学生应有的水平,请拿出你们的真水平和高水平。运用所学的分数给以上三种量中的任意两种量之间建立关系做进一步的介绍。(根据学生介绍,老师整理如下)出示课件

  学生介绍如下:

  女生占全班的2/5

  男生占全班的3/5

  女生占男生的2/3

  男生占女生的3/2

  女生比男生少1/3

  男生比女生多1/2

  女生比全班少3/5

  男生比全班少2/5

  ……

  (设计意图:引导学生用分数给三种数量中的任意两个量建立关系做进一步介绍,学生兴趣盎然,都想极力表现自己,使自己的介绍更为精彩和清楚。在同学们你一言我一句的介绍中,一长串的有关数量之间的分数关系跃然纸上,成为了本节课的珍贵的教学资源。)

  三、自主探究提高能力

  师:同学们通过你们这么精彩的介绍,我想在座的老师们已经对我们班的人数有了进一步的了解,这两组数据多像好看又好吃的“串串烧”,同学们喜欢吃“串串烧”吗?老师也和你们一样喜欢吃“串串烧”。“串串烧”有各种口味的,第一组数据是原汁原味的,这组就叫“原味串串烧”,第二组数据是我们加了佐料做出来的,就叫“香味串串烧”吧,同学们是不是觉得光吃这两串还不过瘾,(是)那我们再给它加点佐料辣椒粉,来串“微辣串串烧”怎么样?(好)请大家听制作要求,用这两组数据为原料,老师再给你们提供三个问题,女生有多少人?男生有多少人?全班有多少人?

  (一)(微辣串串烧)编一步计算的分数乘除法应用题,并分析解答。

  学生编题如下:

  全班共有75人,女生占全班的2/5,,女生有多少人?

  全班共有75人,男生占全班的3/5,男生有多少人?

  女生有30人,女生占全班的2/5,全班有多少人?

  男生有45人,男生占全班的3/5,全班有多少人?

  女生有30人,男生占女生的3/2,男生有多少人?

  男生有45人,女生占男生的2/3,女生有多少人?

  男生有45人,男生占女生的3/2,女生有多少人?

  ……

  (设计意图:教师把这一长串的分数关系比作“串串烧”,把同学们的最爱“串串烧”引入课堂,同学们想吃“串串烧”吗?同学们正馋的流口水,异口同声说“想吃”。这时教师不失时机请同学们以这两组数据为原料,自己亲自动手制作“微辣串串烧”,既一步计算的分数应用题,一下子吊起了学生的胃口,同学们积极性会异常高涨。)

  师:同学们编的真多,分析解答的也真好,你们解答这类应用题的妙招是什么?

  生:第一步先找准单位“1”,第二步看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或用方程解答。

  (设计意图:编题、分析解答之后,都让学生及时总结制作、分析、解答这类题的绝招、法宝是什么?第一步:找单位“1”,第二步:看单位“1”是已知的,用乘法计算,单位“1”是未知的用除法计算或用方程解答。及时总结解题方法。)

  师:同学们我来评价一下你们的这串“微辣串串烧”行吗?香味有余,但辣味不足。我们能不能再给它加点辣椒粉,来串“中辣串串烧”过过瘾。(行)请听制作要求,继续以这两组数据为材料。

  (二)(中辣串串烧)编两步计算的分数乘除法应用题,并分析解答。

  学生编题如下:

  全班共有75人,男生占全班的3/5,女生有多少人?

  女生有30人,女生占男生的2/3,全班有多少人?

  女生有30人,男生占女生的3/2,全班有多少人?

  男生有45人,女生占男生的2/3,全班有多少人?

  男生有45人,男生占女生的3/2,全班有多少人?

  女生有30人,女生比男生少1/3,男生有多少人?

  女生有30人,男生比女生多1/2,男生有多少人?

  全班共有75人,女生占全班的'2/5,男生有多少人?

  男生有45人,女生比男生少1/3,女生有多少人?

  男生有45人,男生比女生多1/2,女生有多少人?

  ……

  师:同学们你们解答这类应用题的绝招又是什么?

