《解决问题的策略》教案

时间:2024-11-02 11:06:13 教案 我要投稿
  • 相关推荐

《解决问题的策略》教案

  在教学工作者开展教学活动前,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的《解决问题的策略》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《解决问题的策略》教案

《解决问题的策略》教案1

  教学目标:

  1.使学生经历用列举的策略解决简单的实际问题的过程,能通过不遗漏,不重复的列举找到符合要求的所有答案。

  2.使学生在对解决简单实际问题的过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。

  3.使学生进一步积累解决问题的经验,增强解决问题的信心。

  教学准备:

  教学光盘,牙签,表格,飞镖和靶盘。

  教学过程:

  一.谈话导入

  谈话:同学们,在四年级我们曾经两次学到过解决问题的策略,还记得“策略”是什么意思吗?(指名答:方法)那么你们还记得我们曾经学过哪些策略吗?(画图,列表)

  引入课题:今天我们就继续来学习解决问题的策略(板上课题)

  二.教学例1

  师:看看今天都有哪些问题需要我们来解决。

  屏幕出示例题及其场景图,自主读题。

  师:题目给我们提供了哪些信息?需要我们做什么事情?(指名回答)

  师:18根1米长的栅栏围成的长方形,它的周长是多少?

  师:你们觉得王大叔会有多少种不同的围法?拿出你们手上的牙签,每根牙签代替一根1米长的栅栏,动手来围围看。(同桌合作摆牙签,教师巡视)

  指名说说他们围成了几种不同的长方形。估计学生可能有的结果:1种,2种,3种……(记录学生汇报的结果)

  师:究竟王大叔有多少种不同的围法了?老师现在也不知道,不过通过接下来的学习我们就会知道一共有多少种不同的围法了。

  师:如何能一个不落的将所有的围法都找出来了?你们觉得可以从几开始考虑?(指名回答)

  生:可以从宽是1米开始考虑,先用18÷2=9,然后把9分下来,长8宽1;长7宽2(板书学生说的内容)

  师:你们觉得接下来会是多少?(学生齐答:长6宽3,长5宽4)

  (可能有学生会继续说长4宽5,让学生自己去想要不要长4宽5,让学生明白一般情况长都大于宽,长4宽5实际上就是长5宽4。)

  拿出课前准备的表(教材P63)

  师:你能把符合要求的.长和宽一一的列举到表上去?动手做做看。(板书:一一列举)

  集体订正列表,各拿一份按顺序列举的和没有按顺序列举的表在实物展示台上让学生去比较,使他们明确列举时要按照一定的顺序。

  师:现在知道了一共有多少种不同的围法吗?(齐答)

  指出:刚才我们帮王大叔解决问题时,所采用的方法是将结果一个一个的列举出来,并且是按照一定的顺序来列举的,所以我们把这个策略叫做:有序的一一列举。(板书)

  师:如果你是王大叔的话,你会选择哪一种围法?

  生:第4种(长5宽4)

  师:为什么?

  生:因为第4种围法围成的长方形羊圈最大,王大叔就能养更多的羊子。

  师:什么时候面积最大?(周长一定时,长和宽越接近,面积就越大;长和宽差的越大,面积就越小)

  三.教学例2

  师:王大叔的问题解决好了,我们再来看看还有什么问题需要我们来解决。

  屏幕出示例2及其场景图。

  师:“最少订阅1本,最多订阅3本”是什么意思?

  (指名回答。可以订阅1本,可以订阅2本,还可以订阅3本)

  师:你们准备用什么策略来解决这个问题?

  (有序的一一列举)

  师:列举时,你打算先考虑订阅几本的情况,然后再订阅几本的情况?

  (从只订阅1本的情况考虑)

  师:如果只订阅1本,有几种不同的订阅方法?是哪几种?(3种)

  如果订阅2本的话,有几种不同的订阅方法?分别是哪几种?(指名回答,3种,让学生明白这个地方也要按照一定的顺序来列举:《科学世界》《七彩文学》,《科学世界》《数学乐园》,《七彩文学》《数学乐园》)

  如果订阅3本的话,有几种不同的订阅方法?(1种)

  师:那么一共有几种不同的订阅方法?(7种)

  师:拿出我们课前准备的表(教材P64上的),用打“√”表示订法,动手做一做,完成这个表格。

  (教师巡视,对于困难的学生可作适当的指导)

  指名到实物展示台来完成表格,集体订正。

  师:怎么从这张表中看出一共有多少种不同的围法?怎么看?(竖着看,一列就是一种订阅方法)

  师:通过一一列举,不但能看出共有多少种不同的订法,而且还能看出每种订法分别订的什么书。要得到全部答案,你觉得我们需要注意些什么?(学生思考,引导他们说出:要有序,不重复,不遗漏)(板书)

  四.游戏完成练一练

  师:帮王大叔解决了两个问题,有解决了订杂志的问题,咱们来做个小游戏吧!

  拿出飞镖和靶盘,让学生认识一下靶盘及其环数的分布(与P64练一练靶盘一样)

  师:咱们来做个投飞镖的游戏,看看能投中多少环。

  师:每人投中两次,请3-4名学生到前面来参加游戏,一个一个依次的投。

  学生投镖,教师注意记录结果

  师:由于时间关系,我们就不再投了。如果小华现在来投的话,也投中两次,你觉得小华可能会得到多少环?把可能出现的结果一一的列举在课堂练习本上。(学生独立完成,教师巡视)

  集体订正

  五.全课总结

  师:通过今天这节课的学习,你有什么收获和体会?

《解决问题的策略》教案2

  [教学内容]

  小学数学国标版六年级下册教科书P71解决问题的策略

  [教学目标]

  1、学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

  2、学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。

  3、学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得成功的体验。

  [教学重点]

  理解转化策略的价值,丰富学生的策略意识,会用“转化”的策略解决问题

  [教学难点]

  会用“转化”的策略解决问题。

  [教学具]

  每生印一张例1的方格纸 /学生准备剪刀

  [教学过程]

  一、故事引入,创情激思。

  有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀,在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”

  “哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。

  提问:听了这个故事,同学们受到了哪些启发呢?

  小结:今天我们也要学习爱迪生和他的助手阿普顿,巧妙地运用一定的策略来解决一些陌生的实际问题,今天我们要学习的'内容是“解决问题的策略”(四年级:列表法、还原法;五年级:列举法、还原法;六年级:替换法。)

  二、合作交流,探究策略。

  1.出示例1

  师:首先请大家欣赏2个平面图形,以前我们学过吗?生:没有

  师:你觉得它们像什么呢?(生发挥想象力回答,但要说明的是平面图形)

  2.引导交流

  师:请大家仔细观察这两个图形,它们的什么可能相等?生:面积

  师:怎样比较这两个平面图形的面积?谁来说说看。

  生:可能说“数方格/折剪拼移转”(如学生讲到数方格,老师要注意引导学生把方格补好)

  师:好,现在就请大家拿出手头的图形,同桌协商选用哪种方法,然后分好工,每人完成一个平面图形的操作,然后放在一起验证一下。(同桌操作,教师巡视,并指导。)

  3.指导验证。

  师:验证下来,发现,这两个平面图形的面积确实相等的同学学举手!

  你们组是怎么想的?为什么这么想?指名回答。

  学生说想的过程,并投影出示学生的作业纸。(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)

  师表扬。

  师演示刚才学生说的过程。

  师:这样旋转和平移后都变成了什么图形?

  生:长方形。

  师:变成长方形后面积确实————相等!为什么?

  生:长和宽一样,所以面积一样。

  (长是5格,宽是4格,它们的面积是相等的,都是20格。)

  师再次演示变化过程,提问:在2个图形变化的过程中,他们什么不变?(面积)都把他变成了什么图形的面积?生:长方形。

  有没有用“数的方法”?

  师小结:刚才我们为了更好的比较两者的面积,运用了解决问题的一个什么策略呢?是的,是把两个未学过的图形(复杂繁琐的)转化成已学过的(简单的)两个面积相同的长方形来比较的,这就是我们今天要学习的解决问题又一个策略——转化。(板书:转化)

  4.出示练一练。

  师:下面,我们继续看一组图形:出示p72练一练。

  生独立完成后,小组交流。(解题关键:平移前后周长不变)

  集体交流校对方法,并演示。

  5.回顾知识,体验转化

  (1)师:同学们,其实“转化”的策略并不神秘,在我们以前图形学习中就曾经很多次运用了“转化”的策略,你能回想出哪些呢?

  同学们合作交流,将自己思考的内容在组内交流,验证自己的想法正确与否,同时从别人的发言中丰富自己的认识。指名回答,生可能会说:

  推导三角形公式时,把三角形转化成平行四边形。

  推导梯形时把梯形转化成平行四边形。

  推导圆面积时,把圆面积转化成长方形。

  在学生说的过程中请学生说说推导的过程,并相应演示推导过程。

  (2)我们除了在图形变化中运用转化,在计算中也同样适用。计算小数乘法时把小数乘法转化成整数乘法,计算分数除法时把分数除法转化成分数乘法等等。

  若学生不能说出算理的转化过程,师先出示1.25*7.8=?1/7除以2/9是多少,让学生在算的过程中再次体会转化的重要性

  然后出示试一试:计算1/2+1/4+1/8+1/16

  师:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。

  (2)相邻的分数是什么关系?(后一个是前一个的1/2)

  师我们一起来画图表示看看。师根据题目依次画图。

  师:你能运用“转化”的策略来解决这一问题吗?学生看图解答。

  指名回答。1-1/16=15/16(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)

  比较:你认为哪种方法更简便?他是如何进行转化的?

  如果再添一个分数+1/32呢?

  (3)小结:“转化”中一种常见、极其重要的解决问题的策略。在以后的学习、生活、工作中碰到问题时,可以积极地使用“转化”策略来解决。

  三、拓展运用,提升策略。

  1、师:下面,我们就来比一比,赛一赛,看看谁的转化策略用得好?

  2、请大家在书上完成练习十四的1,2,3,然后集体校对,进行星级评定(合计5道,五星级评评定)。

  第1题:

  (1)学生数一数,得出结果。(15场)

  (2)交流简便思路,学生最初可能有两种情况。

  生1:用“顺加”的方法:8+4+2+1=15场。

  生2:用“倒减”的方法:16-1=15场

  对于第二种方法,学生可能只是猜测,需要通过举例去证明。

  (3)如果有64支球队参加比赛,产生冠军要比赛多少场?

  学生独立完成解答,后汇报。

  (4)教师讲授:16支球队中只有1支球队是冠军,其他15支球队都要先后被淘汰,所以一共要进行16-1=15(场)比赛。照此类推,64支球队参加比赛,产生冠军要进行64-1=63(场)比赛。

  第2题:(演示直接校对)追问:怎么想到转化的方法的?

  第3题:(重点讲评八卦图)

  已知该八卦图的半径是五厘米,求红色部分的周长是多少?

  学生解答(思路:转化成2个圆的周长)

  四、课堂小结

  通过本节课的学习你有什么收获?(“转化”随时随地都在我们身边)在今后的学习、生活中,你愿意运用转化的策略吗?为什么?

  生回答出示:

  学习数学的过程就是不断转化的过程。

  复杂转化为简单,陌生转化为熟悉,

  抽象转化为具体,未知转化为已知。

  掌握转化的策略,对学好数学至关重要。

  多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。

  用转化的策略解决问题:?----→!

  师小结:当然,有解决问题时,要善于从不同的角度灵活地分析问题,这样有利于我们想到合理的转化方法!

  五、课堂作业

  1、练习十四第3题(1)

  2、练习十四第4题:有三堆围棋子,每堆60枚。第一堆黑子与第二堆的白子同样多,第三堆有1/3是白子。这三堆棋子一共有白子多少枚?

  六、板书设计:

  解决问题的策略——转化

  ?----→!

  S三角形——S平行四边形

  S圆形——S长方形

  小数乘法——整数乘法

  分数除法——分数乘法

《解决问题的策略》教案3

  复习目标

  经历四则混合运算、解决问题的策略知识系统复习与整理,基本技能巩固和提高的过程。

  进一步认识和掌握四则混合运算、解决问题的策略的计算方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。

  培养自主复习与整理知识的良好习惯。发现学习中的问题,提高学习效果,增强学好数学的自信心。

  课时安排

  1课时

  三、复习重难点

  进一步认识四则混合运算、解决问题的策略,掌握四则混合运算、解决问题的策略的方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。

  四、教学过程

  (一)知识梳理

  1、在没有括号的算式里,有乘、除法和加减法,要先算()法,再算()法。

  2、算式里有小括号的,要先算()里面的;如果括号里既有乘除法又有加减法,也要先算(),再算()。

  3、在一个算式里,既有小括号,又有中括号的,要先算()里面的,再算()里面的。

  4、中括号和小括号在算式的作用是()。

  (二)题型、方法归纳与典例精讲

  1、四则混合运算计算。

  例:计算下面各题。

  (32+48)×(97-57)84-80÷16×12

  方法归纳:在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

  算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

  在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

  解决实际问题的计算。

  例:沪宁高速公路全长274千米。一辆每小时行75千米的汽车从南京出发,沿沪宁高速公路开往上海,已经行驶了49千米,还需多少小时才能到达上海?

  方法归纳:先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

  3、解决问题的策略,根据已知条件提问题并解答。

  例:茄子每行12棵,共17行,番茄每行10棵,共15行,你能提出不同的`问题并解答吗?

  方法归纳:弄清题意,理清题里的数量关系,根据数量关系提出问题并解答。

  (三)归纳小结

  在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

  算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

  在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

  先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

  (四)随堂检测

  1、计算下面各题。

  972÷(720-21×33)125÷[(572+78)÷26]

  李叔叔家的果园里一共有6行苹果树,每行12棵。今年共收了648筐苹果,平均每棵苹果树收苹果多少筐?

