小数的意义教案

时间:2024-10-10 19:29:37 教案 我要投稿

小数的意义教案(精选15篇)

  作为一名优秀的教育工作者,常常需要准备教案,借助教案可以更好地组织教学活动。那么优秀的教案是什么样的呢?以下是小编为大家整理的小数的意义教案,仅供参考,希望能够帮助到大家。

小数的意义教案(精选15篇)

小数的意义教案1

  教材分析

  本单元内容包括小数的意义和读写法,小数的性质和小数的大小比较,小数点位置移动引起小数大小的变化,小数和复名数的相互改写、求一个小数的近似数和把较大的数改写成用“万”、“亿”作单位的数。

  小数的意义是本单元的一个重点。这里教材把认数范围扩展到三位小数,加强了小数与分数的联系,使学生明确小数表示的书分母是10、100、10000……的分数,了解小数的记数单位以及单位间的进率,从而清楚地了解小数为什么可以仿照整数的写法。小数的性质也很重要。学生知道小数末尾添0、去0不改变小数的大小,就加深了对小数的理解。它还是小数四则计算的基础。应用它可以对小数进行化简,也可以根据具体运算的需要,在小数末尾添上0或者把整数改写成小数的形式。小数大小的比较也有助于加深学生对小数意义的`理解。小数的性质已经涉及到小数大小的比较问题,但只是说明在什么情况下两个小数相等的。小数点位置的移动引起小数大小的变化是小数的又一性质。它是进行小数乘除法计算的基础,同时也是学习小数和复名数相互改写的基础。小数和复名数的相互改写以及求小数的近似数在实际中有广泛的应用,其中把较大的数改写成用“万”、“亿”作单位的数是本单元所学的几部分知识的综合应用。

  学情分析

  这部分内容是学生在学生熟练地掌握了整数的四则运算,以及在四年级上学期学习了分数的初步认识的基础上进行教学的。这部分内容是学生系统学习小数的开始。通过这部分内容的学习,使学生进一步理解小数的意义和性质,为今后学习小数的四则运算打好基础。学生在学习小数和复名数的相互改写时,需要综合运用前面学过的计量单位和进率、小数的性质、小数点位置的移动引起小数大小的变化等知识,因此要求学生逐一扎实地学习。求一个数的近似数和把一个数改写成用“万”、“亿”作单位的数容易混淆,需注意区别。

  教学要求

  1、使学生理解小数的意义,认识小数的记数单位,会读、写小数,会比较小数的大小。

  2、使学生掌握小数的性质和小数点位置移动引起小数大小变化的规律。

  3、使学生会进行小数和十进复名数的相互改写。

  4、使学生能够根据要求会用“四舍五入法”保留一定的小数数位,求出小数的近似数,并能把较大的数改写成用万或亿作单位的小数。

  教学重点:小数的意义和小数点移动引起小数大小变化的规律。

  教学难点:小数和复名数的相互改写。

  教学关键:正确理解小数的意义及小数和复名数的相互改写。

小数的意义教案2

  教学目标:

  1.通过测量活动,进一步理解小数的意义,体会小数在生活中的实际应用。

  2.会进行单名数和复名数单位之间的换算。

  3.体会小数与分数之间的关系,会进行互化。

  4.通过动手操作,培养学生合作学习的能力,养成良好的学习习惯。

  教学重点:

  通过探索单位换算的过程,进一步体会小数的意义。

  教学难点:

  把单名数化成复名数。

  教学准备:

  多媒体课件。

  课时:

  课时一

  教学过程:

  一、导入:

  师:(课件展示教材第4页上面的图)同学们好,咱们一起来看看这位小朋友在做什么?(学生小声议论:可能是在测量黑板的长度吧?)仔细观察一下,你知道这位小朋友量出的黑板长度是多少少吗?

  生:学生边观察边交流。师板书课题。

  设计意图在观察过程中让学生收集数据,探讨并理解几分米或几厘米换算成以“米”作单位应怎样表示,鼓励学生想出不同的表示方法。

  二、探讨与交流:

  1、学生汇报:黑板长2米,又多出36厘米。

  师:这些数有什么地方不一样吗?

  生:数的单位不一样。

  师:单位不同,计量起来不方便,那咱们该如何解决这个问题呢?

  生:把这些数据的单位换算成统一的。

  师:你认为换算成哪个单位来计量更合适呢?

  生:我觉得换算写成以“米”为单位比较合适(也有同学说换算成以“分米”为单位比较合适)。

  师:那咱们一起来讨论一下如何用“米”来表示黑板的长度吧。

  2、活动要求:

  (1)要求学生分组讨论把以“厘米”作单位的数换算成以“米”作单位的数应该怎样操作。可以使用不同的方法。

  (2)汇报结果:鼓励学生用自己的语言说出自己的想法。

  生:因为1米=100厘米,把1米平均分成100份,36厘米就是36份,就是100(36)米,如果用小数表示就是0.36米。所以黑板的长度就可以表示为2.36米。

  师:(归纳)把1米平均分成10份,1份或几份可以用一位小数表示;

  把1米平均分成100份,1份或几份可以用两位小数表示······

  (1)一位小数表示十分之几;

  (2)两位小数表示百分之几。

设计意图:进一步使学生掌握以“分米”“厘米”作单位的数换算成以“米”作单位的数,可以用小数表示。

  三、探讨与延伸

  师:刚才咱们学习了长度单位的一种表示方法,那么,鹌鹑蛋和鸵鸟蛋的质量又如何表示呢?(师出示图片课件,生思考回答)

  生:可以用克与千克来表示。

  师:称量质量较小的物体一般用克作单位,称量质量较大的物体一般用千克作单位。那么如何用千克来表示鹌鹑蛋和鸵鸟蛋的质量呢?

  生1:鹌鹑蛋的质量是12克= 1000(12)千克=0.012千克。

  生2:鸵鸟蛋的质量是先把500克用千克表示出来再加上原来的的1千克。500克=1000(500)千克=0.5千克,鸵鸟蛋重0.5千克+1千克=1.5千克。

  师:(归纳)把1千克平均分成1000份,1份或几份可以用三位小数表示,也就是说三位小数表示千分之几。同学们通过思考,懂得了用小数表示物体的质量,大家表现得都很好。用小数表示物体的`质量在生活中的应用很广泛,所以,大家都应该熟练掌握。

  设计意图:结合情境图,让学生明白由低级单位数化成高级单位数的方法,培养学生的分析能力和合作学习能力。

  四、生活与应用:

  师:为了能更好的熟悉低级单位和高级单位数之间的互化,咱们现在做个活动,前后位的同学相互合作,通过目视估算出对方的身高和体重。

  活动要求:

  1、目测估算出的结果要尽可能的接近事实。

  2、把身高转换成以米为单位的数,体重转换成以千克为单位的数。

  3、与其他同学互相交流,选出较为准确的数据,汇报给老师。

  生:(认真估测、交流并汇报)

  设计意图引导学生把课堂上学到的知识运用到生活中去,发现生活中更多的数学信息。

  五、巩固练习:

  1、师:咱们先看一看这个表格,哪位同学愿意来填一填?(师出示教材第5页“练一练”第一题课件)

  学生纷纷举手抢答。师给予评议。

  2、师:(出示课件“练一练”第二题。)同学们知道图片上的这只鸟叫什么名字吗?它是世界上飞的最快的鸟?叫军舰鸟。大家认真读题后,自己独立完成有关军舰鸟的数学信息。

  六、总结:这节课咱们学习了长度单位和质量单位换算的方法,其他的数量单位也是可以换算的。生活中,很多时候都需要进行单位换算,你可以与同学一起去找一找。

  七、作业:教材第5页第4题。

  八、板书设计:

  36厘米=0.36米

  12克=0.012千克

  500克=0.5千克

  九、后记:

  这节课的内容主要是要求学生会把低级单位的数转化为高级单位的数,会进行单名数和复名数的互化。在单位换算方面,特别是在小数意义的基础上理解单位换算,相对孩子们来说有一定的难度,所以对于这部分知识,只是要求孩子们重在理解,掌握方法。

  在备课时,我就考虑到由于孩子们在日常生活中对小数的接触不是很多,小数的意义又具有一定程度的抽象性,怎样在教学中找出孩子们生活与这一数学知识的契合点,让他们能自然地融入到学习中去,作了详细地分析。由于孩子们的接受能力有所不同,在教学中我对问题的设置与教材略有变化。我认为这样学生学习起来比较顺畅。

小数的意义教案3

  教学目标

  (一)在学生初步认识分数和小数的基础上,进一步理解小数的意义.

  (二)使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  (三)培养学生的观察、分析、推理能力.

  教学重点和难点

  在学生初步认识一位和两位小数的基础上,进一步把认数范围扩展到三位小数,使学生明确小数表示的是分母是10,100,1000,……的分数,并了解小数的计数单位及单位间的进率,既是本课的重点,也是本课的难点.

  教学过程设计

  (一)复习准备

  1.谈话引入:

  在日常生产和生活中,有些数量不一定都能用整数表示,例如商品的价钱,就不一定都是整元钱,在进行测量的时候,往往不能正好得整数的结果,常常用小数表示.

  我们上学期已初步认识了小数,你能以元作单位,把下面数先写成分数,再写成小数吗?

  2.口答:(1)1角=(——)元=( )元

  (2)3角=(——)元=( )元

  (3)9分=(——)元=( )元

  (二)学习新课

  1.谈话引入:

  今天我们继续学习小数.(板书课题:小数的意义)

  在日常生活中,除了商品标价不够整元可以用小数外,在量屋子的高度时,它不够整米时,以米作单位也常用小数表示.

  2.教学小数的意义.

  (1)利用旧知识继续研究.

  我们已经知道1角是0.1元,就是把1元平均分成10份,每份是1

  是同一数量,那么十分之几的数用小数表示是几位小数?(一位小数)

  那么百分之几的数用小数表示是几位小数?(两位小数)

  (2)通过观察米尺,引出十分之几、百分之几、千分之几……都可用小数表示.

  先想想,米、分米、厘米、毫米的进率分别是多少?

  板书:1米=10分米

  =100厘米

  =1000毫米

  观察米尺.提问:

  ①把1米平均分成10份,每份是几分米?写成分数是几米?写成小数是几米?

  学生观察得出:把1米平均分成10份,每份是1分米,写成分数是

  3分米是多少米?用分数、小数怎样表示?

  师生共同明确:把1米平均分成10份,一份或者几份可以用一位小数表示.

  ②把1米平均分成100份,每份在尺子上是多少?写成分数是多少米?写成小数呢?

  学生观察米尺后得出:把1米平均分成100份,1份是1厘米,写

  怎样把7厘米写成以米作单位的分数和小数?

  启发学生想:15厘米怎样写成以米作单位的分数和小数? 经小组

  第一位写1.所以15厘米是0.15米.

  明确把1米平均分成100份,一份或几份都可以用两位小数表示.

  ③把1米平均分成1000份,1份在尺子上是多少?(1毫米)

  千分之一米怎样用小数表示?

  启发学生推理得出:千分之一写在小数点右面第三位,写作0.001.

  9毫米、63毫米以米作单位写成小数分别是多少米?

  63毫米是0.063米.

  根据上述问题,把1米平均分成1000份,1份或几份的数都可以用几位小数表示?(三位小数)

  教师提出,我们还可以照前面的方法继续分下去,可以得到四位、五位……小数.