  生:第一步仍找准单位“1”,第二步看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或方程解答。

  师:有一部分同学口味重,吃着这串“中辣串串烧”觉得还是不过瘾,还想挑战一下,来串“特辣串串烧”过过瘾好吗?请听制作要求,仍一这两组数据为材料。

  (设计意图:逐层递进,通过制作“中辣串串烧”,既编两步计算的分数乘除法应用题,这样我们学过的两步计算的各种类型的分数乘除法应用题跃然纸上,供同学们解答,为学生的创新思维提供了丰富的习题情境。)

  (三)(特辣串串烧)编三步计算的分数乘除法应用题并分析解答。

  学生编题如下:

  全班共有75人,女生比全班少3/5,男生有多少人?

  全班共有75人,男生比全班少2/5,女生有多少人?

  女生有30人,女生比男生少1/3,全班有多少人?

  女生有30人,男生比女生多1/2,全班有多少人?

  男生有45人,女生比男生少1/3,全班有多少人?

  男生有45人,男生比女生多1/2,全班有多少人?

  女生有30人,女生比全班少3/5,男生有多少人?

  男生有45人,男生比全班少2/5,女生有多少人?

  ……

  (设计意图:再一次吊起学生的胃口,通过同学们制作“特辣串串烧”把课堂推向高潮,真正激活学生的思维,这样学生的参与面广,覆盖较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。)

  归纳:不管是哪种口味的“串串烧”,制作、分析、解答的妙招和法宝都是先找单位“1”,然后看单位“1”是已知的用乘法计算,单位“1”是未知的用除法计算或用方程解答。

  四、全课总结

  1、同学们今天我们以什么样的方法复习了分数应用题?这节课你有什么收获?同时出示课题:复习分数乘除法应用题。

  2、一步、两步、三步计算的分数乘除法有共同的解题策略吗?

  3、你对今天这节课自己的表现还满意吗?自我评价一下

  4、还有什么问题或困惑吗?

  (设计意图:培养学生学习新知识后要及时地总结学习方法和解题策略的意识,让学生会对自己的表现进行自我评价,而且培养学生提问题的能力和意识。克服教师作学生代言人,让学生真正成为课堂的主人。)

  板书设计:

  复习分数乘除法应用题

  解题策略

  1、找准单位“1”

  2、单位“1”是已知的,用乘法计算

  3、单位“1”是未知的,用除法计算

  【反思】

  课始给听课的老师们介绍本班人数引入复习内容,然后又引导学生用分数给三种数量中的任意两个量建立关系做进一步介绍,学生兴趣盎然,都想极力表现自己,使自己的介绍更为精彩和清楚。在同学们你一言我一句的介绍中,一长串的有关数量之间的分数关系跃然纸上,成为了本节课的珍贵的教学资源。也为学生的创新思维提供了丰富的习题情境。

  然后教师把这一长串的分数关系比作“串串烧”,把同学们的最爱“串串烧”引入课堂,一下子吊起了学生的胃口,同学们还想吃“串串烧”吗?同学们正馋的流口水,异口同声说“想吃”。这时教师不失时机请同学们以这两组数据为原料,自己亲自动手制作“微辣串串烧”,“中辣串串烧”,“特辣串串烧”。抛出了三个思维空间广阔的、层层推进的问题,将学生已有的知识储备激活,对自己所学的分散、零乱、细碎的知识点,结成知识链,形成知识网,对认知结构实行精加工,自然而然地实现编题和解题策略的最优化。提高学生的发散思维能力和创新能力。让学生自主探索,学生始终处于兴奋状态,大家一次次跃跃欲试,学习积极性异常高涨。学生根据分数应用题的特点和题目中的数量关系,灵活选择条件和问题,各种口味的“串串烧”被同学们制作出来了,并顺利分析解答完毕。

  每次编题、分析解答之后,都让学生及时总结制作、分析、解答这类题的绝招、法宝是什么?第一步:找单位“1”,第二步:看单位“1”是已知的,用乘法计算,单位“1”是未知的用除法计算或用方程解答。

  这样的复习方法,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大,练习设计层层推进有梯度,让学生经历三次制作“串串烧”的过程,一次次吊起学生的胃口,在交流碰撞中高潮迭起,学生的思维真正被激活了,一直处于兴奋和积极状态下,课堂异常活跃,学生的参与面广,覆盖了较多的知识面,涉及了分数应用题较多的题型,练习容量大。并能及时总结学法,让学生牢固掌握分析解答分数应用题的妙招和法宝。这节课的“串串烧”学生不但吃香了,而且印象深刻,不易忘记。这样一节课下来,真是“你有我有全都有。”人人都有收获,优等生得到了施展,中等生得到了锻炼,后进生得到了提高。实现了互相学习、取长补短、共同提高的目的。

分数除法教案9

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。

  教学目标:

  使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个

  数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

  教学重点:

  列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。

  教学难点:

  理解列方程解决简单分数实际问题的思路。

  教学过程:

  一、导入

  1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

  出示:小瓶的果汁是大瓶的。

  这句话表示什么?你能说出等量关系式吗?