  少年宫举办“我们爱科学”夏令营活动,时间6天。光明小学有13名同学报名参加,共缴纳伙食费936元,平均每人每天的伙食费是多少元?

  赵阿姨从12只河蚌里剖出432颗珍珠。

  如果每72颗珍珠穿成一条项链,那么赵阿姨剖出的珍珠能穿成多少条项链?

  照这样计算,赵阿姨从26只河蚌里能剖出多少棵珍珠?

  同学们表演团体操,原来排成24行,每行有20人。队形变化以后,排成30行,每行有多少人?

  板书设计

  四则混合运算、解决问题的策略

  在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

  算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

  在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

  解决问题时,先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

  作业布置

  1、甲、乙两列火车分别从东、西两地同时相对开出,5小时后相遇。甲车速度是110千米/时,乙车速度是100千米/时。求东、西两地间的路程。

  预习102页有关内容。

  七、教学反思

《解决问题的策略》教案4

  教材分析

  解决问题的策略是解决问题必要的一种问题解决思想方法,这部分内容是在学生已经积累了一定的数量关系及解决问题的经验,初步了解了同一问题可以有不同的解决方法的基础上学习的。本节课在列表过程中,分析数量关系寻求解决类似归一、归的实际问题的有效方法。学好本节课知识,将为学习用列表等方法解答求两积之和(差)等实际问题奠定知识和思想方法的基础。

  学情分析

  1、本节课是用列表的方法整理问题情境中的信息,用从已知条件想起或从所求问题想起的方法分析数量关系。例题从三个小朋友买相同笔记本的信息,分两次提出要解决的问题,要求学生找出解决第一个问题的条件并进行整理,通过呈现表格让学生思考怎样解决问题。随后学生很自然的自主分析数量关系,解决第二个问题。

  2、在练习中安排了与例题结构相同的实际问题,学生都能运用所学的策略解决问题。

  3、在解答第二个问题时,有大部分同学想不到方法,要从小明的信息算出单价,再用除法求出小军能买多少本。这是本节课的障外点。

  教学目标

  1、学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的作用,学会用列表的.方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。

  2、通过自主探索、合作交流等学习活动,学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从而提高学生收集并整理信息,发现并分析、解决问题的能力,发展他们的推理能力。

  3、通过学习,学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点和难点

  用列表的方法整理问题情境中的信息,用从条件想起或从问题想起的方法分析数量关系。难点:正确整理、分析数学信息关系,学会通过所整理的信息决策问题解决策略,并内化成自己的问题解决策略。

《解决问题的策略》教案5

  这部分内容教学用“一一列举”的策略解决一些生活中的简单的实际问题。在此之前,学生已经学习过用列表和画图的策略解决问题,对解决问题的策略已经有了一些体验和认识,而这节课的重点是使学生学会有条理、有顺序地一一列举,从而不重复、不遗漏地列举出问题的所有答案。在教学中我是这样处理的:

  一、课前谈话,导入课题

  1、平时你们都喜欢看什么课外书?(指名回答)

  2、选择3种(数学乐园、七彩文学、科学世界),板书在黑板上,提问:如果从中选出2种阅读,有多少种不同的选择方法?你能一一列举出来吗?

  3、师小结:

  一一列举是我们解决问题的一种策略,今天这节课我们就来学习用一一列举的策略解决生活中的数学问题。(板书课题)

  [反思:

  在3种书中选择2本并列举出来,这一内容学生四年级时已经学习过,因此对学生来说并不困难。设计这一环节的目的一方面是导入课题—一一列举,另一方面是复习旧知,为例2的教学先分类,再列举做好铺垫。]

  二、自主探究,学习列举

  (一)创设情境,教学例1

  1、出示红山森林动物园大门图。这是什么地方?这节课牛老师就带大家去红山森林动物园玩一玩。

  2、王大叔是动物园的工人,今天他碰到难题了,课件出示例1:

  王大叔要用18根1米长的栅栏围成一个长方形花圃,有多少种不同的围法?

  3、指名读题,并说说从题中知道了哪些信息?(长方形的周长是18米)

  4、你们能帮助王大叔解决难题吗?

  (1)请你们每人拿出18根小棒代替题目中的18根1米长的栅栏,在小组中围一围,看看有多少种不同的围法。

  (2)集体交流不同的围法:4种

  5、观察这4种围法,你发现了什么?(长+宽=9米),为什么长加宽的和一定是9米呢?6、出示表格,我们也可以用列表的方法一一列举:

  我们可以从宽是1米想起:如果宽是1米,长是多少?

  如果宽是2米,长是多少?

  ……

  7、(1)请大家独立完成练习纸上例1的前2行。

  (2)集体交流核对。

  8、刚才我们用小棒围和列表2种方法帮王大叔解决了难题,你比较喜欢哪种方法?为什么?

  9、这4个长方形的周长都相等是18米,面积是不是也相等呢?请大家完成练习纸上例1题第3行:求面积。

  10、比较每个长方形的长、宽和面积,你有什么发现?

  (长方形的周长相等,面积不一定相等;长和宽越接近,面积就越大。)

  [反思:

  在教学例1时,先引导学生用小棒摆一摆。通过摆小棒的操作,可以使学生进一步明确围成的长方形的周长与它的长和宽的关系。多数学生摆小棒时是无序思考的,因此可能出现重复或者遗漏的现象。在教学的过程中,有一名学生回答这4种摆法是非常有序的:宽是1米,长是8米;宽是2米,长是7米;宽是3米,长是6米;宽是4米,长是5米。我只是肯定了学生的回答的正确,如果在这个环节的处理上,让这个学生再说一说自己是怎样想的,怎样把4种答案都找出来的,就可以通过这个学生的回答引导其他学生发现“长加宽的和等于周长的一半”,他是有顺序的思考的,因此就找出了所有问题的答案。让其他同学感受到:要找出所有不同的围法,需要有条理地一一列举。在这一环节上,我没有大胆的放手,而是又扶着学生探索“长加宽的和与周长的关系”,如果让学生的发现回答代替我的引导,可能这个环节会更精彩。

  在学生通过摆小棒明确有4种不同的围法,并且探索出“长加宽的和等于周长的一半”后,引导学生通过列表来一一列举,明确列举时要有顺序的思考,注意不重复、不遗漏,学生掌握较好。]

  (二)教学例2

  1、动物园有儿童游乐场,课件出示题目:

  打靶、旋转木马、碰碰车3个游戏项目,最少玩1项,最多玩3项,有多少种不同的玩法?

  2、最少玩1项,最多玩3项是什么意思?

  3、你打算用什么策略解决这个问题?

  4、列举时分几类情况思考?每类有几种方法?(分步出示表格)

  5、请你用自己喜欢的方法进行列举:可以用老师提供的表格,在表格中打“√”,也可以用其他方法如文字表述。

  6、集体交流反馈时结合例2让学生说说要得到全部答案,列举时要注意什么?

  [反思:

  在教学中,我将书上例题的3本不同的书籍改成3个不同的游戏项目,引起了学生的学习兴趣。通过对“最少玩1项,最多玩3项”这句话的分析明确不仅可以玩1项,也可以玩2项,或者可以玩3项。因此在一一列举时必须先分类,再有顺序地一一列举。我在雨花台小学上这节课时,发现有部分学生不知道如何去打“√”,因此在教学时应充分的考虑到学生的个体差异,指导学生打“√”的方法。]

  三、拓展应用,完成相应的练习

  (一)练一练

  1、小华选择了打靶游戏,出示练一练题目。

  2、“投中2次”,可能得到哪2环?总成绩是多少?

  3、请你列举出所有可能的答案(列出算式),完成在练习纸上。

  4、集体交流核对。

  [反思:

  例1、例2都是让学生列表进行一一列举,在这一题,我让学生分2类(2环成绩相同和2环成绩不同)列出算式,通过比较算式8+8=16(环)与10+6=16(环)的结果都是16环,从而得出有5种不同的答案(6—1=5)。从学生反馈的情况看,学生掌握较好。]

  (二)练习十一第1题

  1、红山动物园还为游客提供了2种不同线路的游览车,出示题目:

  1路车早上8时20分开始发车,以后每隔10分钟发一辆车;2路车早上8时40分开始发车,以后每隔15分钟发一辆车。这两路车几时几分第2次同时发车?

  2、学生独立完成在练习纸上。

  3、集体交流核对。

  (三)第2题

  1、红山动物园的音乐广播每隔一段时间就会播放一次音乐。已经播放了几次:出示时间:9:00,9:40,10:20,11:00……

  2、从这几个时间中你发现了什么?

  3、那么下面哪些时刻也是音乐广播的时刻?13:00,14:40,15:40,16:00,请圈出。

  4、你想怎样解决这个问题?你能列举出下面表演的时刻吗?完成在练习纸上。

  (四)第3题1、结束了1天的游玩,小华、小军、小明想拍照纪念。

  2、有几种不同的照相方法?

  3、独立思考,完成在练习纸上。

  4、小组交流

  5、集体交流

  [反思:

  教学时我将书上练习中的题目配合我的教学情境做了一些改编。

  1、将第1题的时间做了修改;

  2、将第2题的音乐钟编成了音乐广播;

  3、将第3题的升3面不同颜色的'小旗改为3个同学并排照相。

  教学时由于时间的关系,我只完成了练习的1、2题,学生用一一列举的方法解决问题完成的比较好。

  第3题书上的题目是:“有红、黄、蓝三种颜色的小旗各1面,从中选用1面或2面升上旗杆,分别用来表示一种信号。一共可以表示多少种不同的信号?”解决的方法:先分类,选1面有3种:红、黄、蓝;选2面有6种:红黄、黄红、红蓝、蓝红、黄蓝、蓝黄。所以一共有3+6=9(种)方法。

  我改编后的题目是:“小华、小军、小明想拍照纪念,如果并排照,有多少种不同的拍照方法?”这题也应先分类:单人照有3种;双人照有6种(同上小旗,存在左右排序的因素);三人照也有6种。所以一共是3+6+6=15(种)不同的拍照方法。

  对于这样的并排拍照排序的问题,四年级时学生已经接触过了,不同的是四年级时是单独讨论双人照或单独讨论三人照的问题。而现在的这题需要分3类考虑,书上小旗题只是分2类,没有考虑选3面小旗,我改编这题的目的是想对学生有所提高,但对于五年级的孩子来说是否太难,拔高了对他们的要求,还有待思考。]

  四、课堂小结

  通过今天的学习,你有什么收获?能一一列举出来吗?请你们四人小组相互交流。

  [整节课教后反思:

  在教学中我创设了去红山森林动物园游玩的情境:帮工人王大叔解决用18根栅栏围一个长方形花圃(例1);去游乐场游玩,3个不同的游戏项目选择(例2);小华玩打靶游戏(练一练);动物园的游览车发车问题(练习1);动物园的音乐广播播放时间问题(练习2);结束一天的游玩后的拍照问题(练习3),激发了学生的学习兴趣,调动了学生学习的积极性。

  引导学生根据问题的特点,在“一一列举”的过程中合理使用不同的方法,感受不同策略在解决问题过程中的不同价值。例1和例2主要是让学生运用列表的方法解决问题,练一练用列表的方法只能看出有6种可能的情况,但这其中总环数有重复的情况,因此我引导学生用列算式求总环数的方法,很快能看出有5种不同的情况。练习第3题照相问题由于存在排序问题,列表也不太合适。在教学中,主要是让学生理解在“一一列举”的过程中要有顺序地思考,不重复,不遗漏,使学生在解决问题的过程中能灵选用不同的方法列举。

  在教学中例2和练习3有类似的地方,都是先分类,而且都是分3类,不同的是例2只是组合问题,不需要考虑排序;而练习3分类后,每一类还要考虑排序的问题,因此难度是比较高的,我将这题改编后提高了问题的难度,设计成了机动题,是否拔高了对学生的要求还有待思考。

《解决问题的策略》教案6

  教学目标:

  1.进一步巩固画图整理信息的方法,能借助所画的线段图和示意图分析数量关系,确定解决问题的思路。

  2.进一步体会用画图的策略整理信息的价值,懂得画图整理信息是解决问题的一种常用策略,培养运用这一策略分析问题和解决问题的意识。

  3.进一步积累解决问题的经验,强化解决问题的策略意识,获得解决问题的成功体验,增强学好数学的自信心。

  教学难点让学生体会用画图的策略解决问题的价值,逐步形成解决问题的策略。

  教学准备:

  教学过程:

  一、知识再现

  1.提出问题:

  (1)同学们,上节课我们又掌握了一种解决问题的策略,它是什么呢?

  (2)我们通过画什么样的图来分析问题?

  (3)运用画图的策略来解决问题有什么好处呢?

  2.今天这节课,我们要一起完成一些练习,通过这些练习同学们将再次感受画图这一策略的'价值。(板书课题)

  二、基本练习 画线段图解决问题。

  1.完成教材第52页“练习八”第4题。

  让学生独立画出线段图。

  2.完成教材第53页“练习八”第10题。

  让学生根据题目中的信息将教材上的线段图补充完整。

  这里比较困难的是弄清楚线段图中,王晓星比张宁多出的那一段表示的是不是8张。

  教师可以进行启发:如果多出的这一段是8张,那王晓星就要把这一段都给张宁;这一段都给张宁后,两条线段会一样长吗?

  引导学生发现:只能把王晓星比张宁多出的那一段的一半给张宁,这样两条线段才会一样长。因此多出的那一段要平均分成两份,其中的一份才是8张。

  让学生独立解答,组织汇报。

  3.完成教材第54页“练习八”第11题。

  组织练习时,先让学生独立思考,再交流补充线段图的方法,最后让学生独立解答。

  三、综合练习

  用画示意图的策略解决问题。

  1.完成教材第53页“练习八”第8题。

  这道题画示意图时,引导学生可以用一个小圆点表示一个人,画出下面这样的示意图:

  然后组织学生进行观察,计算出每个方阵需要两种颜色的运动服各多少套,再算出一共要准备多少套。

  2.完成教材第54页“练习八”第13题。

  让学生在图上画一画,将长方形扩大成正方形。

  3.完成教材第52~54页“练习八”其余习题。

  学生独立完成。

  四、反思总结 通过本课的学习,你有什么收获? 还有哪些疑问?