  启发学生根据前面3个问题的研究,可以得出什么结论?

  (把1米平均分成10份,1份或几份可以用一位小数表示,分成100份,1份或几份可以用两位小数表示,分成IO00份,1份或几份可以用三位小数表示……)

  (3)启发学生概括小数的意义.

  启发性提问:

  ①上面例子都是把1米平均分成多少份?(10份,100份,1000份)

  ②这样的1份或几份,用什么样的分数来表示:(十分之几,百分之几,千分之几)

  所以相邻两个单位间的进率也是10.

  师指出:像上面这些分数也可以依照整数的写法来写,写在整数个位的.右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数.

  小数的计数单位是十分之一、百分之一、千分之—……,分别写作0.1,0.01,0.001…等.

  阅读课本:95页结论.

  反馈:95页“做一做”.

  订正时说明意义,计数单位.

  (4)强化概念.

  启发性提问:

  ①十分之几的数用几位小数表示?一位小数表示几分之几?一位小数的计数单位是多少?

  ②百分之几的数用几位小数表示?两位小数表示几分之几?两位小数的计数单位是多少?

  ③千分之几的数用几位小数表示?三位小数表示几分之几?三位小数的计数单位是多少?

  ④每相邻两个单位间的进率是多少?

  (三)巩固反馈

  1.练习二十第2题、第5题.

  2.填空(投影).

  3.判断下面各题是否正确?为什么?

  (四)作业

  练习二十第1~3题.

  课堂教学设计说明

  学生在第七册中已初步学习了小数,本节课使学生进一步明确了小数的产生,理解小数的意义,小数与分数的联系,小数的计数单位,从而对小数概念有更清楚的认识.

  教学小数的意义分两段进行.

  第一段,理解小数的意义,分两个层次.第一层利用日常生活实例和学生已有的知识经验,引导学生认识小数;第二层引导学生观察米尺的刻度,把1米平均分成10份、100份、1000份……,其中的1份或几份用一位小数,两位小数、三位小数……表示,使学生对小数的认识深入一步.

  第二段:抽象概括、明确小数的意义.

  通过一系列的启发提问,引导学生概括出小数的本质特征,使学生进一步掌握分数、小数的联系及其所表示的意义,掌握小数的计数单位及相邻单位间的进率.

  练习设计围绕重点,巩固概念,并针对易错、易混题,让学生在正误对比中加深对知识的理解,同时达到提高学生思维能力的目的.

  板书设计

  小数的意义

  1米=10分米

  =100厘米

  =1000毫米

  把1米平均分成10份,每份长1分米.

  把1米平均分成100份,每份长1厘米.

  把1米平均分成1000份,每份长1毫米.

  一位小数表示十分之几,计数单位是0.1

  两位小数表示百分之几,计数单位是0.01

  三位小数表示千分之几,计数单位是0.001

  相邻两个计数单位间的进率都是10.

小数的意义教案4

  教学内容:

  教材32页内容。

  教学目标:

  1.让学生通过动手操作理解小数的意义。

  2.使学生理解和掌握小数的计数单位及相邻两个单位间的进率.

  3.培养学生的观察、分析、推理能力.

  教学重、难点:

  理解小数的意义。

  教学准备:

  每个学生空白正方形、平均分成了十份的正方形和平均分成了一百份的正方形纸各一张。

  教学方法:

  引导操作、观察分析、推理归纳。

  教学过程:

  一、引入课题

  1.三年级的时候我们认识了小数,同学们都记得吧?小数与我的生活息息相关,随处可见,请同学们说说生活中的小数。(课件出示)

  师:像这样的小数,还有很多,观察可以分类吗?

  小数点后面有一个数字叫一位小数,小数点后面有两个数字叫两位小数,小数点后面有三个数字叫三位小数。

  同学们,你们说了这么多,老师说几个,你们愿意吗?

  师:板书:0.1 0.01 0.001

  这里的0.1、0.01、0.001表示什么意思,他们之间的进率又是多少?引出课题《小数的意义》

  二、探究意义

  (一)教学0.1

  1.如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。请将你心目中的0.1在这张纸上用颜色涂出来。(电脑演示正方形纸、1)

  2.(展示、汇报)说说你是怎么表示出0.1的`。小结:要想准确地表示出0.1,我们应该先把这个正方形平均分成十份,再涂出其中的一份,就是0.1。还可以用什么数来表示?

  3.取出一张平均分成了十份的正方形,准确地表示出0.1。

  4.请涂出其中的3份,涂色部分用小数怎样表示?用分数表示是( ),0.3里面有多少个0.1,空白部分呢?(用小数表示,用分数表示)

  5.投影:阴影部分用小数怎样表示?有多少个0.1,空白部分呢?

  观察得出:一位小数就表示十分之几(板书)

  6.想一想,1里面有( )个0.1。

  (二)教学0.01

  1.回顾一下,刚才我们是怎样得到0.1的?

  2.你能在纸上表示出0.01吗?请你在格字图上表示出来(生取出平均分成一百份的正方形纸片)。说说你是怎么表示的?空白的部分呢?(电脑演示过程)

  3.请看老师这张图片,你想到了什么小数?

  4.看到0.23,你还想到了什么小数。

  5.请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

  6.观察得出:两位小数就表示百分之几(板书)

  (三)教学0.001

  通过0.1,0.01的教学,推理得出0.001的意义。

  请你观察前两组的数,你有什么新的发现?(一位小数、十分之几,两位小数、百分之几,得出:三位小数、千分之几等等)。

  三、提炼小数意义

  1.小结:像这些用来表示十分之几、百分之几、千分之几……的数,我们把它叫做小数。

  2.师:其中的一份,如十分之一、百分之一、千分之一,我们把它叫做计数单位,也可以写作0.1、0.01、0.001等等。如0.3的计数单位是0.1,它有3个0.1。0.25的计数单位有( ),它有( )个0.01。

  3、电脑出示练习题。

  四、小结。

  五、布置作业。

小数的意义教案5

  教学目标:

  1、初步理解小数与分数之间的内在联系,明确一位小数用十分之几来表示,两位小数用百分之几来表示,三位小数用千分之几来表示。掌握相邻两个计数单位间的进率。

  2、在合作与交流中的过程中,体验探究发现和迁移推理的学习方法,感受数学学习的乐趣。

  教学重点:

  理解和掌握小数的意义。

  教学难点:

  理解小数的意义。

  教学过程:

  一、导入课题

  三年级我们已经初步认识了小数,今天我们继续研究小数的意义。板书课题。

  二、小数的意义

  板书0.1 0.01猜猜第三个写什么?0.001你们很会推理。

  像0.1,小数点后面只有一位数,就是一位小数。老师先写了一个一位小数,又写了一个两位小数,最后写了一个...?

  板书一位小数两位小数三位小数

  1、一位小数

  这节课咱们要认识小数的意义,就从0.1开始研究。把一个正方形看做1,0.1该怎样表示呢?请你试着画一画、涂一涂,在自己的正方形纸上表示出0.1。

  出示学生作品:有错的,有对的。

  到底哪位同学的'意见是正确的呢?我们能用原来的知识来说明其中的道理吗?

  学生:把正方形纸看成一元,0.1元就是一角,一元里面有10个一角,所以应该把正方形纸平均分成10份,其中的一份就是0.1。

  大家的意见统一了,谁来说说0.1究竟表示什么?

  小结:把1平均分成10份,其中的一份是十分之一,也就是0.1。

  板书:=0.1

  那这样的2份、3份、5份呢?板书:=0.2 =0.3 =0.5

  同学们观察一下,刚才我们看到的这些小数都是...?一位小数

  师:你能说一说一位小数表示的意思了吗?

  小结:一位小数表示十分之几。

  一份,也就是十分之一,叫做一位小数的计数单位,写作0.01

  板书:计数单位:十分之一写作:0.1

  0.2里面有几个0.1?0.3呢?0.5呢?

  出示课件:涂色部分是多少?(0.9)0.9里面有几个0.1?

  再添上1个0.1是多少?(10个0.1)

  课件演示:10个0.1是1,1里面有10个0.1。

  2、两位小数。

  (1)第二个小数0.01表示什么意思?还是那张纸,看做1,如果想表示0.01,想一想你会怎么做呢?

  课件展示:正方形用来表示1,0.01就表示百分之一。

  涂色部分是0.01,空白部分呢?0.99表示什么?

  0.99里面有几个0.01?

  请你在自己的方格纸上涂出自己喜欢的两位小数,想一想它表示什么,里面有几个0.01?

  (2)学生自由活动,点名回答。

  (3)两位小数有什么特点?

  小结:两位小数表示百分之几,计数单位是百分之一,写作:0.01。

  出示课件:涂色部分表示多少?(0.09)里面有几个0.01?再添上1个0.01是多少?演示,板书:10个0.01是0.1,0.1里面有10个0.01

  3、认识三位小数。

  (1)根据一位小数和两位小数的特点,你能总结三位小数的特点吗?

  让学生自己归纳出三位小数。三位小数可以表示为千分之几,计数单位是千分之一,写作:0.01。

  4、一位小数、两位小数、三位小数计数单位之间的关系可以用一幅图表示。

  课件演示:一个正方体平均分成10份,其中一份是十分之一,也就是0.1;继续平均分成10份,其中一份占正方体的百分之一,也就是0.01;还能平均分成10份,一份占正方体的千分之一,也就是0.001。

  5、数轴上认识小数

  出示课件:我们在正方形和正方体上找到了小数,数轴上的小数你能找到吗?

  (1)、课件演示:0.1;9.1数轴下面的数字变了,小数就发生了变化。

  (2)、在数轴上找到3.14,3.141

  三、知识眼延伸

  3.14这个小数,小数点后面还有很多的数,这是我们六年级要学习的圆周率。

  课件:

  1、介绍圆周率

  2、介绍0.618

  四、课堂总结:

  如果这节课满分是1,你会为自己的表现打多少分呢?

小数的意义教案6

  【第一课时】

  复习内容:小数乘、除法的意义和计算法则。(第16题,练习九第14题。)

  复习要求:

  1.使学生进一步理解小数乘、除法的意义,掌握小数乘、除法的计算法则,并能正确地进行计算。

  2.使学生掌握用四舍五人法取积、商是小数的近似值。复习重点:进一步提高计算的`正确率和熟练程度。

复习过程:

  一、基本练习

  1.口算。05。381。40。20。156800。58。50。21。250。83。910

  3。91。30。630。90。170。42.填表。保留整数保留一位小数保留两位小数

  10。395

  2。047

  0。9292

  二、复习指导

  1.小数乘、除法的意义。(1)填空。①6。53表示()②6。50。3表示()

  ③8。40。4表示()④8。44表示()(2)思考并回答。

  ①小数乘以整数以及一个数乘以小数的意义各是什么?②小数除法的意义与整数除法相同,是什么?2.小数乘、除法的计算法则。

  (1)计算下面各题。(指4名学生板演。)0。677。50。1250。241。890。547。10。125

  ①小数乘法中积的小数点的位置是怎样确定的?点小数点时积的小数位数不够,应怎么办?