  如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

  如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

  2、揭示课题:简单的`分数除法应用题

  二、教学例5

  1、出示例5,学生读题。

  提问:你想怎么解决这个问题?

  2、讨论交流:你是怎么想、怎么算的?

  (1)用除法计算。

  引导讨论:为什么可以用除法计算?依据是什么?

  (2)用方程解答。

  讨论:用方程解答是怎么想的,依据是什么?

  让学生在教材中完成解方程的过程,并指名板演。

  3、引导检验:900是不是原方程的解呢,怎么检验?

  交流检验的方法。

  4、教学“试一试”

  (1)出示题目,让学生读题理解题目意思。

  (2)讨论:这里中的两个分数分别表示什么意思?

  这题中的数量关系式是什么?

  (3)这题可以怎么解答,自己独立完成,并指名板演。

  (4)交流:你是怎么解决这个问题的?

  4、小结。

  三、练习

  1、做“练一练”。

  各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

  2、做练习十二第1题。

  (1)读题,画出题目中的关键句。

  (2)学生说题意

  (3)引导学生说出并在书上写出数量关系式。

  (4)独立解答,并指名板演。

  (5)集体评议并校正。

  3、做练一练第2题。

  启发:你是怎样分析数量关系的?为什么要列方程解答?

  3、小结解题策略。

  四、作业:练习十二第1、3、4题。

  板书设计:(略)

分数除法教案10

  教学目标:

  1、使学生掌握分数乘加、乘减除加、除减混合运算的顺序,能正确地进行计算。

  2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。

  3、运用分数乘除法的相关定律解决实际问题。

  教学重点:熟练掌握运算定律,灵活、准确地进行简便计算,运用分数乘除法解决实际问题。

  教学难点:运用分数乘除法的相关定律解决实际问题。

  温故案

  一、知识要点:分数乘除法、倒数、比。

  1、分数乘法的意义:(1)分数乘整数,就是求几个相同 的 的 运算。

  (2)一个数(整数或分数)乘分数,就是求 的 是多少。

  2、分数除法的意义:分数除法的意义与整数除法的意义 ,就是已知两个因数的 和其中一个 ,求另一个 的运算。

  3、分数乘法的计算(分数和整数相乘、分数乘分数)。

  因为整数都可以看成分母是1的分数,所以分数乘法的计算方法是用 相乘的积作 ,用

  相乘的积作 ,能约分的要先 ,然后再计算。

  4、分数除法的计算(分数除以整数、一个数除以分数)。

  在分数除法中,除以一个不等于0的数,等于乘以这个数的 。

  5、运用乘法运算定律进行分数的简便运算:分数乘法中进行分数的简便运算时经常要用到的运算定律有 。

  6、分数四则混合运算:(1)乘除混合运算的,遇到除以一个数,就转化成 这个数的

  然后采用一次约分的方法计算。(2)四则混合运算的,按先 后 的运算顺序进行计算,有括号的,先算 ,再算 。

  7、倒数的意义和求倒数的方法: 互为倒数;求一个数(0除外)的倒数,只要把这个数的分子和分母 。注意:1的倒数是 ,0有倒数吗?

  8、比的意义和基本性质:两个数 又叫做两个数的比。在两个数的比中,比号前面的数叫做比的 ,比号后面的数叫做比的 ,两者相除多得的商叫做 。比的前项和后项同时 或 相同的.数, 不变,这叫做比的基本性质。

  9、比和分数、除法的关系。

  比前项比号后项比值

  除法

  分数

  巩固案

  二、跟踪练习

  (一)填空题:

  1、40分=( )小时 3/5千米=( )米 23×( )=1 1.5和( )互为倒数。

  2、 ( )∶8=1.2∶( )=0.75=( )÷6=( )折=( )成

  3、把一根4米长的绳子平均分成5段,每段长( )米,每段占全长的( )。

  4、把盐和水按1∶19的比例配成盐水,盐占盐水的( )(填分数)