  五、课堂作业 《补》

《解决问题的策略》教案7

  一、教学目标

  【知识与技能】

  理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。

  【过程与方法】

  通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。

  【情感、态度与价值观】

  在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。

  二、教学重难点

  【重点】用转化策略比较不规则图形的面积。

  【难点】转化的方法及应用。

  三、教学过程

  (一)导入新课

  大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。

  教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。

  引出课题——解决问题的策略。

  (二)讲解新知

  1。问题探究

  大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?

  学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的.比较方法。

  学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。

  教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。

  教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。

  2。方法总结

  教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。

  教师总结学生回答:

  (1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的大小不变;

  (2)图形转化可通过平移、旋转、翻折、拼接等方法;

  (3)经过转化之后将无解变得可解,将复杂问题变成简单问题。

  教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。

  教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。

  (三)课堂练习

  算一算下列三个图形中阴影部分面积占整个面积的几分之几。

  (四)小结作业

  小结:总结本节课学习内容。

  作业:课后练一练。

《解决问题的策略》教案8

  一、故事引入,初步感知

  [电脑出示]曹冲称象图片

  曹冲用什么称出大象的重量?为什么称石头的重量就能得到大象的重量?

  今天我们就来研究如何用替换的策略解决问题。[板书课题]

  生活中有哪些地方是用替换来解决问题?

  二、出示问题,探索运用

  [电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?

  读题,从题目中获得哪些信息。

  你是怎样理解小杯的容量是大杯的这句话?[电脑出示]

  这里720毫升果汁既倒入6个小杯,又倒入1个大杯,要求小杯和大杯的容量,该怎么办呢?

  学生说两种替换的过程。为什么要把大杯换成小杯?

  四人小组合作。

  要求1、画一画,选一种替换方法画出替换过程。

  2、说一说,应该怎样替换,并且如何计算。

  小组展示汇报。

  怎样检验结果是否正确?学生口头检验。

  解决这个问题时,运用的是什么方法?这里为什么要用替换的方法?

  我们把两个量通过替换转化为一个量,便于我们计算。有时可以借助画图来帮助理解。

  三、拓展应用,巩固策略

  1、[电脑出示]8块达能饼干的`钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1 杯牛奶呢?

  学生独立完成。并说出想的过程。

  为什么不把饼干替换成牛奶来考虑?

  2、[电脑出示]在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?

  读题,从题目中获得哪些信息?

  与例1相比,有什么不同的地方?

  每个大盒比小盒多装8个这句话你是怎么理解的?

  怎样替换?

  学生独立完成并核对。

  3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?

  四、小结全课,优化策略

《解决问题的策略》教案9

  《数学课程标准》在解决问题的课程目标中对解决问题的策略教学提出了明确要求:形成解决问题的一些基本策略,体验解决问题策略的多样性。为了将解决问题的策略教学目标落到实处,必须先解决两个问题:其一,如何清晰地界定解决问题的策略,明确义务教育阶段小学生应该形成哪些解决问题的策略?其二,如何帮助学生形成解决问题的一些基本策略,并体验解决问题策略的多样性?

  一、关于解决问题的策略

  对解决问题的策略,人们已经有很多研究。波利亚在《怎样解题》一书中谈及的解决问题的策略有普遍化、特殊化、类比、猜想和检验、画一张图、建立方程、倒着干等。浙江省特级教师朱德江认为解决问题的策略有尝试和检验、画图、操作、找规律、制表、从简单的情况人手、整理数据、从相反的方向思考、列方程、逻辑推理、改变观点等11种。加拿大的某套数学教材中将解决问题的策略分为10种,并采用图文结合的方式形象地呈现如下:

  我国课程改革下的实验教材,不再以传统的算术应用题内容为线索,而是以学生的生活经验为线索,以所学运算体现的数量关系为线索,以体现解决问题的策略为线索。人教版教材编排了图示、列举、列表、找规律、从简单情况入手等解决问题的策略。北师大版教材编排的解决问题的策略有画图、列表、猜想与尝试、从特例开始寻找规律等。苏教版教材采用分散与集中相结合的原则,从四年级起集中编有解决问题的策略单元,安排学生学习摘录与列表、画图、一一列举、倒推;替换、假设、转化等策略。

  从以上的分析,我们可以大致明晰教材中解决问题的策略的内容。

  二、学习解决问题策略的三个阶段

  教师不但要思考解决问题的策略有哪些,还要思考怎样帮助学生形成这些策略。

  解决问题策略的学习,不可能脱离解决问题的过程,必须和解决问题紧密结合在一起。也就是说,解决问题策略的学习是基于解决问题、为了解决问题的。解决问题,首先是作为学生感受、体会、反思解决问题策略的手段,其次是让学生运用所学策略解决新的问题。对学生来说,解决问题的活动价值,不仅仅是解决某一类问题,获得某一类 问题的结论,更重要的是在解决问题的过程中获得发展,即基于解题的经历,形成相应的经验、技巧、方法,进而通过反思和提炼,形成一定的解决问题的策略。学生认识、理解、掌握解决问题的策略一般要经历潜意识阶段、明朗化阶段、深刻化阶段。教师要顺应学生的学习心理,展开解决问题策略的教学。

  1.走出潜意识阶段

  对学生来说,学习解决问题的策略,并不是建空中楼阁。他们在日常生活中已经积累了一些关于策略的认识,在以往解决问题的过程中也已经初步积累了解决问题的.经验,但并不一定关注到了解决问题时隐藏在背后支撑解决问题的策略,即学生对策略的认识处于潜意识阶段。在这个阶段,学生往往关注具体的问题是否得以解决,对解决问题的策略处于朦朦胧胧、似有所悟的状况,缺乏应有的思考。学生对解决问题的策略的认识要经历一个从模糊到清晰的过程。教学时,教师可先呈现问题,让学生根据他们已有的知识经验尝试解决问题,获得一定的经验;再引导学生回顾解决问题的过程,

  思考解决问题的策略,并通过回顾性陈述交流,将解决问题的策略化隐为显。在回顾性陈述时,学生可能会基于自己的经验和理解,提出不同的策略,教师应引导学生联系解决问题的过程提炼。

  2.步入明朗化阶段

  学生对某一种解决问题的策略有了初步的感受后,教师应引导学生将策略明朗化。如:呈现新问题后,组织学生思考可以用什么策略解决问题,使学生具有明确的应用策略的意识;解决问题后,再组织学生交流解决问题的过程。这样,随着解决问题策略的初步应用以及对解决问题过程的回顾与反思,解决问题的策略就逐步浮出水面并凸现出来。这里要指出的是,在教学新的解决问题策略时,不能排斥学生应用以往学习的解决问题策略。学生学习解决问题策略的过程,不是小猴子掰玉米,喜新弃旧,而是在不断整合、应用不同策略的过程中,丰富自己解决问题的经验,并在新的问题中主

  动、综合、灵活应用各种策略解决问题。

  3.走向深刻化阶段

  在学生比较充分地感知了解决问题的策略、明确了解决问题的策略后,教师要安排一定的练习,对相关策略进行集中强化,以加深学生对策略的理解与掌握,使学生对策略的认识更深刻,逐步达到运用自如的境界。在这一过程中,教师要引导学生继续反思自己所使用的策略,促进学生形成稳定的解决问题的策略。在教师的眼中,学生采用的策略可能有优劣之分,但学生的思考过程并没有好坏之别,都能反映学生对问题的理解和所作的努力。因此,即使到了巩固、深化策略的阶段,教师仍不应急于对学生的策略作出评价,而应给学生阐明和讨论策略的机会,让学生在交流、倾听中比较不同的策略,优化自我的策略。为了深化学生对策略的认识,教师可在学生采用一定的策略解决问题后引导学生进一步思考:自己所采用的解决问题的策略有什么特点,适用哪些情况?还可采用什么策略解决问题?不同策略之间有无一定的本质联系?学生不断地经历这样的思考,就能对策略的本质有更深入的认识,就能得心应手地应用策略解决问题。

  策略,有助子在解决问题时走出无从下手的沼泽地;解决问题,有助于加深对策略的认识、理解与掌握。教师要充分认识策略的意义,进一步在实践中探索学生形成策略的规律,将解决问题策略的教学目标落到实处。

《解决问题的策略》教案10

  教学内容:苏教版小学数学五年级下册第88~89页。

  教学目标:

  1、让学生通过分析具体情境中的实际问题,学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:学会用“倒过来推想”的策略解决问题。

  教学难点:掌握用“倒过来推想”的策略解决问题的思路。

  教学过程:

  一、结合情境,初步感知。

  今天早上我从家里出发,下楼到车库,取出二轮宝马自行车,然后在路边的忘不了早餐店吃个早餐,共用了十分钟,在路上骑车又用了二十分钟才到学校,这时刚好是7点40,请问你们知道我是什么时候从家里出发的吗?

  你是用什么方法得出结论的,倒过来推想,是呀,倒过来推想是我们解决数学问题重要的一种策略,今天这节课我们就学习这种策略。板书:解决问题的策略,倒过来推想

  请同学们看大屏幕:

  二、自主探索,解决问题。

  (一)教学例1

  老师这里有两个杯子,装了一些果汁,共400毫升。如果把甲杯中的40毫升果汁倒人乙杯,现在两杯同样多。原来两杯果汁各有多少毫升?

  从题目中你了解了哪些信息?甲倒给乙40毫升后,什么不变?什么变了?怎么变的?我们可以用以前学过的什么相关策略我们解决呢?自己先想一想,再把你的想法写下来,在小组交流。先想好的同学可以帮助组里其他有困难的同学一下。根据小组的'交流,发现你们有以下这么几种想法:

  (1)示意图 请画图的同学说说你的想法。

  说得不错,如果还不是十分清楚的同学,再看一下大屏幕,老师把他的想法用动画表示出来,这样你懂了吗?

  (2)画线段图

  他这样做也是先求什么?然后再把甲倒给乙的40毫升还回去,求出原来甲

  乙各有多少毫升。

  (3)表格

  我们已经求出了原来的甲是240毫升,原来的乙是160毫升。你能对这个结果作出检验吗?

  刚才同学们用了我们以前学过的画线段图、画示意图、列表等方法来解决这个问题。那想一想,不管你用的是哪种方法,都是先从什么出发?然后再根据原来到现在的变化过程求出什么?这就是运用倒过来推想的策略来解决问题。请同学们打开课本88页把例1看一遍,再体验一下用倒推的策略解决问题。

  (二)教学例2

  这种策略在日常生活中运用非常广泛,请看大屏幕例2。

  你了解到哪些信息?你能想个办法来信息,清晰地表明邮票变化情况吗?先自己试一试,再与同组同学交流。现在请小组汇报一下。你们是怎样信息与解答的呢。

  箭头法教师板书

  原有?张 收集24张 送走30张 还剩52张”

  “原有?张 去掉24张 要回30张 还剩52张”

  线段图说出意思。

  符号表示我刚才在下面发现有个同学也是用箭头表示,不过不象我们用文字叙述,而是用符合来表示的,请同学们看黑板,你们看得明白吗?来那我们把掌声送给他。同时这掌声也是送给你们自己,你们的想法都不错,表现让我非常满意。

  刚才在解答时同学们用了什么策略? 现在大家有信心用这个策略来解决一些实际问题吗?

  请看书上89页的练一练。甲、乙两位同学到黑板上来做,其他同学在下面自己独立完成。

  请黑板上板演的同学说说你的想法。我刚才发现有两个同学是这样列式的,25*2+1,发现这种解法错在什么地方,做错的同学能不能自己主动站起来勇敢地说一说。同学们你看这位同学说得多好,我们不怕犯错误,关键是错了能知道错在什么地方,及时地改正过来,这是最珍贵的,我希望同学们在有错误时都能象这位同学一样,勇敢地承认自己错误,并改正过来,做一个诚实的人。掌声送给他,勇敢的人。

  下面请同学们打开课堂练习本,把书上90页的第1、2题做在本子上。

  :通过刚才的作业我发现同学们这节课掌握得不错,只有两个同学计算时粗心错了。这节课我们学习的是什么内容?对用倒过来推想解决问题,这些问题有什么共同的特征?都是已知结果,求原来。用这个策略解决问题时,我们可以借助示意图、线段图、表格、箭头图等分析题意,如果对刚才课上还有不清楚的地方,欢迎同学们下课与我交流,好,这节课就到这里, 谢谢同学们的配合,下课。

《解决问题的策略》教案11

  教学内容:

  教科书第88~89页的例1、例2和“练一练”,练习十六的第1、2题

  教学目标:

  1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心

  教学过程:

  一、学习例1

  1.呈现问题。

  (1)}出示“原来的”两杯果汁,并出示条件“两杯果汁共400毫升”。

  提问:如果把甲杯中的40毫升果汁倒人乙杯,这两杯果汁的数量分别会发生怎样的变化?

  (2)学生回答上述问题后进行实际的操作演示,让学生发现不仅甲杯减少了.乙杯增加了,而且甲杯和乙杯正好同样多。

  (3)回顾操作过程,出示例题中条件部分的完整示意图,提出问题:原来两杯果汁各有多少毫升?

  2.解决问题。

  (1)提问:把甲杯中的40毫升果汁倒人乙杯后,两个杯子里的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?

  (2)小组讨论:知道了现在两个杯中的果汁数量,可以怎样求原来两个杯中的果汁数量?可以用怎样的方法来解决?