  ②怎样把除数是小数的除法转化为除数是整数的除法?怎样确定商的小数点位置?(3)由学生小结出小数乘、除法的计算法则。

  三、课堂练习

  1。练习九第3题:计算下面各题,得数保留两位小数。0。350。20xx。1-0。9091。30。03

  0。78+5。4366。5090。2718。114+9。987589。76160。2532。50。680。95

  先让学生说一说怎样取积、商的近似值,再让学生按要求计算出结果,师辅导有困难的学生,集体订正。

  2。练习九第4题:一个纺织厂平均每小时生产棉纱927。5千克。如果每千克棉纱织布7。2米,这个厂每小时生产的棉纱可以织多少米布?

  生独立审题,分析数量关系并列式计算。

  四、作业

  练习九第1、2题

  【第二课时】

  复习内容:小数的混合运算和简便算法。(第7、8题,练习九第57题。)

  复习要求:

  1.使学生进一步掌握小数混合运算的运算顺序,并能正确地进行计算。

  2.使学生进一步掌握小数乘、除法中的一些简便算法,并能正确地进行小数乘、除法的简便计算。

  复习重点:小数的混合运算和简便计算的正确率及熟练程度。

  复习过程:

  一、基本训练

  练习九第5题:4。5+1。50。75+0。250。25+3。1+1。752。541-0。63

  10-1。8-2。20。46280。1254。80。20。50。71。42。430

  0。30。152根据学生情况限时做在课本上,集体订正。

  二、复习指导

  1.第7题。5。519。50。124。078。6+9。12524。842。7-7。3532。342。10。14

  (1)看题说一说各题的运算顺序。(2)学生独立计算。(指4名学生板演。)(3)集体订正。

  2.P。34页的第7题:先想想下面各题怎样计算简便,再计算。(1)学生看题说一说每题应该怎样算简便?根据是什么?

  (2)学生独立简算。(指4名学生板演。)(3)集体订正。

  三、课堂练习

  1.练习九第6题。学生独立进行简算,教师进行个别辅导。集体订正时要求学生说出每一题是根据什么简算的。

  2.练习九第8题:下面是某学校买球的发货票,请你把空格填满。数量单位单价总价

  篮球只78。6元

  排球3只145。20元

  总计金额302。40元

  (1)首先让学生讨论怎样才能填出篮球的个数、总价和排球的单价?并选代表发言。(2)学生填写,教师巡视。

  (3)集体订正。

  四、攻破难题

  1.练习九第9题:小华在计算3。6除以一个数时,由于小数点向右点错了一位,结果得24。这道题的除数是多少?

  分析与解:此题先考虑正确商是多少,题中告诉由于小数点向右点错了一位,结果得24,那么正确商应为2。4。再根据除法中各部分之间的.关系,用被除数3。6除以商2。4,得到除数是1。5。

  2.练习九第9题:小明和爸爸一起去电动游戏场乘飞机。买票时小明付出20元钱,找回了8元。游戏场的学生票价是成人的一半,算一算学生票和成人票的票价各是多少钱?

  分析与解:先求出小明和爸爸买票一共花了多少钱,然后考虑,学生票价是成人的一半也就是说一章成人票价等于两张学生的票价。因此,小明和爸爸一共花了3张学生票价的钱。解法为:

  (20-8)(2+1)=4(元)学生票42=8(元)成人票五、作业

  练习九第6题、思考题。

小数的意义教案7

  【教材分析】

  《小数的产生和意义》是在三年级《分数的初步认识》和《小数的初步认识》的基础上教学的。这一内容,既是前面知识的延伸,也是系统学习小数的开始。要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识是本节课应达到的知识教学目标。

  【设计理念】

  《课标》指出:学生的数学学习应当是一个生动活泼、主动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,在设计本课时,我注重让学生经历探究与发现的过程,使他们在看一看、想一想、说一说、做一做中动手、动脑、动口,逐步理解知识,掌握方法,学会思考,获得积极的情感体验。

  【教学内容】

  教科书P50~51小数的产生和意义及“做一做”,练习九部分习题。

  【教学目标】

  1、知识与能力:使学生通过观察、测量了解小数是如何产生的。理解小数的意义,掌握小数的计数单位及相邻两个单位之间的进率。

  2、过程与方法:培养学生观察、抽象、概括及自主合作探究的能力。

  3、情感态度价值观:增强学生民族自豪感和培养学生学习的积极性。

  【教学重难点】

  1、重点:理解小数的意义。

  2、难点:探索分数与小数的关系,深刻理解小数的意义。

  【教学具准备】

  PPT课件、米尺、彩带两条(2米和0。9米)

  【教学过程设计】

  一、情景导入

  1、教师:同学们喜欢做游戏吗?今天老师带大家做一个游戏,游戏的名字叫“猜一猜,测一测。”

  2、师出示2米的彩带,同学们猜一猜有多长,指名回答后让学生测量验证。师再出示0。9米的彩带,让学生猜测,然后测量出结果是9分米。

  提问:9分米如果用米做单位用分数表示是多少米?(米)用小数表示是多少米?(0。9米)

  二、教学小数的产生

  1、课件出示老师收集的一些图片。

  看来生活中小数真是无处不在啊!人们进行测量和计算时往往得不到整数的结果,于是小数就产生了。(师板书:小数的产生)

  2、除了用整数,小数,我们还可以用什么样的数来表示?(分数)还是用米作单位,用分数表示又是多少米呢?(9/10米)

  师:刚才我们在表示第二条彩带的长度时,有的同学用分数表示,有的同学用小数表示,看来小数和分数之间一定有联系。那么分数和小数之间究竟有什么奥秘呢?今天老师就和同学们一起去探索他们的秘密。探索秘密需要一样工具就是直尺。

  【设计意图】利用学生喜欢游戏和活动的好奇心理,充分激发、调动学生学习的积极性,让学生再猜一猜、量一量的活动中经历知识的形成过程,体验到整数在生活中使用的局限性,使学生体会到在进行测量和计算时,往往得不到整数的结果,这时常用小数来表示,从而引入小数,让学生感受到小数是因为需要而产生的,从而激发学生的探究欲望,为新知的探究过程做好充分的铺垫。

  二、教学一位小数意义

  1、认识一位小数:大屏幕出示米尺,把1米平均分成10份,其中的一份是多少?如果还用米做单位,用分数怎么表示?小数呢?

  板书:(1分米、1/10米、0.1米),谁能说说0.1米表示什么意思?

  (1)那如果3份、7份呢?分别用分数、小数表示是多少?

  (2)像这样的你能找一个让同学说说吗?(学生说老师补充板书)

  2、观察这一些小数,你发现它们有一个什么共同的特点吗?(一位小数)将分数与小数联系起来看,又发现什么共同的特点呢?(分母是10是的分数可以用一位小数来表示)

  (学生:分数和小数之间有着密切的关系,十分之几的分数用一位小数表示,一位小数表示十分之几。)学生有困难教师可引导。

  3、教师小结:分母是10的.分数,可以写成一位小数。一位小数表示十分之几。

  【设计意图】让学生根据一位小数表示十分之几,猜想出两位小数和什么样的分数有关,有意识地促进“迁移”,让学生体验成功,培养学生的学习兴趣和信心。

  猜想一下两位小数与什么样的分数有关?

  三、教学两位小数意义。

  1、学习两位小数。

  (1)刚才是把1米平均分成10份,那如果老师把1米平均分成100份(老师将尺放大)取1份是几分之几米?用小数怎么表示?取3份呢?取6份呢?

  (2)仔细观察这组分数和小数的特点,看看你能得到什么结论。(分母是100的分数可以用两位小数表示)

  (通过学习迁移,引导学生自主学习二位小数。)

  教师小结:分母是100的分数,可以写成两位小数.两位小数表示百分之几。

  猜一猜:下面老师要将1米平均分成多少份?

  (3)、教学三位小数意义。

  1、认识三位小数:同学们想一想,如果将尺平均分成1000份。你又能得到什么结论?

  1毫米、 1/1000米、0.001米

  6毫米、 1/1000米、0.006米

  13毫米、 13/1000米、0.013米

  2、小结:分母是1000的分数可以用三位小数表示。

  是不是只有这三种小数呢?

  四、总结小数的意义

  1、教师:我们把1米平均分成10、100、1000份,用分数、小数都会表示了,如果老师再把1米平均分成10000份,这样的几份写成小数是几位小数;那么100000份呢?(万分之几是四位小数,十万分之几是五位小数)

  【设计意图】由借助直观认识一位小数表示十分之几,两位小数表示百分之几,三位小数表示……到通过联想认识四位小数、五位小数的意义,再到抽象概括小数和的意义,学生经历了知识的形成过程,在获取数学知识的同时,也获得了学习的方法,提高了学习的能力。

  2、教师引导学生观察这些分数和小数,然后讨论:分数和小数之间有什么联系呢?

  3、学生回答后教师小结:分母是10、100、1000……的分数可以用小数表示这就是小数的意义。(教师板书)

  4、反馈:教材第51页做一做。

  让学生独立完成,教师提醒学生要先看一看每一幅图平均分成了多少份?然后教师讲评。

  【设计意图:】教材在学生理解小数的意义之后,安排了“做一做”活动:通过用分数和小数表示出涂色部分,使学生进一步感知分数与小数的联系,加深对小数意义的理解。

  五、认识小数的计数单位和进率。

  (1)课件出示智慧闯关第一关

  0.3里面有()个1/10 0.5里面有()个1/10 0.07里面有()个1/100 0.09里面有()个1/100

  师:学生讨论完成,并说一说为什么这样想?

  师指名回答后小结:像0.3、0.5这样的一位小数,我们都可以看成有许多个1/10组成的,那么我们就说十分之一是一位小数的计数单位,写作0.1。同理,像0.07、0.09这样的两位小数,可以看成有许多个1/100组成的,那么我们就说百分之一是两位小数的计数单位,写作0.01。

  师:同学们猜一猜三位小数的计数单位是什么?写作?

  (2)课件出示智慧关第三关

  0.1米里面有()个0.01米

  0.01米里面有()个0.001米

  教师小结:每相邻两个计数单位之间的进率是10。

  (3)课件出示智慧关第三关

  0.8的计数单位是( ),里面有( )个()。

  0.06的计数单位是( ),有6个()。

  0.032的计数单位是( ),有()个( )。

  【设计意图:】通过设计有层次的强化巩固练习,有针对性地对使学生对所学知识进行练习、内化,使在课堂中探究所得的新知识、新概念在练习中逐步得到深化,从而内化为学生的知识和能力。

  三、课堂巩固

  1、练习九第2、5题

  2、判断(课件出示)

  【设计意图】在学生对小数的意义有了一定的理解以后,利用幻灯出示一组有一定深度的练习题,让学生通过新旧知识的对比,逐步加深理解,熟练运用。从而深刻地了解小数的意义、小数的计数单位以及小数与分数的相互关系,达到强化、内化、深化新知的目的。

  四、课堂小结:同学们顺利的闯过了关,在这节课上有什么收获?