  5、一根钢材长6米,若用去1/2米,还剩( )米;若用去它的1/2,还剩( )米。

  6、甲数是乙数的1.6倍,那么甲数和乙数的比是( )∶( )。

  7、从甲地到乙地,客车要行4小时,货车要行5小时,客车和货车的速度比是( )∶( )。

  8、一个数的2/3是24,这个数的5/6是( )。

  (二)判断题:

  1、1米的1/2 和3米的1/2 一样长。( )

  2、两个分数相除,商一定大于被除数。( )

  3、如果a÷b=4 ,b就是a的4倍.( )

  4、把10克糖放入100克水中,糖占糖水的10%。( )

  5、王芳看一本200页的童话书,第一天看了全书的1/5,第二天应从40页看起。( )

  (三)计算:

  2×3/4= 3/8×6= 3/10×2/3= 7/25×15/14= 6/13÷4= 5/7÷5/2=

  30-1.6÷4/15= 3/5×1/2+3/5÷1/2= 1/5÷6/25-7/2×2/8= (0.75-3/16) ÷(2/9+1/3)=

  (四)列式计算:

  1、8的2/7与5/7的8倍的和是多少? 2、18的5/27减去3/7是多少?

  3、2/3与5/12的和的6/7是多少? 4、42的6/7与21的1/3的和是多少?

  (五)简单应用:

  1、有一个长方形的花坛,长是3/4米,宽是长的2/3,这个花坛的宽是多少米?面积是多少?

  2、李叔叔录入论文,3小时录了这篇论文的1/3,照这样的速度工作8小时,可以录入这篇论文的几分之几?

  3、一共有240千克水果糖,每袋装1/4千克,才装完了3/4,他们已经装完了多少袋?

  知新案

  1、某鞋店进来皮鞋600双。第一周卖出总数的 15 ,第二周卖出总数的 38 。

  ⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?

  2、六年级同学给灾区的小朋友捐款。六一班捐了500元,六二班捐的是六一班的45 ,六三班捐的是六二班的 98 。六三班捐款多少元?

  3、一件西服原价180元,现在的价格比原来降低了15 ,现在的价格是多少元?

  4、希望小学三年级有学生216人,四年级的人数比三年级多 29 ,四年级有学生多少人?

分数除法教案11

  一、教学内容:分数与除法,教材第65、66页例1和例2

  二、教学目标:1.使学生理解两个整数相除的商可以用分数来表示。

  2.使学生掌握分数与除法的关系。

  三、重点难点:1.理解、归纳分数与除法的关系。

  2.用除法的意义理解分数的意义。

  四、教具准备:圆片、多媒体课件。

  五、教学过程

  (一)复习

  把6块饼平均分给2个同学,每人几块?板书:6÷2=3(块)

  (二)导入

  (2)把1块饼平均分给2个同学,每人几块?板书:1÷2=0.5(块)

  (三)教学实施

  1.学习教材第65 页的例1 。

  (1)如果把1块饼平均分给3个同学,每人又该得到几块呢?1÷3=0.3(块)

  (2)1除以3除不尽,结果除了用循环小数,还可以用什么表示?

  通过练习,激活了学生原有的知识经验,(即两个数相除的商有可能是整数)也有可能是小数。进而提出当1÷3得不到一个有限的小数时,又该如何表示?这一问题激发了学生探索的积极性,创设解决问题的情境,研究分数与除法的关系。

  ( 3)指名让学生把思路告诉大家。

  就是把1块饼看成单位“1”,把单位“1”平均分成三份,表示这样一份的数,可以用分数来表示,这一份就是块。

  老师根据学生回答。(板书:1 ÷ 3 =块)

  (4)如果取了其中的两份,就是拿了多少块?(块)怎样看出来的?

  通过这样的练习,为下面的操作打下基础。

  2.观察上面三道算式结果得出:两数相除,结果不仅可以用整数、小数来表示,还可以用分数来表示。引出课题:分数与除法

  3.学习例2 。

  ( 1 )如果把3 块饼平均分给4个同学,每人分得多少块?(板书:3 ÷ 4)( 2 )3 ÷ 4 的计算结果用分数表示是多少?请同学们用圆片分一分。

  老师:根据题意,我们可以把什么看作单位“1 " ? (把3 块饼看作单位“1”。)把它平均分成4 份,每份是多少,你想怎样分?请同学到投影前演示分的过程。

  通过演示发现学生有两种分法。

  方法一:可以1个1个地分,先把1 块饼平均分成4 份,得到4 个,3 个饼共得到12个, 平均分给4 个学生。每个学生分得3个,合在一起是块饼。

  方法二:可以把3 块饼叠在一起,再平均分成4 份,拿出其中的一份,拼在一起就得到块饼,所以每人分得块。

  讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)