  (3)在学生提出“再倒回去看一看”时,追问:如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)学生画图后,组织展示、交流,并相机呈现教材提供的第二组示意图。

  引导学生认识到“再倒回去”后,甲杯在200毫升的基础上,增加了40毫升;乙杯在200毫升的基础上,减少了40毫升。

  (5)小结:看来“再倒回去”是个好办法,用这个办法我们很容易就能想到原来两个杯子里各有多少毫升果汁。

  3.填表回顾,加深对“倒过来推想”的体验。

  (I)回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程将教材中的表格填写完整吗?要求边填边想表中的每个数据各是怎样推算出来的。

  (2)提问:在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么特点?

  学生讨论后,揭示课题并板书:解决问题的策略。

  二、学习例2

  1.出示例2,让学生读题后,再要求说说题目的大意。提问:用什么方法可以将题目的意思更清楚地表示出来?

  2.在学生讨论后,指出:可以按题意摘录条件进行整理。出示下图:

  原有?张一—→又收集了24张一—→送给小军30张一—→还剩52张

  提问:你能根据上图再说说题目的大意吗?要求小明原来有多少张邮票,你准备用什么策略来解决?

  3.明确可以用“倒过来推想”的策略解决问题后,提出:你能仿照上图的样子,表示出“倒过来推想”的过程吗?

  学生尝试画出倒推的示意图后,出示下图:

  原有?张←一一 去掉收集的24张←一一 跟小军要回30张←一一 还剩52张

  要求根据上图写出倒推后每一步的.结果,再让学生综合“倒过来推想”的过程列式解答。

  4.要求学生根据答案和“小明邮票张数”的变化情况顺推过去,看看剩下的是不是52张。

  5.引导反思:解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

  三、应用巩固

  出示“练一练”,学生各自读题。

  提问:你打算运用什么样的策略解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种说法表示这样的意思吗?

  学生解题后,组织交流,重点让学生说说推想的过程。

  四、课堂作业

  做练习十六的第1、2题。

  五、全课小结

  这节课你学会了什么?你有哪些收获和体会?

《解决问题的策略》教案12

  教学目标

  1、使学生会运用替换和假设的策略分析数量关系,确定解题思路并解决问题。

  2、使学生在不断反思中感受替换和假设的策略对于解决特定问题的价值。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,提高信心。

  教学重难点

  (1)学会用替换和假设的策略解决实际问题。

  (2)灵活运用学过的解题策略,体会策略价值。

  课时安排

  7课时

  用替换的策略解决问题

  教学内容:苏教版义务教育教科书《数学》六年级上册68~69页例1、练一练,第72页练习十一第1~3题。

  教科书第89-90页的例1“练一练”,练习十七第1题。

  教学目标:

  1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  解决用假设策略时总量不变的实际问题,认识假设的策略。

  教学难点:

  运用假设策略分析数量关系。

  教学过程:

  一、出示问题,选择策略

  1、以图文结合的方式呈现例1,要求学生边读边看图。

  2、引导交流:题中告诉了我们哪些条件?要求什么问题?大杯与小杯容量的关系还可以怎样表示?

  3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?

  如果720毫升果汁全部倒入小杯,而且知道正好倒了几个小杯,你会求出每个小杯的容量吗?

  4、提出假设:如果把720毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?

  二、自主探索,运用策略

  1、探索:如果把720毫升果汁全部倒入小杯,需要几个小杯?

  结合例题中的示意图提问:

  一个大杯可以替换成几个小杯?

  把1个大杯替换成3个小杯的依据是什么?

  由1个大杯可替换成3个小杯,你想到了什么?

  小结:如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。

  2、探索:如果把720毫升果汁全部倒入大杯需要几个大杯?

  (1)提出问题后,要求让学生看图思考。

  (2)交流中明确:将倒入6个小杯中的果汁倒入大杯中,根据“小杯的容量是大杯的1/3”,3个小杯的果汁正好可

  以倒满1个大杯,6个小杯的'果汁正好可以倒满2个大杯。

  (3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。

  3、列式解答:

  引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。

  4、检验。

  引导:求出的结果是否正确?我们可以怎样检验?交流中明确:要看结果是否符合题目中的两个已知条件。学生

  通过计算进行检验,并完成答句。

  三、回顾与反思,提升策略

  提问:在刚才解决问题的过程中,经过哪些步骤?你觉得哪些步骤是关键?你能说说解决这个问题的策略吗?

  学生交流、汇报。

  四、拓展应用,巩固策略。

  1、指导完成“练一练”。

  (1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。

  (2)提问:这个问题与例1有什么相同的地方?有什么不同的地方?你打算用什么策略来解决这个问题?

  (3)追问:威慑么这道题假设全部买椅子而不是假设全部买桌子?

  (4)为了计算方便,要根据两个量之间的倍数关系合理选择假设。运用假设策略时,怎样根据数量间的关系假设也

  很重要。

  (5)让学生自主进行检验。

  (6)反思小结:解决这个问题的关键是什么?

  2、课堂作业:做练习十一第1题。

  独立完成,同桌互说自己的想法。

  全班交流。

  3、做练习十一第2题。

  提问:根据填充里的想法,这道题可以怎样假设?还可以怎样假设?

  独立完成解答,指名板演。

  五、全课总结

  通过这节课的学习,你有什么收获和感想?

《解决问题的策略》教案13

  教学内容:

  苏教版义务教育教科书《数学》六年级上册70~71页例2、练一练,第73页练习十一第4~7题。

  教学目标:

  1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  解决用假设的策略时总量变化的实际问题。

  教学难点:

  理解假设时数量的复杂关系。

  教学过程:

  一、出示问题,讨论策略

  1、出示例2,读题。

  2、小组讨论:你准备怎样来解决这个问题?用什么策略?

  3、你准备怎样假设呢?

  二、自主探索,运用策略。

  1、出示提问:

  (1)这题告诉了我们哪些条件,要求什么问题?

  (2)你是怎样理解题中数量之间关系的?

  通过交流理解:1个大盒里的球的个数+5个小盒里球的个数=80,1个大盒里球的个数—8=1个小盒里球的个数,或者1个

  小盒里球的个数+8=1个大盒里球的个数。

  2、列式计算:

  (1)你能根据假设后的数量关系列示解决吗?

  (2)提问:如果假设6个全是大盒,球的总数又会发生怎样的.变化呢?请大家先想一想,再根据这样的假设算出结

  果,看看答案是不是相同。

  集体评议,重点讨论球的总数发生了怎样的变化。

  3、引导比较:

  (1)刚才我们用两种思路解决了例2,假设6个全是小盒或者假设6个全是大盒,虽然假设的方法不一样,但你发现

  它们有什么相同的地方吗?

  小结。

  三、反思比较,内化策略。

  1、比较异同。

  引导:上节课我们学习了例1,明确了假设的策略,今天又学习了例2,用假设的策略解决了另一类比较复杂的问题。回想一下,例1和例2的条件有什么相同和不同,解决时又有什么相同和不同?

  同桌讨论后全班交流。

  2、反思内化。

  引导:回顾例1和例2解决问题的过程,你有什么体会?

  四、拓展应用,巩固策略

  1、做练一练第1题

  提问:两种不同的假设有什么区别,解题时有什么不同?

  让学生列式解答,指名板演。

  2、做练一练第2题。

  指出:当已知大、小两种量相差多少时,用假设策略时要按假设的方法,思考总量有什么变化,是增加了多少还是

  减少了多少。

  3、做练习十一第5题

  引导学生课业用三种不同的假设方法说明。

  五、全课总结:

  1、这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?

  2、作业:

  完成练习十一第4、6、7题。

《解决问题的策略》教案14

  一、教学内容

  转化是解决问题的常用策略。转化能把新颖的问题变成已经认识、已能解决的问题,从而创造性地利用已有的知识、经验。转化能把复杂的问题变成较简单的问题,从而便捷地找到问题的答案。本单元教学转化策略。

  学生在过去的数学学习中经常进行转化,已经积累了关于转化的体验。本单元深入体验转化,用于解决实际问题。编排2道例题、一个练习,把教学分成两段进行。

  例1,回顾以前进行的转化,从策略层面上认识它,体会转化的价值。

  例2,利用已有分率进行推理,转化较复杂的分数问题,发展思维的开放性和灵活性。

  二、教材编写特点和教学建议

  1.让学生体会转化,感悟策略。

  策略是在解决问题的活动中逐渐形成的,再认解决问题的过程,体验其中的思想方法是形成策略的有效途径。学生曾经进行过许多转化,是感悟策略的宝贵资源,本单元从回顾以前进行的转化开始,例1的教学分三步进行。

  利用图形的直观作用引发转化。方格纸上呈现两个形状不同的图形,不容易直接看出面积是否相等。学生会想到把两个图形都转化成长方形,再比较面积的大小。其中一个图形平移它的一部分,另一个图形旋转它的两小块,转化成的两个长方形长相等、宽也相等,面积肯定相等。这个问题利用直观情境让学生主动转化,初步体会转化有助于解决问题。

  回忆曾经进行过的转化,体会转化是一种策略。教材指出转化是策略,让学生回忆曾经运用转化策略解决的问题,进一步体验转化。第72页列举了推导面积公式时转化,计算小数乘法、分数除法时转化,这些仅是曾经进行过的一部分转化,学生还能说出许多。教学时要让学生充分回忆,简要说说怎样转化的,转化有什么好处,达到体验转化的目的。

  有意识地应用转化解决问题。试一试计算四个异分母分数的加法,数形结合,把原式转化成1-,能很快说出得数。练一练计算多边形周长,在图形启发下转化成求长方形周长的问题,实现了化繁为简。通过这两个问题的解答,再让学生说说解题策略,不仅深刻体会了转化,还能产生积极的情感体验。

  2.指导学生转化稍复杂的分数问题。

  例2是较复杂的分数问题,在本册教材第一单元里,这样的问题要列方程解答。通过转化,能很容易地列式计算。

  本单元转化分数问题,目的在于让学生体会化繁为简,增强策略意识。同时,更好地理解分数的意义及相关的概念,发展推理能力。并不要求学生掌握转化复杂分数问题的技巧,更不要求他们独立进行转化。例2以及练习十四里的分数问题,都是教材指点下的学生转化。。

  用原有的方法解题。教学例2,先让学生列方程解答,这是旧知识。用原有方法解题有两个目的,一是熟悉题目里的数量关系,理解题中的分数的意义,为转化作准备。二是感受原来的解题比较麻烦,转化后的解题十分方便,为比较解法作准备。

  指出转化的方向。教材说:如果把男生人数是女生的转化成女生人数是美术组总人数的几分之几,就可以直接用乘法计算。在这句话里提出了转化,指出了方向,要通过转化题目里的分数,使题目变成简单的分数乘法问题。教学时应该让学生仔细阅读这句话,明白把已有的那个分数转化成什么分数,解释为什么转化后就可以直接用乘法计算。

  学生联系已有经验进行转化。转化要应用概念进行推理,对现有的信息进行深度开发,创造出新的有价值的'信息。把男生人数是女生的转化成女生人数是总人数的几分之几,是进一步沟通男生人数、女生人数、总人数三者的倍数关系。由于分数与除法、比都有联系,因而学生转化的思路必定是多样的,而最终的结论是一致的。

  解答转化后的问题。得出女生人数是美术组总人数的,求女生人数就很方便了,因为原来的题被转化成求一个数的几分之几是多少的乘法问题了。让学生列式计算,能感受方便,从而又一次体会转化对解决问题的作用。

  需要再次指出的是,练习中的分数问题也是在教材指点下的学生转化。呈现图形直观,填写应联想的分数,降低了转化的坡度。学生只要在教材提供的条件下通过推理实现转化。

《解决问题的策略》教案15

  教学内容:教科书第63~64页的例1、例2和随后的“练一练”,练习十一的第1~3题。

  教学目标:

  1、使学生经历用列举策略解决简单实际问题的过程,能通过不重复、不遗漏的列举找到符合要求的答案。

  2、使学生对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学习数学的信心。

  教学过程:

  一、导入:

  1、导入语:今天老师要带大家去参观生态园(出示图片),看,多漂亮啊!

  二、教学例1,感知一一列举

  1、出示例1

  园长叔叔想找我们同学帮一个忙,你们愿意吗?

  (出示图片)用18根1米长的栅栏围成一个长方形羊圈。

  师:你想可以怎样围?

  要求:独立思考,已经想好的可以和同桌轻声交流(教师参与讨论)

  还有这么多举手的同学,说明同学们还有不同的围法,那么这个长方形羊圈有多少种不同的围法呢?这就是我们今天要解决的问题(板书:解决问题)

  2、布置任务,小组合作

  提问:请你仔细想你想,把所有不同的围法都找出来,并且纪录在表格内,如果有困难,可以用18跟小棒摆一摆,填好后在小组中交流。

  长方形的长/米

  长方形的宽/米

  全班交流:说说你是怎样找的,有哪几种围法?(实物投影展示学生不同的写法)

  比较:有序和无序的两种,你更喜欢哪一种?为什么?

  3、 揭示课题

  师:同学们,通过大家的努力,我们解决了园长叔叔的难题,回顾一下,我们怎样找出4中不同围法的呢?(表格—一个一个写下来)

  指出:在我们解决一些实际问题的时候,可以像刚才这样把事情发生的可能按照一定的顺序,有条理的一个一个列举出来,从而找到问题的答案,这就是我们今天研究的解决问题的一个重要策略——一一列举。(板书:策略、一一列举)

  4、 园长叔叔的羊圈问题我们已经找到了4种不同的围法,你能算一算各种围法的面积吗?

  ① 指名口答

  ② 比较一下它们的长、宽、和面积,你有什么发现?

  指出:周长相等的长方形,面积不一定相等

  周长一定时,长与宽的数值越接近,面积就越大。

  师:如果你是园长,你会采用哪种围法?

  三、教学例2

  1、出示例2

  图书角有3本书,最少借1本,最多借3本。一共有多少种不同的'借阅方法?

  ① 你是怎么理解最少借1本,最多借3本的?