  把你的收获告诉同学们。

  五、课堂延伸:课件《小数点的历史》

  【设计意图】通过学生自由阐述对于本节知识的理解情况,及时了解和掌握学生的学习反馈情况,再一次让学生通过自身的表现,体验学习取得成功的快乐。同时通过播放小数点的历史的视频让学生了解小数产生的背景,体会劳动人民以及以往一些数学上的伟大发现和发明,激发学生学习的动力,使学生加深对数学学习的乐趣,从而树立学好数学的信心,在以后的学学习道路上更加努力,表现的更加出色。

  【板书设计】

  小数的产生和意义

  米1分米1厘米1毫米

  9/10米1/10米1/100米1/1000米

  0.9米0.1米0.01米0.001米

小数的意义教案8

  教学目标:

  1.结合具体情境,通过操作、观察、类比等活动理解小数的意义。

  2.经历探索小数意义的过程,培养归纳能力。

  3.在学习小数意义过程中,培养探求知识的兴趣,提高独立探索和合作交流的能力。

  教学重难点:理解小数的意义和小数的计数单位。

  教具准备:米尺、课件。

  教学过程:

  一、回顾导入

  1.读一读信息(课件出示)想一想,这样写符合实际吗?

  (1)老师的体重是565千克。

  (2)小明的身高是145米。

  (3)笑笑的数学测验成绩是935分。

  2.这些数据都少了“一点”,那你知道小数由几部分组成吗?比如这里,51.5这个小数,里面的51是整数部分,小数点右边的这个5就是小数部分。那这两个5所在的数位一样吗?表示的意义一样吗?

  3.那这小数部分的5所在的数位是什么呢?这个数位的计数单位又是多少?学了小数的意义这节课,你就能找到答案。

  二、探索新知识

  1.过去,我们学习长度单位时,都测量过自己的课桌高度,那么你们想知道老师的讲桌的高度是多少吗?

  指名测量,其他同学观看。

  2.汇报测量结果。

  3.在日常生活中,测量一个物体的长或高时,往往得不到整数结果,这时,我们就要用到小数。那么,小数的意义是什么呢?这节课我们将继续来学习。

  4.出示米尺图。

  上图把1米平均分成了多少份?每份在尺子上是多少米?写成分数是多少?

  5.请同学们看米尺:从0到30,从0到70,应该是几分米,十分之几米?用小数怎样表示呢?

  十分之几的数可以用一位小数表示,那么,请同学们猜一猜,两位小数与什么样的分数有关?

  6.出示米尺。

  指着板书:有什么新发现?学生汇报。

  7.提问:如果我们把1米平均分成1 000份,每一份是多少?从0刻度线到第一条短刻度线表示1毫米,它是几分之几米?写成小数呢?

  让学生说出两个用毫米作单位的长度,并请自己的同桌把它用小数表示出来。

  学生交流,并汇报结果。再次提问:从这里你们又发现了什么?汇报。

  8.我们这节课学习的知识,你都发现了什么?同桌先交流,后汇报。

  小结:分母是10、100、1 000……的分数可以用小数表示,一位小数表示十分之几?两位小数表示百分之几?三位小数表示千分之几?……

  进一步提问:在分数中,十分之几的计数单位是十分之一?百分之几的计数单位是百分之一?千分之几的计数单位是千分之一?请同学们想一想,小数的计数单位分别是多少?归纳整理。

  三、巩固练习

  第一层练习:分数小数互化。

  第二层练习。

  1.填空

  (1)0.8表示( ),它的计数单位是( ),它有( )个这样的计数单位。

  (2)1里面有( )个0.1和( )个0.01。

  (3)0.52是由( )个0.1和( )个0.01组成的。

  2.判断:

  (1)0.8是把1个整体平均分成10份,表示这样的8份。 ( )

  (2)1毫米写成小数是0.01米。 ( )

  第三层练习: 猜数游戏。

  小明和小红的数各是多少?

  四、总结

  师生共同回顾本节课内容。

  反思:

  “小数的产生和意义”人教版课程标准实验教材四年级下册的内容。这一内容是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行教学的。本课要求学生明确小数的产生和意义,小数与分数的联系,掌握小数的计数单位及相邻两个计数单位之间的进率,从而对小数的概念有更清楚的认识。

  小数的意义是什么?一位小数、两位小数是怎么来的?这是本课中重点要解决的概念问题。本节课,教者力求在课堂上给学生充足的空间,采用学生自主探究、合作交流的方式,把学生引入研究性学习的氛围,主动建构知识。

  在小数意义的教学中,教材中利用米与分米、厘米、毫米的改写,让学生理解小数的意义。设计了“把一米平均分成10份,每份是多少?如果用米做单位,每份是多少米呢?能分别用分数、小数表示吗?教者在教学中直接从米尺入手,从平均分成10份、100份、1 000份入手,让学生在改动分母是10、100、1000的'分数中来理解分数的意义。从而避免了教材中由于增加了米后意思上表达的不够清楚。

  引导学生进行观察归纳一位小数的意义时,当黑板上形成了下面的板书:0.1= 0.4=.7=后,让学生进行观察,让学生思考“通过观察发现了什么”。由于有了丰富的感性材料作为支撑,学生轻易地完成了对一位小数意义的抽象过程。然后两位,三位小数的意义的研究方法,是一个类推的过程,学生充分经历了一位小数的意义学习过程后,先猜测,两位小数、三位小数应该表示什么?再应用生活的例子加以说明,真正使学生卷入了学习过程中,学生的主体地位得到了较好的发挥。

  最后,通过教师点拨和学生观察、讨论,将小数计数单位和计数单位之间的进率通过对整数计数单位的复习进行引申。使知识形成一个完整的知识结构体系。

  反思这节课,也有一些地方预设的不够充分:

  1.在本课的教学内容安排上要突出小数的意义,尽量做到在三年级教学内容之上进行提升。归纳小数意义是本节课的难点,由于学生数学语言的表述错误较多,所以我花了一定的时间让学生说思考过程,导致时间上较紧迫。

  2.练习量较大,没有考虑学生实际。

  “课堂教学中我们教学的关注点是什么?”通过本课的教学,我又有了自己的一些思考。只要教师在课堂上关注学生,关注学生的学,定能让课堂焕发师生生命的活力,带来课堂上难以预约的精彩!

小数的意义教案9

  教学目标:

  1、使学生结合生活经验和实际测量活动了解小数的产生,体会小数产生的必要性。

  2、利用直观的图片,建构小数和分数的联系,经历小数意义的归纳过程,学会小数之间的转换。

  3、培养学生的迁移、类推能力,以及良好的数学学习品质。

  教学重点:

  理解小数的意义,知道小数的计数单位及每相邻的两个计数单位之间的进率是10。

  教学难点:

  理解一位、两位、三位小数的意义。

  教学过程:

  一、情境导入:

  1、(展示一根绳子)猜猜它有多长?

  生猜:1米……

  师:要想知道准确的结果,怎么办?

  生:量一量。

  师:谁愿意来测量一下它的长度?

  两名学生合作测量。

  师:把你们测量的结果汇报一下。

  生:一米。

  师:刚才谁猜对了?大家的眼力真不错,很会观察,下面加大难度,你能猜一猜课桌面的宽吗?

  生猜并测量验证。

  师:通过测量我们发现,绳子的长度是1米,课桌面的宽度是41厘米,那么课桌面的宽度仍用“米”做单位,还能用整数表示吗?

  生:不能。

  师:为什么不能用整数了?

  生汇报

  师:也就是说,在进行测量时,如果不能得到整数的结果,我们就要用其他的数来表示,也就是我们今天要学习的小数。(板书:小数)

  师:那你们说说在哪些地方还见过小数。

  生汇报

  师:看来小数在生活中的用处真是不小,今天我们就来研究“小数的意义”。(补充板书)

  二、探索交流,建构新识:

  (一)理解一位小数的意义。

  1.师:请同学们任意说一个小数。

  生汇报师板书

  师:那老师也来写几个。

  0.1 0.01

  师:猜一猜老师接下来会写什么?

  生:0.001

  师:同学们真的是很会推理。

  2.今天我们要学习的是--小数的意义,那我们就从0.1开始研究好不好,那0.1的意义你知道吗?它表示什么?

  生汇报

  师:对于0.1同学们都有不同的认识。老师带来了一个正方形,如果我们用一张正方形表示1的话,请你估计一下,0.1该有多大,用手比划一下。

  师:请同学们在这张纸上分一分并用阴影涂色表示出0.1。老师看哪些同学的速度最快。

  3.生展示、汇报

  展示若干组学生的画法。

  (编号,让学生说出自己的想法。)

  师:你认为哪位同学表示出了0.1那么大小。

  生:1号;3号;2号;4号。

  师:到底哪位同学的表示出了0.1呢?我们一起来看一下。(出示课件)这个纸杯的售价为0.1元,如果你是顾客,你应该付给售货员多少钱?(1角)。明明是0.1元,为什么你要付1角钱呢?(生汇报:0.1元就是1角)师出示课件。那一角钱还可以用()/()元(生汇报)

  师:1角=元,1角=0.1元,那元和0.1元是什么关系?看来,0.1=。

  师:现在我们再来回头看刚才几位同学的作品,哪位同学的涂色部分表示出了0.1?(生汇报:3号和4号。)

  师:现在我们再一起来理顺一下。(出示课件)一个正方形用1表示,要想表示0.1我们先把这个正方形平均分成10份,其中的一份涂出来就是0.1。

  师:那现在谁来说说0.1到底表示什么?

  生汇报师小结:说简单点0.1就表示。(板书)

  师:涂色部分为0.1那空白部分用哪个小数表示呢?

  生汇报:0.9。

  师:怎么看出0.9的?

  生汇报

  师:那0.9表示什么?()0.9里面有几个0.1?(9个)我们一起来数一数。把0.1和0.9合在一起是多少?

  生:1

  师:现在我们明白了1里面有(10)个0.1。(板书)

  4.再涂1块能看到哪两个小数?

  生:0.2、0.8。

  师:他们的分数朋友分别是谁?(生汇报师板书),把它们合在一起是多少?(1)

  师:(指板书)仔细观察,这些小数有什么特点?(小数点后有一位数的小数叫做一位小数。)(板书:一位小数)这些分数有什么相同的地方?

  生:分母都是10、都是十分之几……

  师:那我们就可以说一位小数表示的就是十分之几。(板书)

  (出示课件)其中的一份,就是一位小数的计数单位。也就是说一位小数的计数单位是(十分之一),写作(0.1)。这就是我们认识的一位小数。

  (二)理解两位小数的意义。

  1.师手指0.01,0.01表示什么呢?如果还是把这张纸看做1,要找出0.01你会怎么做?

  同桌交流讨论。

  生汇报:把它平均分成100份,取其中的一份。

  预设:如果学生有分歧,可用一元和一分的关系来验证帮助学生理解。

  师:同学们的想法非常正确,我们要想在正方形中找到0.01,就要先把这个正方形(出示平均分成100份的正方形)

  师:0.01就表示。还看到了哪个小数?

  生:0.99。

  师:0.99里面有几个0.01。

  生:99个。

  师:把他们合起来是多少?那1里面有多少个0.01?(100个)师板书

  2.如何表示0.25呢?

  生汇报

  师:还能想到哪个小数?他们的分数朋友分别是谁?

  生:0.75,分数朋友:

  3.(拿出平均分成100份的正方形纸)请你在方格纸上创造一个新的小数,再同桌间说一说这个小数表示什么意思,看到这个小数,你又想到了那个小数?

  4.师提问:

  (1)你涂了哪个小数?

  生汇报。

  师:猜一猜他涂了几格,还能找到另外一个小数吗?

  (2)你涂了几格?谁能知道他写的是哪个小数?