  两种分法都强调分得了多少块饼,让学生初步体会了分数的另一种含义,即表示具体的数量。借助学具,深化研究。

  ( 3 )加深理解。(课件演示)

  老师:块饼表示什么意思:

  ①把3块饼一块一块的分,每人每次分得块,分了3次,共分得了3个块,就是块。

  ②把3块饼叠在一块分,分了一次,每人分得3块,就是块。

  现在不看单位名称,再来说说表示什么意思?( 表示把单位“1 “平均分成4 份,表示这样3 份的数;还可以表示把3 平均分成4份,表示这样一份的数。)

  ( 4 )巩固理解

  ① 如果把2块饼平均分给3个人,每人应该分得多少块? 2÷3=(块)

  ②刚才大家都是拿学具亲自操作的,如果不借助学具,你能想像出5块饼平均分给8个人,每人分多少块吗?(生说数理)

  ③从刚才的研究分析,你能直接计算7÷9的结果吗?()

  借助学具分饼、想象分的过程、抛开情境给出除法算式三个环节的呈现层次清楚,逻辑性强,为学生概括分数与除法的关系提供了足够的操作经验。

  4.归纳分数与除法的关系。

  ( l )观察讨论。

  请学生观察1÷3 = (块)3÷4 =(块)讨论除法和分数有怎样的'关系?

  学生充分讨论后,老师引导学生归纳出:可以用分数表示整数除法的商,用除数作分母,被除数作分子,除号相当于分数中的分数线。(课件出示表格)

  用文字表示是:被除数÷除数=

  老师讲述:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  ( 2 )思考。

  在被除数÷除数=这个算式中,要注意什么问题?(除数不能是零,分数的分母也不能是零。)

  ( 3 )用字母表示分数与除法的关系。

  老师:如果用字母a 、b 分别表示被除数和除数,那么除数与分数之间的关系怎样表示呢?

  老师依据学生的总结板书:a÷b = (b≠0)

  明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除法,分母相当于除数。)

  5.巩固练习:

  (1)口答:

  ①7÷13= =( )÷( ) ( )÷24= 9÷9= 0.5÷3= n÷m=(m≠0)

  ②1米的等于3米的( )

  ③把2米的绳子平均分3段,每段占全长的 ( ),每段长( )米。

  解释0.5÷3= 是可以用分数形式表示出来的,但这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数。

  (2)明辨是非

  ①一堆苹果分成10份,每份是这堆苹果的 ( )

  ②1米的与3米的一样长。( )

  ③一根木料平均锯成3段,平均每锯一次的时间是所用的总时间的。( )

  ④把45个作业本平均分给15个同学,每个同学分得45本的 。()(3)动脑筋想一想

  ①把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  ②小明用45分钟走了3千米,平均每分钟走了多少千米?每千米需要多少时间?

  教学反思:

  教材分析:本节课是在学生学习了分数的产生和意义的基础上教学的,教学分数的产生时,平均分的过程往往不能得到整数的结果,要用分数来表示,已初步涉及到分数与除法的关系;教学分数的意义时,把一个物体或一个整体平均分成若干份,也蕴涵着分数与除法的关系,但是都没有明确提出来,在学生理解了分数的意义之后,教学分数与除法的关系,使学生初步知道两个整数相除,不论被除数小于、等于、大于除数,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲假分数与分数的基本性质打下基础。

  设计意图:

  1.直观演示是学生理解分数与除法的关系的前提:由于学生在学习分数的意义时已经对把一个物体平均分比较熟悉,所以本节课教学把一张饼平均分给3个人时并没有让学生操作,而是计算机演示分的过程,让学生理解1张饼的就是张。3张饼平均分给4个人,每人分多少张饼,是本节课教学的重点,也是难点。教师提供学具让学生充分操作,体验两种分法的含义,重点在如何理解3张饼的就是张。把2张饼平均分给3个人,每人应该分得多少张?继续让学生操作,丰富对2张饼的就是张饼的理解。学生操作经验的积累有效地突破了本节课的难点。