  ② 引导学生说出可以借1本 (师板书)

  借2本

  借3本

  ③ 师:一共有多少种不同的借法呢?你准备怎样找出不同的借法?(列表,一个一个写下来,一一列举)

  2、布置任务,小组交流

  用你喜欢的表示方法有序地分析一共有多少种不同的借法。

  先独立思考,把你的想法或者表格写在自备本上,再在小组里交流(请各个组长组织安排好交流的顺序)

  全班交流

  (把不同的表示方法分别展示在实物投影上,并说说你是怎样想的)

  提问:如果只订阅1本,有几种不同的方法?具体说一说。

  如果订阅2本,有几种不同的方法?你是怎样想的?

  如果订阅3本呢?

  那么一共有多少种不同的方法?(分别板书)

  2、那么为了不遗漏、不重复,解决这个问题我们也可以利用这样的表格一一列举。

  ① 出示表格

  ① 出示表格

  只订1本 订2本 订本

  《科学世界》

  《七彩文学》

  《数学乐园》

  ② 指导生用划√的方法表示订阅的种类

  先指导只订1本的

  再指导订2本的(让生自己先分析怎么划√,再让生形成共识,划两个√代表一种订法)

  最后指导订3本的

  ③ 看表格找出共有几种不同的订法(竖行数出)

  4、:刚才用了一一列举的策略解决了这个问题,想一想要想得到全部答案,列举时要注意什么?(既不重复,也不遗漏)

  四、巩固新知

  生活中有很多类似的问题,我们也能够用一一列举来解决。

  1、P64练一练:

  一张靶纸共3环,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?(列举出所有可能的答案)

  你打算用什么策略解决这个问题?你会列举吗?

  试一试(注意有序性)

  2、练习十一第一题:

  课件显示问题:

  先分析题意(红色标出部分表示什么)

  生完成表格(完成在书上P66)

  用你喜欢的方法,标记出几时几分第二次同时发车。(并和同桌轻声交流)

【《解决问题的策略》教案】相关文章:

《解决问题的策略》教学反思01-16

解决问题的策略教学反思06-28

《解决问题数数策略》教学设计01-16

分数的解决问题教案09-06

解决问题的教学教案06-26

解决问题说课稿12-23

解决问题说课稿05-15

《解决问题》教学反思05-24

用比例解决问题说课稿12-09

《解决问题的策略》教案

  在教学工作者开展教学活动前,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的《解决问题的策略》教案,欢迎大家借鉴与参考,希望对大家有所帮助。

《解决问题的策略》教案

《解决问题的策略》教案1

  教学目标:

  1.使学生经历用列举的策略解决简单的实际问题的过程,能通过不遗漏,不重复的列举找到符合要求的所有答案。

  2.使学生在对解决简单实际问题的过程的反思和交流中,感受“一一列举”的特点和价值,进一步发展思维的条理性和严密性。

  3.使学生进一步积累解决问题的经验,增强解决问题的信心。

  教学准备:

  教学光盘,牙签,表格,飞镖和靶盘。

  教学过程:

  一.谈话导入

  谈话:同学们,在四年级我们曾经两次学到过解决问题的策略,还记得“策略”是什么意思吗?(指名答:方法)那么你们还记得我们曾经学过哪些策略吗?(画图,列表)

  引入课题:今天我们就继续来学习解决问题的策略(板上课题)

  二.教学例1

  师:看看今天都有哪些问题需要我们来解决。

  屏幕出示例题及其场景图,自主读题。

  师:题目给我们提供了哪些信息?需要我们做什么事情?(指名回答)

  师:18根1米长的栅栏围成的长方形,它的周长是多少?

  师:你们觉得王大叔会有多少种不同的围法?拿出你们手上的牙签,每根牙签代替一根1米长的栅栏,动手来围围看。(同桌合作摆牙签,教师巡视)

  指名说说他们围成了几种不同的长方形。估计学生可能有的结果:1种,2种,3种……(记录学生汇报的结果)

  师:究竟王大叔有多少种不同的围法了?老师现在也不知道,不过通过接下来的学习我们就会知道一共有多少种不同的围法了。

  师:如何能一个不落的将所有的围法都找出来了?你们觉得可以从几开始考虑?(指名回答)

  生:可以从宽是1米开始考虑,先用18÷2=9,然后把9分下来,长8宽1;长7宽2(板书学生说的内容)

  师:你们觉得接下来会是多少?(学生齐答:长6宽3,长5宽4)

  (可能有学生会继续说长4宽5,让学生自己去想要不要长4宽5,让学生明白一般情况长都大于宽,长4宽5实际上就是长5宽4。)

  拿出课前准备的表(教材P63)

  师:你能把符合要求的.长和宽一一的列举到表上去?动手做做看。(板书:一一列举)

  集体订正列表,各拿一份按顺序列举的和没有按顺序列举的表在实物展示台上让学生去比较,使他们明确列举时要按照一定的顺序。

  师:现在知道了一共有多少种不同的围法吗?(齐答)

  指出:刚才我们帮王大叔解决问题时,所采用的方法是将结果一个一个的列举出来,并且是按照一定的顺序来列举的,所以我们把这个策略叫做:有序的一一列举。(板书)

  师:如果你是王大叔的话,你会选择哪一种围法?

  生:第4种(长5宽4)

  师:为什么?

  生:因为第4种围法围成的长方形羊圈最大,王大叔就能养更多的羊子。

  师:什么时候面积最大?(周长一定时,长和宽越接近,面积就越大;长和宽差的越大,面积就越小)

  三.教学例2

  师:王大叔的问题解决好了,我们再来看看还有什么问题需要我们来解决。

  屏幕出示例2及其场景图。

  师:“最少订阅1本,最多订阅3本”是什么意思?

  (指名回答。可以订阅1本,可以订阅2本,还可以订阅3本)

  师:你们准备用什么策略来解决这个问题?

  (有序的一一列举)

  师:列举时,你打算先考虑订阅几本的情况,然后再订阅几本的情况?

  (从只订阅1本的情况考虑)

  师:如果只订阅1本,有几种不同的订阅方法?是哪几种?(3种)

  如果订阅2本的话,有几种不同的订阅方法?分别是哪几种?(指名回答,3种,让学生明白这个地方也要按照一定的顺序来列举:《科学世界》《七彩文学》,《科学世界》《数学乐园》,《七彩文学》《数学乐园》)

  如果订阅3本的话,有几种不同的订阅方法?(1种)

  师:那么一共有几种不同的订阅方法?(7种)

  师:拿出我们课前准备的表(教材P64上的),用打“√”表示订法,动手做一做,完成这个表格。

  (教师巡视,对于困难的学生可作适当的指导)

  指名到实物展示台来完成表格,集体订正。

  师:怎么从这张表中看出一共有多少种不同的围法?怎么看?(竖着看,一列就是一种订阅方法)

  师:通过一一列举,不但能看出共有多少种不同的订法,而且还能看出每种订法分别订的什么书。要得到全部答案,你觉得我们需要注意些什么?(学生思考,引导他们说出:要有序,不重复,不遗漏)(板书)

  四.游戏完成练一练

  师:帮王大叔解决了两个问题,有解决了订杂志的问题,咱们来做个小游戏吧!

  拿出飞镖和靶盘,让学生认识一下靶盘及其环数的分布(与P64练一练靶盘一样)

  师:咱们来做个投飞镖的游戏,看看能投中多少环。

  师:每人投中两次,请3-4名学生到前面来参加游戏,一个一个依次的投。

  学生投镖,教师注意记录结果

  师:由于时间关系,我们就不再投了。如果小华现在来投的话,也投中两次,你觉得小华可能会得到多少环?把可能出现的结果一一的列举在课堂练习本上。(学生独立完成,教师巡视)

  集体订正

  五.全课总结

  师:通过今天这节课的学习,你有什么收获和体会?

《解决问题的策略》教案2

  [教学内容]

  小学数学国标版六年级下册教科书P71解决问题的策略

  [教学目标]

  1、学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。

  2、学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。

  3、学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得成功的体验。

  [教学重点]

  理解转化策略的价值,丰富学生的策略意识,会用“转化”的策略解决问题

  [教学难点]

  会用“转化”的策略解决问题。

  [教学具]

  每生印一张例1的方格纸 /学生准备剪刀

  [教学过程]

  一、故事引入,创情激思。

  有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀,在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”

  “哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。

  提问:听了这个故事,同学们受到了哪些启发呢?

  小结:今天我们也要学习爱迪生和他的助手阿普顿,巧妙地运用一定的策略来解决一些陌生的实际问题,今天我们要学习的'内容是“解决问题的策略”(四年级:列表法、还原法;五年级:列举法、还原法;六年级:替换法。)

  二、合作交流,探究策略。

  1.出示例1

  师:首先请大家欣赏2个平面图形,以前我们学过吗?生:没有

  师:你觉得它们像什么呢?(生发挥想象力回答,但要说明的是平面图形)

  2.引导交流

  师:请大家仔细观察这两个图形,它们的什么可能相等?生:面积

  师:怎样比较这两个平面图形的面积?谁来说说看。

  生:可能说“数方格/折剪拼移转”(如学生讲到数方格,老师要注意引导学生把方格补好)

  师:好,现在就请大家拿出手头的图形,同桌协商选用哪种方法,然后分好工,每人完成一个平面图形的操作,然后放在一起验证一下。(同桌操作,教师巡视,并指导。)

  3.指导验证。

  师:验证下来,发现,这两个平面图形的面积确实相等的同学学举手!

  你们组是怎么想的?为什么这么想?指名回答。

  学生说想的过程,并投影出示学生的作业纸。(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)

  师表扬。

  师演示刚才学生说的过程。

  师:这样旋转和平移后都变成了什么图形?

  生:长方形。

  师:变成长方形后面积确实————相等!为什么?

  生:长和宽一样,所以面积一样。

  (长是5格,宽是4格,它们的面积是相等的,都是20格。)

  师再次演示变化过程,提问:在2个图形变化的过程中,他们什么不变?(面积)都把他变成了什么图形的面积?生:长方形。

  有没有用“数的方法”?

  师小结:刚才我们为了更好的比较两者的面积,运用了解决问题的一个什么策略呢?是的,是把两个未学过的图形(复杂繁琐的)转化成已学过的(简单的)两个面积相同的长方形来比较的,这就是我们今天要学习的解决问题又一个策略——转化。(板书:转化)

  4.出示练一练。

  师:下面,我们继续看一组图形:出示p72练一练。

  生独立完成后,小组交流。(解题关键:平移前后周长不变)

  集体交流校对方法,并演示。

  5.回顾知识,体验转化

  (1)师:同学们,其实“转化”的策略并不神秘,在我们以前图形学习中就曾经很多次运用了“转化”的策略,你能回想出哪些呢?

  同学们合作交流,将自己思考的内容在组内交流,验证自己的想法正确与否,同时从别人的发言中丰富自己的认识。指名回答,生可能会说:

  推导三角形公式时,把三角形转化成平行四边形。

  推导梯形时把梯形转化成平行四边形。

  推导圆面积时,把圆面积转化成长方形。

  在学生说的过程中请学生说说推导的过程,并相应演示推导过程。

  (2)我们除了在图形变化中运用转化,在计算中也同样适用。计算小数乘法时把小数乘法转化成整数乘法,计算分数除法时把分数除法转化成分数乘法等等。

  若学生不能说出算理的转化过程,师先出示1.25*7.8=?1/7除以2/9是多少,让学生在算的过程中再次体会转化的重要性

  然后出示试一试:计算1/2+1/4+1/8+1/16

  师:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。

  (2)相邻的分数是什么关系?(后一个是前一个的1/2)

  师我们一起来画图表示看看。师根据题目依次画图。

  师:你能运用“转化”的策略来解决这一问题吗?学生看图解答。

  指名回答。1-1/16=15/16(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)

  比较:你认为哪种方法更简便?他是如何进行转化的?

  如果再添一个分数+1/32呢?

  (3)小结:“转化”中一种常见、极其重要的解决问题的策略。在以后的学习、生活、工作中碰到问题时,可以积极地使用“转化”策略来解决。

  三、拓展运用,提升策略。

  1、师:下面,我们就来比一比,赛一赛,看看谁的转化策略用得好?

  2、请大家在书上完成练习十四的1,2,3,然后集体校对,进行星级评定(合计5道,五星级评评定)。

  第1题:

  (1)学生数一数,得出结果。(15场)

  (2)交流简便思路,学生最初可能有两种情况。

  生1:用“顺加”的方法:8+4+2+1=15场。

  生2:用“倒减”的方法:16-1=15场

  对于第二种方法,学生可能只是猜测,需要通过举例去证明。

  (3)如果有64支球队参加比赛,产生冠军要比赛多少场?

  学生独立完成解答,后汇报。

  (4)教师讲授:16支球队中只有1支球队是冠军,其他15支球队都要先后被淘汰,所以一共要进行16-1=15(场)比赛。照此类推,64支球队参加比赛,产生冠军要进行64-1=63(场)比赛。

  第2题:(演示直接校对)追问:怎么想到转化的方法的?

  第3题:(重点讲评八卦图)

  已知该八卦图的半径是五厘米,求红色部分的周长是多少?

  学生解答(思路:转化成2个圆的周长)

  四、课堂小结

  通过本节课的学习你有什么收获?(“转化”随时随地都在我们身边)在今后的学习、生活中,你愿意运用转化的策略吗?为什么?

  生回答出示:

  学习数学的过程就是不断转化的过程。

  复杂转化为简单,陌生转化为熟悉,

  抽象转化为具体,未知转化为已知。

  掌握转化的策略,对学好数学至关重要。

  多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。

  用转化的策略解决问题:?----→!

  师小结:当然,有解决问题时,要善于从不同的角度灵活地分析问题,这样有利于我们想到合理的转化方法!

  五、课堂作业

  1、练习十四第3题(1)

  2、练习十四第4题:有三堆围棋子,每堆60枚。第一堆黑子与第二堆的白子同样多,第三堆有1/3是白子。这三堆棋子一共有白子多少枚?