  5.师:(指板书)刚才我们研究的小数都有什么特点?他们都表示什么?

  生汇报师小结板书:两位小数表示的就是百分之几。(出示课件)其中的一份,就是一位小数的计数单位。也就是说两位小数的计数单位是(百分之一),写作(0.01)。

  (三)理解三位小数的意义。

  1.师:我们已经知道了一位小数表示十分之几,两位小数表示百分之几,那0.001是几位小数?(三位小数)。那三位小数又表示什么呢?生:它表示千分之几。(师板书)

  师:那它的分数朋友是多少?()

  师:那0.237表示什么?它的分数朋友是谁?

  生:

  师:小数是多少?

  生汇报

  2.师:谁能找一个大一点的三位小数?

  生:0.999 =

  师:要在正方形纸上涂上0.999会有什么感觉?

  生汇报

  如果再涂多少就涂满了?(0.001)

  师:那也就是说(1000)个0.001是1。

  师小结:三位小数表示的就是千分之几。(出示课件)其中的一份,就是三位小数的计数单位。也就是说三位小数的计数单位是(千分之一),写作(0.001)。

  3.延伸:师:那如果把1平均分成10000份,这样的一份或几份用几位小数表示?(四位小数)。把1平均分成100000份,这样的一份或几份用几位小数表示?(五位小数)

  ……

  师:看来同学们的类推能力都很强,能够根据前面所学的知识来回答老师的问题了。

  (四)提炼小数意义

  1.请同学们回想刚才的学习过程,说一说小数的意义到底是什么?

  生汇报

  小结:分母是10、100、1000……的`分数都可以用小数表示(课件出示)。其实这就是小数的意义。

  2.思考:(课件出示)通过刚才的学习我们知道小数的计数单位是十分之一、百分之一、千分之一‥‥‥分别写作0.1、0.01、0.001 ‥‥‥那这几个相邻的计数单位之间有什么关系呢?如果老师把正方体看做1的话,你能用分数和小数表示出涂色部分吗?

  0.1里面有多少个0.01?0.01里面有多少个0.001?也就是说小数每相邻两个计数单位之间的进率是(10)。

  3.师:大家回答的都不错,其实今天我们学习的小数在产生的过程中经历了一段较长的历史。同学们,请看(出示课件)

  三、巩固内化:

  师:今天有关小数的知识大家都学会了吗?那接下来咱们做几道题检验一下同学们的学习成果,好不好?

  出示课件练习题。

  1、填一填。

  2、填上合适的数。

  四、回顾反思:

  1.师:一节课就快要结束了,下面我们一起来回顾一下我们刚才的学习过程。(出示课件)

  2.自我评价:如果最好的表现是1,最不好的表现用0表示,你打算用什么数来表示自己的表现?

  3.最后老师想送给同学们一段话--小知识:人类对自己大脑的利用水平却极低,普通人只利用了大脑的百分之二(0.02)到百分之五(0.05)左右,就连世界上最伟大的科学家爱因斯坦也只利用了大脑的十分之一(0.1)。

  师:老师希望同学们能够尽可能的发挥自己的潜能,去畅游我们的数学王国。

小数的意义教案10

  教学目标

  1.结合具体情境,通过观察、操作等活动掌握小数的读写法,理解小数的意义;

  2.在合作探索中,掌握小数各部分的名称和小数的数位顺序、小数的计数单位。

  3.培养学生的观察能力、分析能力、抽象概括能力和迁移能力,使学生在合作与交流过程中,获得积极的情感体验。

  教学过程

  第1课时

  一、创设情境,复习引入

  1.谈话:同学们,在我们的数学王国里,除了整数外,你还知道哪些数?你能举一个我们学过的小数的例子,并说出它表示的意义吗?

  (学生举例回答,师订正。)

  (根据学生的回答,教师板书一组一位小数:0.1 1/10;0.4 4/10……)

  教师引导学生观察这组数据,这些小数有哪些共同特征?(小组内交流)

  学生小组交流后,再集体交流。教师引导归纳:一位小数表示十分之几。

  2.谈话:看来同学们前面的知识掌握的不错,作为奖励,老师带来一组美丽的图片,请同学们看大屏幕。(伴随音乐,出示情境图。)

  [设计意图]本课是在学习了一位小数和初步认识分数的基础上进行的,所以,先带领学生回顾一下前面所学的有关知识,为学习新知做铺垫。再带领学生欣赏信息窗1,引入新知,培养情感,激发兴趣。

  二、结合情境,探究新知

  1.学习小数的读写。

  谈话:从图中你都看到了什么?了解到哪些数学信息?(学生交流。)

  (1)根据以前的知识,请你从中任选两种蛋的.数据试着把它们读或写在练习本上。

  (2)全班交流订正。

  (3)教师根据学生的读、写情况引导学生概括小数读、写的基本方法。

  谈话:对于这些小数,你还想了解它们哪些知识?(学生自由提问。)

  下面我们先来研究一下0.25千克中的0.25表示什么意思?

  2.学习两位小数的意义。

  谈话:0.25千克中的0.25表示什么,首先要弄清0.01表示什么。(板书:0.25 0.01)

  (1)出示一张正方形纸片。

  谈话:如果正方形纸片用“1”表示,那么把它平均分成10份,每份可以怎样表示?如果把它平均分成100份。每份可以怎样表示?(学生发言。)

  (师板书:0.1——1/10 0.01——1/100)

  (2)在正方形纸片上表示出0.25。

  谈话:我们知道了0.01就是1/100,那么你能在这张正方形纸片上表示出0.25吗?它表示什么?

  (小组合作完成,全班交流,师引导学生明确0.25就是25/100,也就是25个1/100。)

  板书:0.25 25/100

  (3)教师多媒体出示0.05、0.10的方格图,阴影部分表示什么?

  板书:0.05 5/100

  0.10 10/100

  (4)小组讨论:这些小数有什么共同特点?

  (全班交流。教师引导学生概括出两位小数表示的意义)

  3.学习三位小数的意义。

  (1)谈话:我们已经知道了两位小数表示的意义,猜想:那么0.001表示什么?0.365表示什么?(学生口答。学生在两位小数的启发下,可以自然迁移)

  (2)教师多媒体出示大正方体塑料块动态平均分产生0.365的过程(教材51的图),引导学生理解0.365就是365个1/1000,也就是365/1000。)

  (3)多媒体出示0.305、0.360的阴影方块图,阴影部分表示什么?

  (4)引导学生概括出三位小数表示的意义

  4.总结小数的意义和计数单位。

  (1)谈话:今天我们认识了0.25和0.365这样的小数,你在生活中见过这样的小数吗?

  (学生寻找生活中的小数,并结合实际说出它们的意义。)

  (2)小组讨论:你认为小数是用来表示什么的数?它的计数单位是什么?

  (集体交流,师引导学生总结出小数的意义。)

  [设计意图]通过对正方形纸片和正方体塑料块的观察、涂色、操作等活动,以及学生对日常生活中存在的小数的寻找和理解,使学生积累了丰富的感性认识,为学生顺利抽象概括小数的意义奠定了坚实的基础,同时感受小数应用于生活的广泛性。

  三、情境练习,巩固提高

  1.出示自主练习第一题。

  学生分别用分数和小数表示图中的阴影部分。

  2.自主练习第3题。

  学生独立读题,再说一说小数和分数之间的联系。

  [设计意图]练习重点是小数和分数的联系,注重培养学生系统归纳知识的能力,也让学生在练习中进一步理解小数的意义。

  四、课堂总结

  谈话:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

  [设计意图]让学生分享学习成功的喜悦,激发学生的积极性和求知欲,同时也为学生的后续学习总结了经验和方法。

  课后反思

  兴趣是儿童最活跃的心理成分,当学生对某种事物产生兴趣时,他们就会主动、执着地探索。因此本课开始,就利用出示情景窗一,吸引了学生的兴趣,激发了学生探究的欲望,为小数意义地学习做了准备。

  同时,本节课以学生的生活经验和知识背景为切入点,引导学生进行积极的操作和体验。在这个过程中,教师引导学生感知、感受、感悟知识,围绕着学生这个主体,利用现代化教学手段与常规教学手段互相结合的方式,直观展现了知识的形成过程,启迪学生思维,提高了课堂效率。

  数学思想方法是数学知识的灵魂,是最有价值的数学知识。因此,数学课堂既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。在本课中,鼓励学生从一位小数迁移类推得到两位小数;在概括出两位小数的意义的基础,再对三位小数的意义进行猜测和验证,从而有效地渗透数学抽象化方法,进一步促进学生的数学思维能力。

小数的意义教案11

  教学目标:

  1、了解小数的产生和理解小数的意义。

  2、掌握小数的计数单位及单位间的进率。

  教育方面:

  1、培养学生的观察、分析能力和抽象概括能力。

  2、感受数学与生活的联系及其价值,体验数学学习的乐趣。

  教材分析:

  1、教学内容:义务教育课程标准实验教科书数学四年级下册《小数的认识和加减法》中的“小数的意义”问题。

  2、内容分析:教材选用测量黑板、课桌,一方面这两种事物都是教室里学生非常熟悉的,另一方面学生在测量之后除了能够体会小数的产生于实际需要以外,还可以将测量结果作为一般的常识来掌握。考虑到学生对长度单位比较熟悉,教材仍选用了米尺作为教学小数意义的直观教具,以长度单位为例说明小数的实质是十进分数的另一种表现形式。教材通过分米(厘米、毫米)改写成米数,三个层次共同说明,把低级单位的数改写成高级单位的数可以用分母是10.100.1000??的分数表示,再进一步用小数表示。教材着重从“小数是十进分数的另一种表现形式”的角度说明小数的含义,最后教材说明小数的计数单位及相邻两个计数单位之间的进率由学生自己填出。

  3、学情分析:小数的意义属于概念教学,比较抽象,在操作中要重过程。根据本课教学内容的`特点和学生对概念认知的思维特点,我们在制定本课教学环节时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验。

  4、教学目标:

  (1)使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。

  (2)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。

  (3)培养学生的观察、分析、推理能力。

  5、教学重点、难点。

  教学重点:使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位和相邻两个计数单位间的进率。

  教学难点:

  小数意义的探究过程和相邻两个计数单位间的进率。

  教学准备:

  多媒体课件 、测量工具(米尺)。

  教学过程:

  (一)操作导入:

  1、让两名学生测量黑板、课桌长度。(用米作单位)

  2、交流测量结果,展开讨论。

  3、引导小结:

  在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书课题:小数的产生和意义)

  【设计意图】通过让学生自己动手测量黑板、课桌长度的活动,当让学生用米作单位说出黑板的长时,学生心理产生了矛盾,因为测量黑板时多出的部分不够1米,课桌也不够1米,无法得到整数的结果,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性。

  (二)引导探究:

  1、认识一位小数。(出示米尺)

  (1)在米尺上找出1分米的地方。

  ①用米作单位,怎样用分数来表示? 为什么?(结合分数的意义说明)②用小数表示是:0.1米。

  ③谁来说说0.1米表示什么?(把1米平均分成10份,每份1分米,是 米,也可以写成0.1米。)

  板书:1分米= 米=0.1米.

  (2)讨论:

  ①用米作单位,3分米怎样用分数和小数表示?7分米呢?

  ②分别说说0.3米、7分米表示什么意思?