  2.培养学生提出问题的意识与能力是培养学生创新精神:本节课围绕两种分法精心设计了具有思考性的、合乎逻辑的问题串,“逼”学生进行有序的思考,从而进一步提出有价值的问题。

  3.注重了知识的系统性:数学知识不是孤立的,而是密切联系的,只有把知识放在一个完整的系统中,学生的研究才是有意义的。比如学生在应用分数与除法的关系练习时对0.5÷3=,部分学生会觉着的=表示方法是不行的,教师解释:这种分数形式平时并不常见,随着今后的学习,大家就能把它转化成常见的分数形式。

分数除法教案12

  1、理解分数与除法的关系;会用分数来表示两数相除的商;会进行简单的问题解决;

  2、引导学生参与探索分数与除法关系的全过程,注意结合分数的意义,进行分析。

  理解分数与除法的转换,理解一个数是另一个数的N/N的关系

  小组合作探究、操作法

  例题放大图,学生自备彩色笔

  一课时

  一、复习与导入

  1、回顾。

  什么叫分数?举例说明。

  分数单位是什么?举例说明。

  3/4吨的分数单位是()吨,它包含有()个这样的单位。()个1/5米是4/5米;3/4千克是3个()千克。

  2、导入

  A、计算下列各题的商:

  15÷3 24÷6 3÷21

  B、口答出商;15÷3=5 ;24÷6=4;3÷21得不到整数的商,也除不尽;如果用循环小数表示循环节的数字也不简单,怎么办呢?引出课题。

  二、探究与发现

  (一)引进生活情境,激活旧知

  1、少先队五年级大队准备在周末举办一联欢会。舞台前面的边长为4米,把它平均分成5份,便于摆花贫。每份的长度会是多少米?

  这个问题交给我们班的同学帮助策划解决。还是以小组为单位,请各组同学把方法和相应的结果都考虑一下。

  2、学生小组活动,师巡,了解并采集相关信息。

  3、交流汇总。

  4÷5=4/5(米)

  (二)议一议,进一步发现规律

  1、观察书上22页填表

  让学生独立完成,说明发现了什么?

  2、汇报交流

  3、同桌互相交流关系

  4、练习

  (1) 3÷9=()/() 1÷6=()/()

  (2)()÷()=4/7 3÷21=()/()

  (三)两数间的商的又一种关系。

  1、示例3的情境图(放大挂图)

  学生观察这幅图给我们提供了哪些信息?

  2只兔 ;4只鸡;3只鸭。

  根据提供的信息,我们能不能从中找出它们之间的'相互关系,当然我们今天主要是考虑商的关系。

  学生可能会从量的多少去发现,师注意把重点转移到商的关系方向上来,现进行提取板书:

  (1)兔的只数是鸭的几分之几? 2÷3=2/3

  (2)鸡的只数是鸭的几分之几? 4÷3=4/3

  还能再提问吗?

  学生继续提问

  2、分析与感悟

  我们可以继续提出很多问题,但仅从以上的各个问题中,我们可以体会到什么?(把感觉集中到数量关系上来)

  从生的从多交流中取得共识:求一个数的几分之几与求一个数是另一个数的几倍一样,都是用除法。

  一个数÷另一个数(结果转化为分数形式N/N)

  三、全课总结

  这节课我们共同探讨了什么问题?有什么新收获?

  概括关键词:关系------几分之几

  四、作业

  4、5、6、9

分数除法教案13

  【学习目标】

  1、能利用计算法则,正确、迅速地进行分数除法的计算。

  2、培养自己的语言表达能力和抽象概括能力。

  3、养成良好的计算习惯。

  【学习重难点】

  1、重点是抽象概括出分数除法的计算法则。

  2、难点是利用法则正确、迅速地进行计算,并能解决一些实际问题。

  【学习过程】

  一、复习

  1、列式,说清数量关系。

  小明2小时走了6 km,平均每小时走多少千米?____________________________

  速度=路程÷时间

  2、计算:151×4 ×3 ×2 ×6 971215

  8352÷4 ÷3 ÷2 ÷6 9765

  二、探索新知

  1、阅读例题3主题图及题目,要“比较谁走的快”可以比较他们的什么?如何列式?