  六、板书设计:

  解决问题的策略——转化

  ?----→!

  S三角形——S平行四边形

  S圆形——S长方形

  小数乘法——整数乘法

  分数除法——分数乘法

《解决问题的策略》教案3

  复习目标

  经历四则混合运算、解决问题的策略知识系统复习与整理,基本技能巩固和提高的过程。

  进一步认识和掌握四则混合运算、解决问题的策略的计算方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。

  培养自主复习与整理知识的良好习惯。发现学习中的问题,提高学习效果,增强学好数学的自信心。

  课时安排

  1课时

  三、复习重难点

  进一步认识四则混合运算、解决问题的策略,掌握四则混合运算、解决问题的策略的方法,能解决有关四则混合运算、解决问题的策略的简单实际问题。

  四、教学过程

  (一)知识梳理

  1、在没有括号的算式里,有乘、除法和加减法,要先算()法,再算()法。

  2、算式里有小括号的,要先算()里面的;如果括号里既有乘除法又有加减法,也要先算(),再算()。

  3、在一个算式里,既有小括号,又有中括号的,要先算()里面的,再算()里面的。

  4、中括号和小括号在算式的作用是()。

  (二)题型、方法归纳与典例精讲

  1、四则混合运算计算。

  例:计算下面各题。

  (32+48)×(97-57)84-80÷16×12

  方法归纳:在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

  算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

  在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

  解决实际问题的计算。

  例:沪宁高速公路全长274千米。一辆每小时行75千米的汽车从南京出发,沿沪宁高速公路开往上海,已经行驶了49千米,还需多少小时才能到达上海?

  方法归纳:先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

  3、解决问题的策略,根据已知条件提问题并解答。

  例:茄子每行12棵,共17行,番茄每行10棵,共15行,你能提出不同的`问题并解答吗?

  方法归纳:弄清题意,理清题里的数量关系,根据数量关系提出问题并解答。

  (三)归纳小结

  在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

  算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

  在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

  先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

  (四)随堂检测

  1、计算下面各题。

  972÷(720-21×33)125÷[(572+78)÷26]

  李叔叔家的果园里一共有6行苹果树,每行12棵。今年共收了648筐苹果,平均每棵苹果树收苹果多少筐?

  少年宫举办“我们爱科学”夏令营活动,时间6天。光明小学有13名同学报名参加,共缴纳伙食费936元,平均每人每天的伙食费是多少元?

  赵阿姨从12只河蚌里剖出432颗珍珠。

  如果每72颗珍珠穿成一条项链,那么赵阿姨剖出的珍珠能穿成多少条项链?

  照这样计算,赵阿姨从26只河蚌里能剖出多少棵珍珠?

  同学们表演团体操,原来排成24行,每行有20人。队形变化以后,排成30行,每行有多少人?

  板书设计

  四则混合运算、解决问题的策略

  在没有括号的算式里,有乘、除法和加减法,要先算乘、除法,再算加减法。

  算式里有小括号的,要先算小括号里面的;如果括号里既有乘除法又有加减法,也要先算乘除法,再算加减法。

  在一个算式里,既有小括号,又有中括号的,要先算小括号里面的,再算中括号里面的。

  解决问题时,先要弄清题意,明确已知条件和所求问题。再分析数量关系,确定先算什么再算什么。算出答案,还要进行检验和反思。

  作业布置

  1、甲、乙两列火车分别从东、西两地同时相对开出,5小时后相遇。甲车速度是110千米/时,乙车速度是100千米/时。求东、西两地间的路程。

  预习102页有关内容。

  七、教学反思

《解决问题的策略》教案4

  教材分析

  解决问题的策略是解决问题必要的一种问题解决思想方法,这部分内容是在学生已经积累了一定的数量关系及解决问题的经验,初步了解了同一问题可以有不同的解决方法的基础上学习的。本节课在列表过程中,分析数量关系寻求解决类似归一、归的实际问题的有效方法。学好本节课知识,将为学习用列表等方法解答求两积之和(差)等实际问题奠定知识和思想方法的基础。

  学情分析

  1、本节课是用列表的方法整理问题情境中的信息,用从已知条件想起或从所求问题想起的方法分析数量关系。例题从三个小朋友买相同笔记本的信息,分两次提出要解决的问题,要求学生找出解决第一个问题的条件并进行整理,通过呈现表格让学生思考怎样解决问题。随后学生很自然的自主分析数量关系,解决第二个问题。

  2、在练习中安排了与例题结构相同的实际问题,学生都能运用所学的策略解决问题。

  3、在解答第二个问题时,有大部分同学想不到方法,要从小明的信息算出单价,再用除法求出小军能买多少本。这是本节课的障外点。

  教学目标

  1、学生在解决简单实际问题的过程中,初步体会用列表的方法整理相关信息的作用,学会用列表的.方法整理简单实际问题所提供的信息,学会运用从已知条件想起或从所求问题想起的策略分析数量关系,寻找解决问题的有效方法。

  2、通过自主探索、合作交流等学习活动,学生经历提取信息,发现问题,列表整理条件,解决问题的知识获取过程,从而提高学生收集并整理信息,发现并分析、解决问题的能力,发展他们的推理能力。

  3、通过学习,学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点和难点

  用列表的方法整理问题情境中的信息,用从条件想起或从问题想起的方法分析数量关系。难点:正确整理、分析数学信息关系,学会通过所整理的信息决策问题解决策略,并内化成自己的问题解决策略。

《解决问题的策略》教案5

  这部分内容教学用“一一列举”的策略解决一些生活中的简单的实际问题。在此之前,学生已经学习过用列表和画图的策略解决问题,对解决问题的策略已经有了一些体验和认识,而这节课的重点是使学生学会有条理、有顺序地一一列举,从而不重复、不遗漏地列举出问题的所有答案。在教学中我是这样处理的:

  一、课前谈话,导入课题

  1、平时你们都喜欢看什么课外书?(指名回答)

  2、选择3种(数学乐园、七彩文学、科学世界),板书在黑板上,提问:如果从中选出2种阅读,有多少种不同的选择方法?你能一一列举出来吗?

  3、师小结:

  一一列举是我们解决问题的一种策略,今天这节课我们就来学习用一一列举的策略解决生活中的数学问题。(板书课题)

  [反思:

  在3种书中选择2本并列举出来,这一内容学生四年级时已经学习过,因此对学生来说并不困难。设计这一环节的目的一方面是导入课题—一一列举,另一方面是复习旧知,为例2的教学先分类,再列举做好铺垫。]

  二、自主探究,学习列举

  (一)创设情境,教学例1

  1、出示红山森林动物园大门图。这是什么地方?这节课牛老师就带大家去红山森林动物园玩一玩。

  2、王大叔是动物园的工人,今天他碰到难题了,课件出示例1:

  王大叔要用18根1米长的栅栏围成一个长方形花圃,有多少种不同的围法?

  3、指名读题,并说说从题中知道了哪些信息?(长方形的周长是18米)

  4、你们能帮助王大叔解决难题吗?

  (1)请你们每人拿出18根小棒代替题目中的18根1米长的栅栏,在小组中围一围,看看有多少种不同的围法。

  (2)集体交流不同的围法:4种

  5、观察这4种围法,你发现了什么?(长+宽=9米),为什么长加宽的和一定是9米呢?6、出示表格,我们也可以用列表的方法一一列举:

  我们可以从宽是1米想起:如果宽是1米,长是多少?

  如果宽是2米,长是多少?

  ……

  7、(1)请大家独立完成练习纸上例1的前2行。

  (2)集体交流核对。

  8、刚才我们用小棒围和列表2种方法帮王大叔解决了难题,你比较喜欢哪种方法?为什么?

  9、这4个长方形的周长都相等是18米,面积是不是也相等呢?请大家完成练习纸上例1题第3行:求面积。

  10、比较每个长方形的长、宽和面积,你有什么发现?

  (长方形的周长相等,面积不一定相等;长和宽越接近,面积就越大。)

  [反思:

  在教学例1时,先引导学生用小棒摆一摆。通过摆小棒的操作,可以使学生进一步明确围成的长方形的周长与它的长和宽的关系。多数学生摆小棒时是无序思考的,因此可能出现重复或者遗漏的现象。在教学的过程中,有一名学生回答这4种摆法是非常有序的:宽是1米,长是8米;宽是2米,长是7米;宽是3米,长是6米;宽是4米,长是5米。我只是肯定了学生的回答的正确,如果在这个环节的处理上,让这个学生再说一说自己是怎样想的,怎样把4种答案都找出来的,就可以通过这个学生的回答引导其他学生发现“长加宽的和等于周长的一半”,他是有顺序的思考的,因此就找出了所有问题的答案。让其他同学感受到:要找出所有不同的围法,需要有条理地一一列举。在这一环节上,我没有大胆的放手,而是又扶着学生探索“长加宽的和与周长的关系”,如果让学生的发现回答代替我的引导,可能这个环节会更精彩。

  在学生通过摆小棒明确有4种不同的围法,并且探索出“长加宽的和等于周长的一半”后,引导学生通过列表来一一列举,明确列举时要有顺序的思考,注意不重复、不遗漏,学生掌握较好。]

  (二)教学例2

  1、动物园有儿童游乐场,课件出示题目:

  打靶、旋转木马、碰碰车3个游戏项目,最少玩1项,最多玩3项,有多少种不同的玩法?

  2、最少玩1项,最多玩3项是什么意思?

  3、你打算用什么策略解决这个问题?

  4、列举时分几类情况思考?每类有几种方法?(分步出示表格)

  5、请你用自己喜欢的方法进行列举:可以用老师提供的表格,在表格中打“√”,也可以用其他方法如文字表述。

  6、集体交流反馈时结合例2让学生说说要得到全部答案,列举时要注意什么?

  [反思:

  在教学中,我将书上例题的3本不同的书籍改成3个不同的游戏项目,引起了学生的学习兴趣。通过对“最少玩1项,最多玩3项”这句话的分析明确不仅可以玩1项,也可以玩2项,或者可以玩3项。因此在一一列举时必须先分类,再有顺序地一一列举。我在雨花台小学上这节课时,发现有部分学生不知道如何去打“√”,因此在教学时应充分的考虑到学生的个体差异,指导学生打“√”的方法。]

  三、拓展应用,完成相应的练习

  (一)练一练

  1、小华选择了打靶游戏,出示练一练题目。

  2、“投中2次”,可能得到哪2环?总成绩是多少?

  3、请你列举出所有可能的答案(列出算式),完成在练习纸上。

  4、集体交流核对。

  [反思:

  例1、例2都是让学生列表进行一一列举,在这一题,我让学生分2类(2环成绩相同和2环成绩不同)列出算式,通过比较算式8+8=16(环)与10+6=16(环)的结果都是16环,从而得出有5种不同的答案(6—1=5)。从学生反馈的情况看,学生掌握较好。]

  (二)练习十一第1题

  1、红山动物园还为游客提供了2种不同线路的游览车,出示题目:

  1路车早上8时20分开始发车,以后每隔10分钟发一辆车;2路车早上8时40分开始发车,以后每隔15分钟发一辆车。这两路车几时几分第2次同时发车?

  2、学生独立完成在练习纸上。

  3、集体交流核对。

  (三)第2题

  1、红山动物园的音乐广播每隔一段时间就会播放一次音乐。已经播放了几次:出示时间:9:00,9:40,10:20,11:00……

  2、从这几个时间中你发现了什么?

  3、那么下面哪些时刻也是音乐广播的时刻?13:00,14:40,15:40,16:00,请圈出。

  4、你想怎样解决这个问题?你能列举出下面表演的时刻吗?完成在练习纸上。

  (四)第3题1、结束了1天的游玩,小华、小军、小明想拍照纪念。

  2、有几种不同的照相方法?

  3、独立思考,完成在练习纸上。

  4、小组交流

  5、集体交流

  [反思:

  教学时我将书上练习中的题目配合我的教学情境做了一些改编。

  1、将第1题的时间做了修改;

  2、将第2题的音乐钟编成了音乐广播;

  3、将第3题的升3面不同颜色的'小旗改为3个同学并排照相。

  教学时由于时间的关系,我只完成了练习的1、2题,学生用一一列举的方法解决问题完成的比较好。

  第3题书上的题目是:“有红、黄、蓝三种颜色的小旗各1面,从中选用1面或2面升上旗杆,分别用来表示一种信号。一共可以表示多少种不同的信号?”解决的方法:先分类,选1面有3种:红、黄、蓝;选2面有6种:红黄、黄红、红蓝、蓝红、黄蓝、蓝黄。所以一共有3+6=9(种)方法。

  我改编后的题目是:“小华、小军、小明想拍照纪念,如果并排照,有多少种不同的拍照方法?”这题也应先分类:单人照有3种;双人照有6种(同上小旗,存在左右排序的因素);三人照也有6种。所以一共是3+6+6=15(种)不同的拍照方法。

  对于这样的并排拍照排序的问题,四年级时学生已经接触过了,不同的是四年级时是单独讨论双人照或单独讨论三人照的问题。而现在的这题需要分3类考虑,书上小旗题只是分2类,没有考虑选3面小旗,我改编这题的目的是想对学生有所提高,但对于五年级的孩子来说是否太难,拔高了对他们的要求,还有待思考。]

  四、课堂小结

  通过今天的学习,你有什么收获?能一一列举出来吗?请你们四人小组相互交流。

  [整节课教后反思:

  在教学中我创设了去红山森林动物园游玩的情境:帮工人王大叔解决用18根栅栏围一个长方形花圃(例1);去游乐场游玩,3个不同的游戏项目选择(例2);小华玩打靶游戏(练一练);动物园的游览车发车问题(练习1);动物园的音乐广播播放时间问题(练习2);结束一天的游玩后的拍照问题(练习3),激发了学生的学习兴趣,调动了学生学习的积极性。

  引导学生根据问题的特点,在“一一列举”的过程中合理使用不同的方法,感受不同策略在解决问题过程中的不同价值。例1和例2主要是让学生运用列表的方法解决问题,练一练用列表的方法只能看出有6种可能的情况,但这其中总环数有重复的情况,因此我引导学生用列算式求总环数的方法,很快能看出有5种不同的情况。练习第3题照相问题由于存在排序问题,列表也不太合适。在教学中,主要是让学生理解在“一一列举”的过程中要有顺序地思考,不重复,不遗漏,使学生在解决问题的过程中能灵选用不同的方法列举。

  在教学中例2和练习3有类似的地方,都是先分类,而且都是分3类,不同的是例2只是组合问题,不需要考虑排序;而练习3分类后,每一类还要考虑排序的问题,因此难度是比较高的,我将这题改编后提高了问题的难度,设计成了机动题,是否拔高了对学生的要求还有待思考。

《解决问题的策略》教案6

  教学目标:

  1.进一步巩固画图整理信息的方法,能借助所画的线段图和示意图分析数量关系,确定解决问题的思路。

  2.进一步体会用画图的策略整理信息的价值,懂得画图整理信息是解决问题的一种常用策略,培养运用这一策略分析问题和解决问题的意识。

  3.进一步积累解决问题的经验,强化解决问题的策略意识,获得解决问题的成功体验,增强学好数学的自信心。

  教学难点让学生体会用画图的策略解决问题的价值,逐步形成解决问题的策略。

  教学准备:

  教学过程:

  一、知识再现

  1.提出问题:

  (1)同学们,上节课我们又掌握了一种解决问题的策略,它是什么呢?