  2、认识两位小数。(出示米尺)

  (1)在米尺上找出1厘米的地方。

  ①用米作单位,怎样用分数来表示? 为什么?

  ②用小数表示是:0.01米。

  ③谁来说说0.01米表示什么?(把1米平均分成100份,每份是1厘米,是 米,也可 以写成0.01米。)

  板书:1厘米= 米=0.01米.

  (2)讨论:

  ①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?

  ②分别说说0.03米、0.06米各表示什么意思?

  3、认识三位小数。(出示学生尺)

  (1)在尺上找出1毫米的地方。

  ①用米作单位,怎样用分数来表示? 为什么?

  ②用小数表示是:0.001米。

  ③谁来说说0.001米表示什么?

  板书:1毫米= 米= 0.001米。

  (2)讨论:

  ①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?

  ②说说0.003米和0.006米各表示什么意思?

  照这样分下去,还可以得到万分之一米??也可以写成0.0001米。

  象刚才小圆点后面一位的小数叫一位小数,两位的小数叫两位小数??

  (三)概括:

  1、概括小数与分数的关系。

  (1)什么样的分数可以用一位、两位、三位??小数来表示?

  (2)一位、两位、三位??小数分别表示几分之几?举例说说。

  2、概括小数的意义。

  师:分母是10、100、1000??的分数可以用小数表示。

  【设计意图】小数的意义是十分抽象的概念,学生比较难理解。要改变死记硬背、机械 训练的方式,防止重结论,轻过程的做法。因此,我引导学生进行观察,使学生始终参与 到概念的探究过程中,通过比较、归纳、分析和综合,理解小数、分数之间的关系,最后 抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。

  (四)小数的计数单位和进率

  (1)小数的计数单位是什么?(展开讨论)板书:(十分之一、百分之一、千分之一??,分别写作0.1、0.01、0.001??)

  (2)1米里有几个0.1米?0.1米里有几个0.01米???每相邻两个单位间的进率是多少?

  (3)师:因为整数和分数相邻两个单位间进率都是10,所以这些分数也可以仿照整数的写法,写在个位的右面,用一个小圆点(小数点)隔开,用来表示十分之几、百分之几、千分之几??的数,叫做小数。

  【设计意图】老师没有直接告诉学生小数的计数单位是什么,每相邻两个计数单位间的进 率是10,而是让学生从解决问题中发现、归纳出来。这样能促使学生进行多角度、多方面、多层次的探索,符合学生的认知规律,培养学生应用所学知识解决问题的能力,获得学习 成功的体验,增进学好数学的信心。通过讨论交流和概括总结,培养数学思维能力和合作 精神。

  (五)巩固应用

  1、学生看书并完成例1的空白。

  2、P51 “做一做”用分数、小数表示涂色部分。

  3、闯关练习:

  (1)括号里能填几?你是怎么知道的?

  0.3里面有()个 ,0.09里面有()个 ;0.08里面有()个 。

  (2)下面的括号里能填几?

  0.1米里面有()个0.01米 ;

  0.01米里面有()个0.001米 ;

  0.001米里面有()个0.0001米。

  (3)找朋友:(用线把上下两组数连起来)

  0.045 0.13 0.0001 0.9

  4、说说这些小数的计数单位分别是什么? 它里面含有多少个计数单位?

  0.3 0.18 0.250.036

  【设计意图】使学生明确小数和分数的关系,加深对小数意义的理解和对计数单位的认识,让所学知识得以巩固。

  (六)课堂总结

  这节课我们学习了什么?你知道了什么?你还有什么问题?

  【设计意图】对知识点进行梳理,培养学生概括能力和语言表达能力。

  (七)板书设计:

  小数的产生和意义

  小数的产生:在进行计算和测量时,往往得不到整数的结果。

小数的意义教案12

  课题名称 小数的意义

  课标要求 结合具体情景理解小数的意义,会进行小数、分数的转化。

  学习目标

  1.通过动手操作,学生明确一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。

  2.知道小数的计数单位和每相邻两个计数单位之间的进率。

  教学重点 理解一位、两位、三位小数的意义,知道每相邻两个计数单位之间的进率是10。

  教学难点 理解一位、两位、三位小数的意义。

  学习过程

  一、谈话导入

  师:同学们,我们在三年级的时候已经对小数有了初步的认识,今天我们继续学习小数的意义。那同学们还记得小数长什么样子?你能举个例子说一说吗?

  预设:0.3

  师:谁能说一个和他不一样的?

  预设1:0.47

  预设2:0.356

  师:同学们说了这么多,那老师说几个,我说,你们来读(1.8、2.75、4.702)你能将这些小数分分类吗?并且说一说你分类的依据是什么?

  预设:(0.3、1.8)(0.47、2.75)(0.356、4.702)我是这样分的,看小数点后面,有一位的分在一起,有两位的分在一起,有三位的分在一起。

  师:我们把第一组给他起个名字,叫一位小数,第二组叫两位小数,第三组叫三位小数。

  二、探究新知

  (一)0.1表示什么

  师:今天学习小数的意义,要想知道0.3表示什么?我们得从研究0.1表示什么开始。

  1.请同学们拿出准备好的正方形纸,如果把这张纸看作“1”,怎样表示出0.1呢?完成学习单第一题。

  学生操作。

  汇报:将这张纸平均分成10份,取其中的1份是,用小数表示就是0.1。也就是0.1就表示,可以用等号连接。(板书)

  2.谁能借助你手中的正方形纸说一说,0.3表示什么?

  预设:将这张纸平均分成10份,取其中的3份是,用小数表示就是0.3。也就是0.3就表示。(追问:0.5里有几个0.1?)

  3.你还想表示哪个小数?

  预设:我还想表示0.8。将这张纸平均分成10份,取其中的8份是,用小数表示就是0.8。也就是0.8就表示。

  4.观察这三组,你发现一位小数和分数有什么关系?

  预设:一位小数都表示十分之几。

  (二)0.01表示什么

  师:现在我们探究出一位小数表示十分之几,那么两位小数、三位小数又表示什么?按照这个思路,完成导学单第二题。

  小组讨论。

  汇报:

  1.两位小数表示什么,应先从研究0.01开始,我们把这张纸平均分成100份,取其中的`1份是,用小数表示就是0.01。也就是0.01就表示。

  2.0.06表示,它里面有6个0.01。

  3.我还想表示0.73。我们把这张纸平均分成100份,取其中的73份是,用小数表示就是0.73。也就是0.73就表示。

  4.小结:我们发现两位小数都表示百分之几。

  (三)0.001表示什么

  预设:0.001表示。我们把这张纸平均分成1000份,取其中的1份是,用小数表示就是0.001。也就是0.001就表示。

  师:平均分成1000份是不不好分呀,我们找电脑帮帮忙。(ppt出示正方体)

  师:现在从这1000份中取出365份,用分数怎么表示?写成小数呢?里面有多少个0.001?你还能写出哪些小数?

  观察算式,你发现了什么?

  预设:三位小数都表示千分之几。

  (四)认识计数单位

  ppt出示:十分之一、百分之一、千分之一…….都是小数的计数单位。通过ppt演示,学生发现每相邻两个计数单位之间的进率是10。

  三、课堂检测

  1.写出下面图形所表示的分数和小数。

  2.哪两只手套是一副,用线连一连。

  3.填空

  0.8里面有( )个0.1

  0.32里面有( )个 0.01

  0.620里面有( )个0.001

  0.1235里面有( )个0.0001

  4.在直线上标出下面各数的位置。

  0.4 2.6 1.3 3.85

  四、课堂小结

  师:请同学说一说,这节课你都收获了哪些知识?

  五、板书设计

  板书设计:小数的意义

  一位小数 两位小数 三位小数

  十分之几 百分之几 千分之几

  0.1= 0.01= 0.001=

  0.3= 0.06= 0.365=

  0.8= 0.73= 0 .798=

小数的意义教案13

  【教学内容】

  人教版教材第32~33页例1和“做一做”,第36页练习九第1~3题。

  【教学目标】

  1.使学生知道小数是在实际生活中产生的,并有着广泛的应用,认识整数、分数与小数之间的内在联系。

  2.理解小数的意义,掌握小数的计数单位及相邻两个单位间的进率。体会到小数与我们的日常生活是密切联系的。

  3、培养学生探究发现、类推迁移的数学学习能力。

  【教学重点】

  在学生初步认识分数和小数的基础上,进一步理解小数的意义。

  【教学难点】

  理解小数与分数之间的联系,掌握小数的计数单位及单位间的进率。

  【教学准备】

  米尺、多媒体课件、立方体教具。

  【教学过程】

  一、【课前铺垫、创设情景】

  教师通过展示自己的个人资料,既满足了学生想进一步地了解老师的好奇心,又达到了复习铺垫的学习目标。通过学生自主创造小数的环节,极大地调动了学生对小数世界的求知欲望。

  二、【新课讲授】

  1、认识一位小数

  今天的学习,我们借助一样学具~米尺,大家认识它吗?现在我们把它搬到大屏幕上!

  (出示米尺课件)学生仔细观察,回答问题。

  教学例1。

  教师提问:一起来数数,把1米平均分成了多少份?

  学生一起数,得出结论(10份)。

  提问:因为1米=10分米,所以这一份是多长?

  学生观察后回答:1分米

  小结:我们把1米平均分成了10份,每一份是1分米。

  提问:1分米是1米的几分之几?()

  (1)如果用“米”做单位,每一份用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.1米。)

  教师强调0.1米表示的意思:(0.1米表示把1米平均分成10份,取其中的1份就是0.1米)

  想一想:0.1米的长度和米的长度它们之间是一种什么关系?(相等的关系)

  由此得出:米=0.1米

  (2)这样的3份是几分米?(这样的3份是3分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.3米。)

  提问:谁能说说0.3米表示什么意思?

  同样,可以得出:米=0.3米

  (3)这样的7份又是多长呢?(这样的7份是7分米。)用分数表示是多少米?(用分数表示是米。)用小数表示是多少米?(用小数表示是0.7米。)

  提问:谁能再来解释一下0.7米表示什么意思?

  同理,可以写成:米=0.7米

  (4)进一步强化训练:这样的9份就是(9分米),写成分数是(米)、写成小数是(0.9米)(学生口答完成)

  教师旨在引导,学生观察发现

  师:课件显示我们刚才得到的一组分数,观察这些分数的分母,你发现它们有什么共同特点?(分母都是10)

  师:分母都是10的,也就是十分之几的数,我们用几位小数来表示?(一位小数)

  师:结合我们得出的这几组等式,谁能把你刚才的发现再来完整地说一说?

  学生通过观察,自行总结发现。(分母是10的分数,可以用一位小数来表示)点击出示第一个发现!你的发现太棒了!

  出示课件(我们一起来回顾一下,这一段是几米?)(0.3米)

  一起数数0.3米是由几个米组成的?(3个)

  提问:那0.3里面有()个0.1?

  这一段又是多长?(0.7米)

  再来数数几个米组成0.7米?(7个)

  提问:那0.7里面有()个0.1?

  进一步强化训练:0.9里面有()个0.1?(9个)

  请大家想一想:9个0.1如果再加上1个0.1是多少呢?(是1)

  提问:1里面有()个?(10个)

  也就是说:1里面有10个0.1

  提问:谁能告诉我1.2里面有()个0.1?(12个)

  师:你是怎么想的?