  2、探究2÷

  (1)“2的`算法 32小时走了2 km,估一估1小时走多少千米? 3

  (2) 动手画线段图表示已知条件与问题的关系。

  1小时走的路程,再将线段平均分成3份,其中2份

  表示的就是2小时走的路程。 3

  (3) 结合线段图,思考:要求小明的速度,第一步可以先算什么?第二步再算什么?

  2要怎样计算?它把除法转化成什么?怎样转化? 3

  55553、计算例3第二个算式÷,想一想÷可以转化成什么? 612612(4) 结合解题思路,思考2÷

  4、通过上面的2道计算题,你发现了什么?你会用自己的方式表示下你发现的规律吗?

  ______________________________________________________________

  三、知识应用:独立完成P31“做一做”的第1、2题。(组长检查核对,提出质疑。)

  四、层级训练:巩固训练:练习八第4、5、6题;拓展提高:练习八第7、8、9题。

  五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法教案14

  教学目标

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学工具

  多媒体课件,圆形纸片,剪刀

  教学过程

  一、创设情境,导入新课,

  师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

  1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:8÷4=2(个)

  2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:1÷4=

  二、动手操作,探索新知

  1、探索一个物体平均分,体会分数与除法的关系。

  (1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

  生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

  (2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

  生独立思考并回答。

  全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

  2、探索多个物体平均分,体会分数与除法的关系。

  师:把3个蛋糕平均分给4个人,每人分得多少个?

  师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

  (1)充分交流、展示学生的`想法与做法(可能出现以下几种情况)。

  方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

  方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

  (2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

  (3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

  (4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

  学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

  3、总结概括分数与除法之间的关系。

  1÷4=(个)3÷4=(个)

  5÷7=(个)3÷5=(个)

  师:观察黑板上的这些算式,你发现了什么?

  三、观察算式,概括分数与除法的关系。

  (1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

  (2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

  师强调:相当于

  (3)师:请每个同学看着这些算式说一说分数与除法的关系。

  (师板书):被除数÷除数=被除数/除数

  提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

  生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

  (4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

  讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

  师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

  小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

  三、练习巩固应用

  1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

  2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

  把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  四、全课小结今天这堂课你有什么收获?还有什么问题吗?

分数除法教案15

  教材分析

  这节课是在学习了“已知一个数的几分之几是多少,求这个数”的分数应用题的基础上,根据稍复杂的求一个数的几分之几是多少的分数应用题的数量关系,使学生掌握解题思路,学会用方程解答。根据新旧知识的联系,抓住了数量关系相同,通过复习题的分析解答,让学生找出熟悉的数量关系,再把题进行改动变化。在边画图、边分析的.过程中,沟通了知识间的联系,便于学生理解和思维,促进了学生分析思维能力的发展和综合运用知识灵活解决实际问题的能力。

  学情分析

  在已经学习了,已知一个数的几分之几是多少,求这个数是多少的问题的基础上,六年级学生能在一定的基础之上去拓展,去学习更新的知识。

  教学目标

  逆向思维,能根据具体的数量和分率,求出单位“1”的量。通过教学, 使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地用方程解答一些简单的实际问题。

  教学重点和难点

  1、 能确定单位“1”,理清题中的数量关系。

  2、利用题中的等量关系用方程解答。

  教学过程

  一、1、苹果的重量是X千克,梨的重量比苹果多5千克 。

  ⑴、梨的重量比苹果多了( )千克。

  ⑵、梨的重量是( )千克。

  2、钢笔X元,比毛笔少了3元 。

  ⑴、钢笔比毛笔少了( )元。

  ⑵、毛笔是( )元。

  3、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授课

  1、教学补充例题:水果店运来了一些苹果,已经卖了36千克 ,还剩下20千克,水果店运来了多少苹果?

  (1)卖了 是什么意思?应该把哪个数量看作单位“1”?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:运来苹果的重量-卖了的重量=剩下的重量

  (4)指名列出方程。解:设运来苹果X千克。

  x-36=20

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的 (1+)

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。

  解:设航模小组有人。

  (1+)=25

  =25÷

  =20

  答:略。

  三、小结

  1、今天学习了两道应用题,找出它们的共同点?(这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

【分数除法教案】相关文章:

分数与除法教案01-19

分数除法教案11-17

分数与除法的教案03-05

《分数除法》教案02-23

有关分数除法教案01-01

分数除法教案范文06-14

分数与除法教案15篇01-19

分数与除法教案(15篇)01-19

分数除法教案(15篇)01-15

分数除法教案15篇01-14