  (2)我们通过画什么样的图来分析问题?

  (3)运用画图的策略来解决问题有什么好处呢?

  2.今天这节课,我们要一起完成一些练习,通过这些练习同学们将再次感受画图这一策略的'价值。(板书课题)

  二、基本练习 画线段图解决问题。

  1.完成教材第52页“练习八”第4题。

  让学生独立画出线段图。

  2.完成教材第53页“练习八”第10题。

  让学生根据题目中的信息将教材上的线段图补充完整。

  这里比较困难的是弄清楚线段图中,王晓星比张宁多出的那一段表示的是不是8张。

  教师可以进行启发:如果多出的这一段是8张,那王晓星就要把这一段都给张宁;这一段都给张宁后,两条线段会一样长吗?

  引导学生发现:只能把王晓星比张宁多出的那一段的一半给张宁,这样两条线段才会一样长。因此多出的那一段要平均分成两份,其中的一份才是8张。

  让学生独立解答,组织汇报。

  3.完成教材第54页“练习八”第11题。

  组织练习时,先让学生独立思考,再交流补充线段图的方法,最后让学生独立解答。

  三、综合练习

  用画示意图的策略解决问题。

  1.完成教材第53页“练习八”第8题。

  这道题画示意图时,引导学生可以用一个小圆点表示一个人,画出下面这样的示意图:

  然后组织学生进行观察,计算出每个方阵需要两种颜色的运动服各多少套,再算出一共要准备多少套。

  2.完成教材第54页“练习八”第13题。

  让学生在图上画一画,将长方形扩大成正方形。

  3.完成教材第52~54页“练习八”其余习题。

  学生独立完成。

  四、反思总结 通过本课的学习,你有什么收获? 还有哪些疑问?

  五、课堂作业 《补》

《解决问题的策略》教案7

  一、教学目标

  【知识与技能】

  理解用转化的方法解决问题的思路,能根据具体问题找到对应的转化方法,从而解决问题,了解转化思想在数学课程中普遍存在。

  【过程与方法】

  通过转化比较两个不规则图形面积大小的过程,提高观察、分析、解决问题的能力;通过对解决问题过程的反思,提高归纳、总结、概括的能力,以及知识迁移能力。

  【情感、态度与价值观】

  在主动参与数学活动的过程中,感受成功的体验,提高学习数学的兴趣。

  二、教学重难点

  【重点】用转化策略比较不规则图形的面积。

  【难点】转化的方法及应用。

  三、教学过程

  (一)导入新课

  大屏幕出示学习多边形面积时的图片,引导学生回忆之前比较两个图形面积时,用到数方格、平移等方法。

  教师指出前面接触的图形相对简单,本节课进一步学习比较两个图形面积的大小。

  引出课题——解决问题的策略。

  (二)讲解新知

  1。问题探究

  大屏幕出示教材图片,并提问下面两个图形,哪个面积大一些?

  学生根据之前学习经验,直观的会提出数方格,教师引导学生注意其中涉及不满一格的情况,若按照前面数方格时不满一格按半格计算,得到的结果不够准确,并且较为繁琐,引发学生思考更为确切的.比较方法。

  学生根据导入中的情境,能够想到可以通过平移将不规则图形转化为规则图形进行比较。

  教师组织学生小组活动,5分钟时间,探究图片中的不规则图形可否转化为较为规则的图形,若可以,思考如何转化。小组代表做好讨论记录,探究结束找小组分享讨论结果。教师巡视,对于有困难的学生及时给予指导。

  教师总结学生回答,两个图形都可转化为规则的矩形,通过平移或旋转的方法得到。通过比较转化后的图形面积(数方格、数边长)得到两个图形面积相等。教师利用多媒体演示图形多种变化过程。

  2。方法总结

  教师组织学生思考上述图形变换前后的区别与联系,总结图形转换的方法与特点,同桌之间交流分享。

  教师总结学生回答:

  (1)变换前后图形的形状改变了,由复杂变为简单熟悉,但面积的大小不变;

  (2)图形转化可通过平移、旋转、翻折、拼接等方法;

  (3)经过转化之后将无解变得可解,将复杂问题变成简单问题。

  教师讲解其为转化的策略解决问题,即将未知事物转化为已知事物,从而解决问题的方法。组织学生回忆学习过程中,哪些知识的学习中用到了转化的策略,小组间进行交流总结。

  教师总结学生回答:探究平行四边形、三角形、梯形、圆的面积时;代数领域学习异分母分数运算、小数乘法等。通过回忆学习过程,感受数学知识间的联系。

  (三)课堂练习

  算一算下列三个图形中阴影部分面积占整个面积的几分之几。

  (四)小结作业

  小结:总结本节课学习内容。

  作业:课后练一练。

《解决问题的策略》教案8

  一、故事引入,初步感知

  [电脑出示]曹冲称象图片

  曹冲用什么称出大象的重量?为什么称石头的重量就能得到大象的重量?

  今天我们就来研究如何用替换的策略解决问题。[板书课题]

  生活中有哪些地方是用替换来解决问题?

  二、出示问题,探索运用

  [电脑出示]例1小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的。小杯和大杯的容量各是多少毫升?

  读题,从题目中获得哪些信息。

  你是怎样理解小杯的容量是大杯的这句话?[电脑出示]

  这里720毫升果汁既倒入6个小杯,又倒入1个大杯,要求小杯和大杯的容量,该怎么办呢?

  学生说两种替换的过程。为什么要把大杯换成小杯?

  四人小组合作。

  要求1、画一画,选一种替换方法画出替换过程。

  2、说一说,应该怎样替换,并且如何计算。

  小组展示汇报。

  怎样检验结果是否正确?学生口头检验。

  解决这个问题时,运用的是什么方法?这里为什么要用替换的方法?

  我们把两个量通过替换转化为一个量,便于我们计算。有时可以借助画图来帮助理解。

  三、拓展应用,巩固策略

  1、[电脑出示]8块达能饼干的`钙含量相当于1杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克。你知道每块饼干的钙含量大约是多少毫克吗?1 杯牛奶呢?

  学生独立完成。并说出想的过程。

  为什么不把饼干替换成牛奶来考虑?

  2、[电脑出示]在2个同样的大盒和5个同样的小盒里装满网球,正好是100个。每个大盒比小盒多装8个,每个大盒和小盒各装多少个?

  读题,从题目中获得哪些信息?

  与例1相比,有什么不同的地方?

  每个大盒比小盒多装8个这句话你是怎么理解的?

  怎样替换?

  学生独立完成并核对。

  3、学校买来5个足球和10个篮球,共计700元。每只足球比每只篮球便宜10元。足球和篮球的单价各是多少元?

  四、小结全课,优化策略

《解决问题的策略》教案9

  《数学课程标准》在解决问题的课程目标中对解决问题的策略教学提出了明确要求:形成解决问题的一些基本策略,体验解决问题策略的多样性。为了将解决问题的策略教学目标落到实处,必须先解决两个问题:其一,如何清晰地界定解决问题的策略,明确义务教育阶段小学生应该形成哪些解决问题的策略?其二,如何帮助学生形成解决问题的一些基本策略,并体验解决问题策略的多样性?

  一、关于解决问题的策略

  对解决问题的策略,人们已经有很多研究。波利亚在《怎样解题》一书中谈及的解决问题的策略有普遍化、特殊化、类比、猜想和检验、画一张图、建立方程、倒着干等。浙江省特级教师朱德江认为解决问题的策略有尝试和检验、画图、操作、找规律、制表、从简单的情况人手、整理数据、从相反的方向思考、列方程、逻辑推理、改变观点等11种。加拿大的某套数学教材中将解决问题的策略分为10种,并采用图文结合的方式形象地呈现如下:

  我国课程改革下的实验教材,不再以传统的算术应用题内容为线索,而是以学生的生活经验为线索,以所学运算体现的数量关系为线索,以体现解决问题的策略为线索。人教版教材编排了图示、列举、列表、找规律、从简单情况入手等解决问题的策略。北师大版教材编排的解决问题的策略有画图、列表、猜想与尝试、从特例开始寻找规律等。苏教版教材采用分散与集中相结合的原则,从四年级起集中编有解决问题的策略单元,安排学生学习摘录与列表、画图、一一列举、倒推;替换、假设、转化等策略。

  从以上的分析,我们可以大致明晰教材中解决问题的策略的内容。

  二、学习解决问题策略的三个阶段

  教师不但要思考解决问题的策略有哪些,还要思考怎样帮助学生形成这些策略。

  解决问题策略的学习,不可能脱离解决问题的过程,必须和解决问题紧密结合在一起。也就是说,解决问题策略的学习是基于解决问题、为了解决问题的。解决问题,首先是作为学生感受、体会、反思解决问题策略的手段,其次是让学生运用所学策略解决新的问题。对学生来说,解决问题的活动价值,不仅仅是解决某一类问题,获得某一类 问题的结论,更重要的是在解决问题的过程中获得发展,即基于解题的经历,形成相应的经验、技巧、方法,进而通过反思和提炼,形成一定的解决问题的策略。学生认识、理解、掌握解决问题的策略一般要经历潜意识阶段、明朗化阶段、深刻化阶段。教师要顺应学生的学习心理,展开解决问题策略的教学。

  1.走出潜意识阶段

  对学生来说,学习解决问题的策略,并不是建空中楼阁。他们在日常生活中已经积累了一些关于策略的认识,在以往解决问题的过程中也已经初步积累了解决问题的.经验,但并不一定关注到了解决问题时隐藏在背后支撑解决问题的策略,即学生对策略的认识处于潜意识阶段。在这个阶段,学生往往关注具体的问题是否得以解决,对解决问题的策略处于朦朦胧胧、似有所悟的状况,缺乏应有的思考。学生对解决问题的策略的认识要经历一个从模糊到清晰的过程。教学时,教师可先呈现问题,让学生根据他们已有的知识经验尝试解决问题,获得一定的经验;再引导学生回顾解决问题的过程,

  思考解决问题的策略,并通过回顾性陈述交流,将解决问题的策略化隐为显。在回顾性陈述时,学生可能会基于自己的经验和理解,提出不同的策略,教师应引导学生联系解决问题的过程提炼。

  2.步入明朗化阶段

  学生对某一种解决问题的策略有了初步的感受后,教师应引导学生将策略明朗化。如:呈现新问题后,组织学生思考可以用什么策略解决问题,使学生具有明确的应用策略的意识;解决问题后,再组织学生交流解决问题的过程。这样,随着解决问题策略的初步应用以及对解决问题过程的回顾与反思,解决问题的策略就逐步浮出水面并凸现出来。这里要指出的是,在教学新的解决问题策略时,不能排斥学生应用以往学习的解决问题策略。学生学习解决问题策略的过程,不是小猴子掰玉米,喜新弃旧,而是在不断整合、应用不同策略的过程中,丰富自己解决问题的经验,并在新的问题中主

  动、综合、灵活应用各种策略解决问题。

  3.走向深刻化阶段

  在学生比较充分地感知了解决问题的策略、明确了解决问题的策略后,教师要安排一定的练习,对相关策略进行集中强化,以加深学生对策略的理解与掌握,使学生对策略的认识更深刻,逐步达到运用自如的境界。在这一过程中,教师要引导学生继续反思自己所使用的策略,促进学生形成稳定的解决问题的策略。在教师的眼中,学生采用的策略可能有优劣之分,但学生的思考过程并没有好坏之别,都能反映学生对问题的理解和所作的努力。因此,即使到了巩固、深化策略的阶段,教师仍不应急于对学生的策略作出评价,而应给学生阐明和讨论策略的机会,让学生在交流、倾听中比较不同的策略,优化自我的策略。为了深化学生对策略的认识,教师可在学生采用一定的策略解决问题后引导学生进一步思考:自己所采用的解决问题的策略有什么特点,适用哪些情况?还可采用什么策略解决问题?不同策略之间有无一定的本质联系?学生不断地经历这样的思考,就能对策略的本质有更深入的认识,就能得心应手地应用策略解决问题。

  策略,有助子在解决问题时走出无从下手的沼泽地;解决问题,有助于加深对策略的认识、理解与掌握。教师要充分认识策略的意义,进一步在实践中探索学生形成策略的规律,将解决问题策略的教学目标落到实处。

《解决问题的策略》教案10

  教学内容:苏教版小学数学五年级下册第88~89页。

  教学目标:

  1、让学生通过分析具体情境中的实际问题,学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:学会用“倒过来推想”的策略解决问题。

  教学难点:掌握用“倒过来推想”的策略解决问题的思路。

  教学过程:

  一、结合情境,初步感知。

  今天早上我从家里出发,下楼到车库,取出二轮宝马自行车,然后在路边的忘不了早餐店吃个早餐,共用了十分钟,在路上骑车又用了二十分钟才到学校,这时刚好是7点40,请问你们知道我是什么时候从家里出发的吗?