  教师小结:像0.3、0.7、0.9、1.2……都是一位小数,一位小数表示里面有()个,我们就说,是一位小数的计数单位,写作:0.1

  师:这句话太重要了,谁能把它再说一遍!

  点击出示第二个发现!(一位小数的计数单位是十分之一,写作:0.1)

  反馈小训练:谁能告诉老师:0.8的计数单位是什么?它有几个这样的计数单位?

  2、认识两位小数

  小小的米尺,大大的学问。

  师:同学们,猜一猜,如果老师再想继续分的话,会把1米平均分成多少份呢?(100份)现在的每一份是几厘米?(每一份是1厘米)

  1厘米是1米的几分之几米呢?(米)

  出示课件:同学们请看,老师把之前分得的1分米,通过放大,再次平均分成10份,这时,就把1米平均分成了100份。

  小结:这样的一份就是1厘米,用分数表示是米,写成小数是(0.01米)

  提问:这样的4份和8份用分数和小数表示,分别又是多少米呢?

  请大家翻开课本32面,把你的答案写在书上。

  教师根据学生的回答,课件逐一出示答案。

  师:根据你们的回答,我们可以得到这样几组等式(显示等式课件)

  师:请大家仔细观察,这次写出的都是几位小数?(两位小数)

  师:表示这些小数的分数,它们的分母又有什么共同特点?(分母都是100)

  师:那你发现了什么?

  学生通过观察,自行总结发现。(分母是100的分数,可以用两位小数来表示)点击出示第一个发现!你的发现真了不起!

  师:分母是100的分数,可以写成两位小数。两位小数表示百分之几的数,百分之几也可以看作是几个百分之一,这里的就是两位小数的计数单位,写作:0.01

  师:谁能把这句非常重要的话像老师这样说一说!

  点击出示第二个发现!(两位小数的计数单位是百分之一,写作:0.01)

  反馈小训练:想一想0.25的计数单位是什么?它有几个这样的计数单位?并说说你是怎么想的?(对学生的回答及时作出评价)

  3、认识三位小数

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那三位小数呢?下面请同学们按照老师给出的自学提示和自学要求,有步骤地进行自学探究,并完成手中的活动报告单。提问:根据前面的学习规律,说说1毫米、6毫米、13毫米用分数和小数该怎样表示?

  学生分组讨论交流,小组选派代表发言。

  发言总结:1毫米用分数表示是米,写成小数是0.001米;6毫米用分数表示是米,写成小数是0.006米。13毫米用分数表示是13/1000米,写成小数是0.013米

  提问:经过你们的自学探究,谁愿意把你们小组的发现和大家分享一下?

  学生总结发现:

  分母是1000的分数,可以用三位小数来表示。

  三位小数的计数单位是千分之一,写作:0.001

  点击出示发现!你们个个都是自学小能手!老师为你们点赞!

  4、概括:小数的意义

  师:通过刚才的学习,我们知道了:

  分母是10的分数,可以用一位小数来表示

  分母是100的分数,可以用两位小数来表示

  分母是1000的分数,可以用三位小数来表示

  谁能尝试着把它们用一句话来概括一下?(教师可适当提示一位小数、两位小数、三位小数都属于小数范畴)

  学生小结:分母是10、100、1000的分数,可以用小数来表示。(师板书)

  师:依此类推,分母是10000的分数,可以用(四)位小数来表示、分母是100000的分数,可以用(五)位小数来表示……说的完吗?(说不完)就可以用省略号来表示……

  这就是小数的'意义,请大家齐读一遍。

  学生齐读意义,教师板书课题~小数的意义

  师:同学们可真棒!自己总结出了小数的意义!

  5、总结:小数的计数单位

  师:通过刚才的学习,我们也知道了:

  一位小数的计数单位是十分之一,写作:0.1

  两位小数的计数单位是百分之一,写作:0.01

  三位小数的计数单位是千分之一,写作:0.001

  师:谁能尝试着把它们用一句话来总结一下?

  学生小结:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……(师板书)

  师:你是个非常善于总结的孩子!这就是小数的计数单位,请大家齐读一遍。

  师:这里的省略号表示什么意思?(说不完)看来同学们理解了!

  6、小数相邻单位间的进率

  (过渡)学习的过程就是不断地克服困难,战胜自我的过程。

  师:同学们请看大屏幕,老师带来了一个用整数1来表示的正方体,我真诚的邀请同学们一起来感受这个正方体变形的过程,你们愿意吗?

  教师出示正方体变形课件,逐步引导学生观察分析:

  1里面()个0.1

  0.1里面()个0.01

  0.01里面有()个0.001

  提问:括号里能填几,你是怎么想的,先独立思考,再小组讨论,汇报结果。

  学生讨论发言。

  小结:通过演示操作,交流讨论发现:1里面有10个0.1;0.1里面有10个0.01;也就是0.1是0.01的10倍,我们就说0.1和0.01之间的进率是10,0.01里面有10个0.001,也就可以说0.01和0.001之间的进率是10。

  师:什么情况下它们的计数单位之间的进率是10呢?举例说说你是怎么想的?

  学生小结:小数和整数一样,每相邻两个计数单位之间的进率是10。(师板书)

  请大家齐读一遍。

  三、【巩固提升、练习反馈】

  1.完成教材第33页“做一做”。(可以一题两问)

  2.判断:争当合格小裁判(说出判断理由)

  四、【课堂小结】

  提问:同学们,这节课学的高兴吗?谁能向同学们分享一下你这节课的收获?

  小结:是的,很多数学知识都是相互联系、相互贯通的。今天我们主要研究分母是10、100、1000……的这类特殊分数与小数的转化,在以后的学习中,我们还会继续探究由特殊到一般研究和转化。只要你善于思考和发现,你就能从中得到无穷无尽的乐趣!最后,老师把自己最喜欢的一句人生格言送给大家,希望与你们共勉!(天才是百分之一的灵感加上百分之九十九的汗水)

  五、拓展延伸

  板书设计

  小数的意义:分母是10、100、1000……的分数,可以用小数来表示。

  小数的计数单位:小数的计数单位是十分之一、百分之一、千分之一……分别写作:0.1、0.01、0.001……

  小数的进率:每相邻两个计数单位之间的进率是10。

小数的意义教案14

  一、设疑激趣

  师:今天我们学习的内容跟哪种数有关?你从哪里发现的信息?

  生:小数,从大屏幕上。

  师:小数的意义就是小数表示什么?那你知道吗?

  生:不知道。

  师:那我们先来回顾一下我们的“小数”朋友,你在生活中遇见过小数吗?

  生:遇见过。

  师:在哪遇见过?

  生1:在计算器上计算有余数的除法时出现了小数。

  生2:去超市买东西时会遇见小数。(师跟进说标价是小数)

  生3:卖菜时遇见小数,(一生补充说是称量重量时出现小数)

  【设计意图:让学生回顾和小数的“相遇”引出小数的生活意义,把数学和生活联系,让学生体会生活与数学的联系,以及数学的生活性,以此来激发学生的探究欲望。】

  二、探究新知

  1、小数的产生

  师:可见小数在生活中是很有用的,那今天我们就先来研究一下它是怎样产生的。刚才同学们说在标价、计量、测量时会用到小数,还有计算时会出现小数,看是这样的吗?(大屏幕出示,测量课桌的长的图片)测量结果课桌长是多少呢?

  生:(异口同声地回答)60厘米。

  师:怎样用米来作单位呢?(有几人举手)它有1米吗?(没有)那不到1米可以用什么数来表示?(生小数)用哪个小数来表示呢?

  生:一百分之六十。

  师:一百分之六十是小数吗?(不是)那是什么数?(分数)那你说可以用分数来表示,那还可以用谁来表示呢?

  生:0.60。

  师:(师提示要带上单位)0.60米。这样我们就得到了一个小数0.60。体育赛事里也有小数,(出示世界飞人的100米短跑的成绩)博尔特以多少的成绩夺冠?

  生:9.58秒。

  师:出示一次数学检测的成绩98.5分,也是检测,再来一组口算。

  出示口算:

  10÷10= 1÷10=

  100÷10= 1÷100=

  1000÷10= 1÷1000=

  【设计意图:兴趣是最活跃的心理成分,是一种带趋向性的心理特征。苏霍姆林斯基也说过:如果教师不设法使学生产生情绪高昂和智力振奋的状态就急于传授知识,不动情感的脑力劳动只会带来疲倦,没有欢欣鼓舞的心情,没有学习的兴趣,学习就会成为学生的负担。因此,在教学中,我创设了超市物品的价格、跑步成绩、身高、体重、体温等情境,让学生感到亲切,引起情感共鸣,体验身边处处有小数。同时,让学生体验测量课桌的长,使学生体会到在实际测量中有时会得不到整数值,必须用新的数来表示。进而又让学生进行口算,让学生动手操作、口算,亲身体验 小数是怎样产生的,激发学生的积极性和主动性。】

  生: 0,赶紧改成1。

  师:非常欣赏他知错就改的精神,但我更希望你能把问题完整的回答下来,语言叙述要准确,(再次完整的回答)。

  师:1÷10=?(没人举手)那先来想想这道算式表示的意义是什么?

  生:1里面有多少个十。

  师:还可以用那句话来说?

  生:把1平均分成10份,每份是几?都说是十分之一。

  师:计算结果出现不是整数时,我们可以用以前分数表示,还可以用小数来表示。谁知道十分之一等于多少呢?(学生都愣了)十分之一是多少呢?用小数多少呢?(一生说是0.1)对吗?先留着,不知道,画一个问号。下边1÷100=?(0.01)用分数怎样表示呢?(一百分之一)那1÷1000=? 就是把1平均分成1000分每份是多少?(一千分之一)那好我们一起来看一下(出示好几张图片)

  师:刚才在进行计算和测量时,往往得不到整数的结果。这时就可以用小数来表示,这就是小数的产生,存在的生活意义。

  【反思:教师太过着急了,没有耐心等待孩子的思维发展,没能和上学生的心弦。原本是等孩子们经历完三道计算后再引出小数的,但是一次就出来了。所以小数的产生没能顺理成章的出现。】

  2、教学小数的意义

  师:能不能把刚才得到的小数读出来呢?从左往右,要学生一起读。你能不能把这几个小数分成两类呢?

  0.85 9.58 38.2 0.6 39.4 98.5

  生:0.85 9.58是一类,其余是一类。

  师:能不能说说你的分类理由?

  生:后面是两位、一位。

  师:她说是后面,(一生即使补充是小数点后面)说得真好,来欣赏一下,(追问,指着0.85 9.58问)小数点后面是几位呀?(两位)那我们就把它称作两位小数,(指着38.2 0.6 39.4 98.5)小数点后面有几位?(一位)那就叫(学生根据直觉说)一位小数。那小数肯定还会有?

  生:三位小数,四位小数,五位小数……

  师:小数的位数是无尽的,研究小数也要从简单入手,咱们就先从研究一位小数入手。我们借助常用的一个长度单位来研究,(出示米尺图)请读出一句话。

  【设计意图:让学生通过观察思考及演示,层层设问,利用旧知逐步将学生引向新知。学生对小数的位数有一定的理解,渗透化难为易的数学研究思想。】

  【反思:本环节的分类有两种,一种是按小数的位数分类,另一种是按照整数部分是否0(是否纯小数)来分,一种是为本节的小数意义作铺垫,一种是为小数的后续研究做伏笔,但自己却把第一种分法板示后,把后者遗忘了。】

  教师出示:把 1米平均分成10份。

  师:把1米平均分成10份,每一份是多长?

  生:10厘米。

  1分米。

  师:1分米和10厘米相等吗?(相等)都可以,那你能不能用一个分数来表示呢?

  生:一百分之一。

  生:十分之一。

  师:把一米平均分成了十分,那分母就应该是几?(10)十分之一米可以用哪个小数来表示?(0.1米)观察1分米,1/10米,0.1米它们都是指把一米平均分成10份,其中的一份的长度,那你说这三个数是否相等?(等于,完成板书1分米=1/10米=0.1米,擦掉问号)1分米是其中的几份呢?

  师:这个数如何表示呢?(4/10米,0.4米)这两个长度一样吗?(一样)那就可以用等号连接。谁能说一下4/10米里面有多少个1/10米?(4个)

  师:你能表示这个数吗?(7分米,7/10米,0.7米)那你能说说0.7里面有多少个0.1吗?(异口同声,7个)

  擦掉单位发现:1/10 =0.1,那你以后看到0.1就要想到1/10,0.1就是谁了?(1/10)0.4里面有( )个1/10,0.4就是分数( )。0.7里面有( )个1/10,0.7就是分数( )。

  师:你发现分数与小数的联系了吗?

  分母是10的分数,可以写成一位小数。一位小数表示十分之几,它是的计数单位是十分之一,也就是0.1。

  师:0.2米表示什么?0.8米呢?你再说两个一位小数,并说出他们的意义。

  【设计意图:在后面的教学中实现知识的正向迁移,理解分数与小数之间的联系。进而理解小数的意义。】

  (2)认识两位小数

  师(引导学生观察米尺):把1米平均分成100份,每份是多少呢?

  生:是一百分之一米。

  师:还可以怎样表示呢?

  生:0.01米,1厘米。(补充板书)

  师:一百分之一米,它的分母是多少?(100)分母是100的'分数写成了几位小数?(两位小数)你还能把几厘米表示成这样的数吗?你想表示几厘米就表示几厘米?(老师是涂色吗?)不是,是自己写一个几厘米把它用小数,分数表示。

  【反思:问题提出的较为模糊,所以自己不断地去补充、重复问题。就这还有孩子不知我说啥,还是自己的问题指向目标不明确造成的。】

  交流自己写的:

  师:你写的是多少?

  生1: 7厘米,是7/100米,0.07米。

  师:你能猜一猜两位小数与什么样的分数有关系吗?

  (指名回答并板书:1厘米=1/100米=0.01米;7厘米=7/100米=0.07米。)

  生(口答):0.01里面有( )个1/100,0.20里面有( )个1/100, 0.32里面有( )个1/100,并说出用哪个分数来表示。

  引导发现:两位小数表示百分之几,它的计数单位是百分之一,也就是0.01。

  师:0.32里面有多少个百分之一呢?(32个)这就是小数0.32表示的意义。

  (3)认识三位小数

  出示:一位小数表示十分之几,它的计数单位是十分之一,可以写作 0.1。

  两位小数表示百分之几,它的计数单位是百分之一,可以写作0.01。

  师:刚才我们认识了一位小数、两位小数的意义和计数单位,那以此类推,你知道

  三位小数表示什么?(千分之几)它的计数单位是(千分之一),可以写作(0.001)。

  四位小数表示什么呢?计数单位呢?可以写作?五位小数呢?小数的位数能说完吗?……(不能)是无穷的。

  师(借助米尺,使学生明确):把1米平均分成一千份,每份是多少?(1毫米)

  1毫米是千分之一米,还可以写成0.001米来表示。(板书:1毫米, 米,0.001米 )

  【设计意图:数学思想方法是高一级的知识,是对知识的一种本质揭示,是数学知识结构的灵魂。在教学中,既要注重学生知识的获取和能力的培养,更应注重数学思想方法的渗透。本节课中,在教学1分米=1/10米=0、1米时,先让学生初步感悟十进制分数与一位小数之间的联系,进而由此迁移类推得到许多一位小数,让学生比较这些小数的共同点,归纳出一位小数的意义。在此基础上又让学生迁移,类比认识二位小数、三位小数,从而归纳出小数的意义。后又通过观察、思考、类推出三位、四位小数的计数单位。】

  (4)抽象、概括小数的意义

  师:小数是什么?

  补充并概括:小数其实就是分母是10、100、1000……的分数的另一种书写形式。分母是10、100、1000、……的分数可以仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫做小数。

  师:0.85是几位小数?它就是哪个分数呢?它的意义是什么呢?0.85表示什么?

  生:85个0.01,还可以表示把一个整体平均分成100份,有这样的85份。

  师:这就是0.85这个小数表示的意义。0.1、0.01、0.001……这些是小数的计数单位,那整数的计数单位有哪些?

  生:个、十、百、千、万……

  师:每相邻两个计数单位之间的进率是多少?(10)接下来我们来研究小数的计数单位。

  3、小数单位间的进率

  师:这是一个正方形,可以用“1”来表示,(演示把它平均分成十份,其中一份涂红色问),这是怎样分的?(十分之一、平均分)怎样分?平均分成10份,涂色部分是其中的几份?(1份)可以用哪个数来表示?(十分之一)还可应用谁来表示?(0.1)1里面有多少个0.1呢?(10个)

  师:(把图继续分成100份)发生了怎样的变化?平均分成了多少分份?(100份)其中的一份用哪个数来表示?(0.01、一百分之一)那0.1里有几个0.01呢?(10个)那小数计数单位之间的进率也是10。把这个正方形平均分成1000份呢?每份是多少?0.01里面有多少个0.001?那我们就接着把小数的计数单位写在整数的计数单位后面,并用小数点隔开,这样就把整数和小数整合了。

  【反思:这个问题的抛出有点突然,显得计数单位更加抽象了,不如换成先让学生猜测它们之间的进率,在通过正方形平均分的动手操作、验证。借助正方形的十分之一、百分之一、千分之一来揭示小数的计数单位间的进率。】

  三、巩固练习

  师:9. 58的9在哪一位上?(个位)表示什么?(9个一)这个5表示什么?(5个0.1)8呢?(8个0.01)

  1、下面括号里能填几。

  0.1米里有( )个0.01米,0.01米里面有( )个0.001米。

  得出:相邻两个计数单位之间的进率是10。

  师:现在你知道为什么要借助长度来研究小数的意义吗?(知道)因为毫米、厘米、分米、米每相邻的单位之间的进率也是10。

  【设计意图:借助长度单位理解,再次得出每相邻两个计数单位之间的进率是10。重点理解“相邻”二字的含义,突破难点,巩固分数与小数之间的关系,加深对小数意义、小数计数单位及单位间进率的理解,并达到学以致用。】

  2、(1)用合适的数表示图中的涂色部分。

  (2)用合适的数表示图中的空白部分。

  3、先写出一个两位小数,再用阴影表示这个小数。(交流自己写的小数及其意义)

  4、找朋友。

  四、课堂总结

  师:以前学过整数、分数,今天又学习了小数,通过今天的联系我们知道它们之间有一定的联系?

  生:每相邻的计数单位之间的进率都是十。

  生:小数就是分数。

  生:小数的计数单位是0.1、0.01、0.001……也可以用分数十分之一、百分之一、千分之一……来表示。

  五、你知道吗

  了解小数的起源、发展史。

小数的意义教案15

  教学目标:

  1、结合具体情境,结合实际操作,通过观察、类比等活动使学生理解小数的意义,小数的意义教学设计。

  2、在理解小数意义的基础上学会读小数和写小数,并分清与整数读写的区别。

  3、经历探索小数意义的过程,了解小数在生活中的广泛应用。

  教学重点:

  结合实际操作,使学生理解小数的意义,学会读写小数

  教学难点:

  经历探索小数意义的过程。

  教学准备:

  自制课件正方形纸片、正方体模型

  教学过程:

  一、情景创设

  课件播放歌曲《春天在哪里》

  师:请大家用最响亮的声音告诉老师,刚才我们听到的歌曲与哪个季节有关?

  生:春天。

  师:对,春天来了,瞧,(课件展示)花儿绽放了,蝴蝶飞来了,人们也纷纷走到了户外。看,画面上的老太太在读报纸呢,一直蝴蝶从她的身边飞过,它看到了什么呢?

  课件出示:1千瓦时的电可以让电动车运行千米。

  师:谁来读一读这句话。

  生:1千瓦时的电可以让电动车运行千米。

  师:是个什么数?

  生:小数。

  二、合作探究

  1、教学小数的读写

  师:你还会读其他的小数吗?

  课件出示一组小数。指名学生读。如果都读对了给自己适当的鼓励。

  教师给予适当的评价,教案《小数的意义教学设计》。然后分组讨论:小数的读法和整数的读法有什么相同的地方,又有什么不同的地方。

  学生讨论后回答汇报。

  教师小结:小数点前面的数按照整数的读法去读,小数点后面的按照数字出现的顺序去读。

  师:打搅会读小数了,那你会写小数吗?

  生:会。

  课件出示零点四七四点一三十二点四零五

  学生自由写--交流--集体订正。

  2、教学小数的意义

  师:大家既然都见到过小数,那想一想都是在哪里见到的:

  生举例生活中的小数(超市的货架上、小票上、课本上等等)

  师:大家都是善于观察、乐于发现的好孩子。那你知道元是什么意思吗?

  生:1角。

  师:说说你的想法。

  生:、、、

  师出示正方形的纸,然后让学生图出元。

  生操作然后汇报。

  师生共同通过课件展示来理解1角=元,然后拓展到2角。

  师操作让学生回答表示的是多少元。

  师:我还是把1元平均分成10份,你能表示出3角吗?涂一涂。

  生操作后汇报

  师:你知道元是多少钱?

  生:1分。

  师:那1元里面有多少个1分呢?

  生:100个。

  师:也就是说(课件展示元表示把1元平均分成份,取了其中的份,用分数表示。--学生自然而然的填写了答案。

  元呢?元呢。

  让学生用手中的'正方形的纸片进行涂写、汇报。

  展示的图片,让学生写小数和分数。

  借助课件讲解与分数的关系。让学生写与分数。进一步理解三位小数。

  师小结:通过我们刚才的谈话,我们不难看出小数与分数有着密切的联系。其实小数就是表示十分之几、百分之几、千分之几…的数。、、…是小数的计数单位。到这里,这节课我们主要就学习了出示课题"小数的读写及意义",学得怎么样呢,下面我们一起来测验一下。

  三、课题达标

  (课件)展示题目

  采用的方法是学生口答,并要学生说出原因。教师做适当的点评和评价。

  四、课堂小结

  师:今天我们进一步认识了小数,你有什么收获,能和大家分享吗?

【小数的意义教案】相关文章:

《小数的意义》的教案02-17

小数的意义教案12-05

《小数的意义》教案01-23

小数的意义教案【精】02-23

小数的意义教案【热】02-23

小数的意义教案【荐】02-21

【荐】小数的意义教案02-18

【热】小数的意义教案02-18

【热门】小数的意义教案02-21

【推荐】小数的意义教案02-22