  你是用什么方法得出结论的,倒过来推想,是呀,倒过来推想是我们解决数学问题重要的一种策略,今天这节课我们就学习这种策略。板书:解决问题的策略,倒过来推想

  请同学们看大屏幕:

  二、自主探索,解决问题。

  (一)教学例1

  老师这里有两个杯子,装了一些果汁,共400毫升。如果把甲杯中的40毫升果汁倒人乙杯,现在两杯同样多。原来两杯果汁各有多少毫升?

  从题目中你了解了哪些信息?甲倒给乙40毫升后,什么不变?什么变了?怎么变的?我们可以用以前学过的什么相关策略我们解决呢?自己先想一想,再把你的想法写下来,在小组交流。先想好的同学可以帮助组里其他有困难的同学一下。根据小组的'交流,发现你们有以下这么几种想法:

  (1)示意图 请画图的同学说说你的想法。

  说得不错,如果还不是十分清楚的同学,再看一下大屏幕,老师把他的想法用动画表示出来,这样你懂了吗?

  (2)画线段图

  他这样做也是先求什么?然后再把甲倒给乙的40毫升还回去,求出原来甲

  乙各有多少毫升。

  (3)表格

  我们已经求出了原来的甲是240毫升,原来的乙是160毫升。你能对这个结果作出检验吗?

  刚才同学们用了我们以前学过的画线段图、画示意图、列表等方法来解决这个问题。那想一想,不管你用的是哪种方法,都是先从什么出发?然后再根据原来到现在的变化过程求出什么?这就是运用倒过来推想的策略来解决问题。请同学们打开课本88页把例1看一遍,再体验一下用倒推的策略解决问题。

  (二)教学例2

  这种策略在日常生活中运用非常广泛,请看大屏幕例2。

  你了解到哪些信息?你能想个办法来信息,清晰地表明邮票变化情况吗?先自己试一试,再与同组同学交流。现在请小组汇报一下。你们是怎样信息与解答的呢。

  箭头法教师板书

  原有?张 收集24张 送走30张 还剩52张”

  “原有?张 去掉24张 要回30张 还剩52张”

  线段图说出意思。

  符号表示我刚才在下面发现有个同学也是用箭头表示,不过不象我们用文字叙述,而是用符合来表示的,请同学们看黑板,你们看得明白吗?来那我们把掌声送给他。同时这掌声也是送给你们自己,你们的想法都不错,表现让我非常满意。

  刚才在解答时同学们用了什么策略? 现在大家有信心用这个策略来解决一些实际问题吗?

  请看书上89页的练一练。甲、乙两位同学到黑板上来做,其他同学在下面自己独立完成。

  请黑板上板演的同学说说你的想法。我刚才发现有两个同学是这样列式的,25*2+1,发现这种解法错在什么地方,做错的同学能不能自己主动站起来勇敢地说一说。同学们你看这位同学说得多好,我们不怕犯错误,关键是错了能知道错在什么地方,及时地改正过来,这是最珍贵的,我希望同学们在有错误时都能象这位同学一样,勇敢地承认自己错误,并改正过来,做一个诚实的人。掌声送给他,勇敢的人。

  下面请同学们打开课堂练习本,把书上90页的第1、2题做在本子上。

  :通过刚才的作业我发现同学们这节课掌握得不错,只有两个同学计算时粗心错了。这节课我们学习的是什么内容?对用倒过来推想解决问题,这些问题有什么共同的特征?都是已知结果,求原来。用这个策略解决问题时,我们可以借助示意图、线段图、表格、箭头图等分析题意,如果对刚才课上还有不清楚的地方,欢迎同学们下课与我交流,好,这节课就到这里, 谢谢同学们的配合,下课。

《解决问题的策略》教案11

  教学内容:

  教科书第88~89页的例1、例2和“练一练”,练习十六的第1、2题

  教学目标:

  1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。

  2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。

  3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心

  教学过程:

  一、学习例1

  1.呈现问题。

  (1)}出示“原来的”两杯果汁,并出示条件“两杯果汁共400毫升”。

  提问:如果把甲杯中的40毫升果汁倒人乙杯,这两杯果汁的数量分别会发生怎样的变化?

  (2)学生回答上述问题后进行实际的操作演示,让学生发现不仅甲杯减少了.乙杯增加了,而且甲杯和乙杯正好同样多。

  (3)回顾操作过程,出示例题中条件部分的完整示意图,提出问题:原来两杯果汁各有多少毫升?

  2.解决问题。

  (1)提问:把甲杯中的40毫升果汁倒人乙杯后,两个杯子里的果汁总量有没有变化?一共还是多少毫升?那么现在每个杯子里各有多少毫升果汁?

  (2)小组讨论:知道了现在两个杯中的果汁数量,可以怎样求原来两个杯中的果汁数量?可以用怎样的方法来解决?

  (3)在学生提出“再倒回去看一看”时,追问:如果把乙杯中的40毫升果汁再倒回甲杯,两个杯中的果汁数量又会发生怎样的变化?

  (4)学生画图后,组织展示、交流,并相机呈现教材提供的第二组示意图。

  引导学生认识到“再倒回去”后,甲杯在200毫升的基础上,增加了40毫升;乙杯在200毫升的基础上,减少了40毫升。

  (5)小结:看来“再倒回去”是个好办法,用这个办法我们很容易就能想到原来两个杯子里各有多少毫升果汁。

  3.填表回顾,加深对“倒过来推想”的体验。

  (I)回想一下,我们刚才是怎样解决这个问题的?你能按照解题的过程将教材中的表格填写完整吗?要求边填边想表中的每个数据各是怎样推算出来的。

  (2)提问:在解决这个问题的过程中我们运用了哪些策略?你认为“倒过来推想”的策略有什么特点?

  学生讨论后,揭示课题并板书:解决问题的策略。

  二、学习例2

  1.出示例2,让学生读题后,再要求说说题目的大意。提问:用什么方法可以将题目的意思更清楚地表示出来?

  2.在学生讨论后,指出:可以按题意摘录条件进行整理。出示下图:

  原有?张一—→又收集了24张一—→送给小军30张一—→还剩52张

  提问:你能根据上图再说说题目的大意吗?要求小明原来有多少张邮票,你准备用什么策略来解决?

  3.明确可以用“倒过来推想”的策略解决问题后,提出:你能仿照上图的样子,表示出“倒过来推想”的过程吗?

  学生尝试画出倒推的示意图后,出示下图:

  原有?张←一一 去掉收集的24张←一一 跟小军要回30张←一一 还剩52张

  要求根据上图写出倒推后每一步的.结果,再让学生综合“倒过来推想”的过程列式解答。

  4.要求学生根据答案和“小明邮票张数”的变化情况顺推过去,看看剩下的是不是52张。

  5.引导反思:解决上面这个问题时,是怎样运用“倒过来推想”的策略的?你认为适合用“倒过来推想”的策略来解决的问题有什么特点?

  三、应用巩固

  出示“练一练”,学生各自读题。

  提问:你打算运用什么样的策略解决这个问题?“拿出画片的一半还多1张送给小明”是什么意思?你能换种说法表示这样的意思吗?

  学生解题后,组织交流,重点让学生说说推想的过程。

  四、课堂作业

  做练习十六的第1、2题。

  五、全课小结

  这节课你学会了什么?你有哪些收获和体会?

《解决问题的策略》教案12

  教学目标

  1、使学生会运用替换和假设的策略分析数量关系,确定解题思路并解决问题。

  2、使学生在不断反思中感受替换和假设的策略对于解决特定问题的价值。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,提高信心。

  教学重难点

  (1)学会用替换和假设的策略解决实际问题。

  (2)灵活运用学过的解题策略,体会策略价值。

  课时安排

  7课时

  用替换的策略解决问题

  教学内容:苏教版义务教育教科书《数学》六年级上册68~69页例1、练一练,第72页练习十一第1~3题。

  教科书第89-90页的例1“练一练”,练习十七第1题。

  教学目标:

  1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  解决用假设策略时总量不变的实际问题,认识假设的策略。

  教学难点:

  运用假设策略分析数量关系。

  教学过程:

  一、出示问题,选择策略

  1、以图文结合的方式呈现例1,要求学生边读边看图。

  2、引导交流:题中告诉了我们哪些条件?要求什么问题?大杯与小杯容量的关系还可以怎样表示?

  3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?

  如果720毫升果汁全部倒入小杯,而且知道正好倒了几个小杯,你会求出每个小杯的容量吗?

  4、提出假设:如果把720毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?

  二、自主探索,运用策略

  1、探索:如果把720毫升果汁全部倒入小杯,需要几个小杯?

  结合例题中的示意图提问:

  一个大杯可以替换成几个小杯?

  把1个大杯替换成3个小杯的依据是什么?

  由1个大杯可替换成3个小杯,你想到了什么?

  小结:如果把720毫升果汁全部倒入小杯,需要(6+3)个小杯。

  2、探索:如果把720毫升果汁全部倒入大杯需要几个大杯?

  (1)提出问题后,要求让学生看图思考。

  (2)交流中明确:将倒入6个小杯中的果汁倒入大杯中,根据“小杯的容量是大杯的1/3”,3个小杯的果汁正好可

  以倒满1个大杯,6个小杯的'果汁正好可以倒满2个大杯。

  (3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。

  3、列式解答:

  引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。

  4、检验。

  引导:求出的结果是否正确?我们可以怎样检验?交流中明确:要看结果是否符合题目中的两个已知条件。学生

  通过计算进行检验,并完成答句。

  三、回顾与反思,提升策略

  提问:在刚才解决问题的过程中,经过哪些步骤?你觉得哪些步骤是关键?你能说说解决这个问题的策略吗?

  学生交流、汇报。

  四、拓展应用,巩固策略。

  1、指导完成“练一练”。

  (1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。

  (2)提问:这个问题与例1有什么相同的地方?有什么不同的地方?你打算用什么策略来解决这个问题?

  (3)追问:威慑么这道题假设全部买椅子而不是假设全部买桌子?

  (4)为了计算方便,要根据两个量之间的倍数关系合理选择假设。运用假设策略时,怎样根据数量间的关系假设也

  很重要。

  (5)让学生自主进行检验。

  (6)反思小结:解决这个问题的关键是什么?

  2、课堂作业:做练习十一第1题。

  独立完成,同桌互说自己的想法。

  全班交流。

  3、做练习十一第2题。

  提问:根据填充里的想法,这道题可以怎样假设?还可以怎样假设?

  独立完成解答,指名板演。

  五、全课总结

  通过这节课的学习,你有什么收获和感想?

《解决问题的策略》教案13

  教学内容:

  苏教版义务教育教科书《数学》六年级上册70~71页例2、练一练,第73页练习十一第4~7题。

  教学目标:

  1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

  2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

  教学重点:

  解决用假设的策略时总量变化的实际问题。

  教学难点:

  理解假设时数量的复杂关系。

  教学过程:

  一、出示问题,讨论策略

  1、出示例2,读题。

  2、小组讨论:你准备怎样来解决这个问题?用什么策略?

  3、你准备怎样假设呢?

  二、自主探索,运用策略。

  1、出示提问:

  (1)这题告诉了我们哪些条件,要求什么问题?

  (2)你是怎样理解题中数量之间关系的?

  通过交流理解:1个大盒里的球的个数+5个小盒里球的个数=80,1个大盒里球的个数—8=1个小盒里球的个数,或者1个

  小盒里球的个数+8=1个大盒里球的个数。

  2、列式计算:

  (1)你能根据假设后的数量关系列示解决吗?

  (2)提问:如果假设6个全是大盒,球的总数又会发生怎样的.变化呢?请大家先想一想,再根据这样的假设算出结

  果,看看答案是不是相同。

  集体评议,重点讨论球的总数发生了怎样的变化。

  3、引导比较:

  (1)刚才我们用两种思路解决了例2,假设6个全是小盒或者假设6个全是大盒,虽然假设的方法不一样,但你发现

  它们有什么相同的地方吗?

  小结。

  三、反思比较,内化策略。

  1、比较异同。

  引导:上节课我们学习了例1,明确了假设的策略,今天又学习了例2,用假设的策略解决了另一类比较复杂的问题。回想一下,例1和例2的条件有什么相同和不同,解决时又有什么相同和不同?

  同桌讨论后全班交流。

  2、反思内化。

  引导:回顾例1和例2解决问题的过程,你有什么体会?

  四、拓展应用,巩固策略

  1、做练一练第1题

  提问:两种不同的假设有什么区别,解题时有什么不同?

  让学生列式解答,指名板演。

  2、做练一练第2题。

  指出:当已知大、小两种量相差多少时,用假设策略时要按假设的方法,思考总量有什么变化,是增加了多少还是

  减少了多少。

  3、做练习十一第5题

  引导学生课业用三种不同的假设方法说明。

  五、全课总结:

  1、这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?

  2、作业:

  完成练习十一第4、6、7题。

《解决问题的策略》教案14

  一、教学内容

  转化是解决问题的常用策略。转化能把新颖的问题变成已经认识、已能解决的问题,从而创造性地利用已有的知识、经验。转化能把复杂的问题变成较简单的问题,从而便捷地找到问题的答案。本单元教学转化策略。

  学生在过去的数学学习中经常进行转化,已经积累了关于转化的体验。本单元深入体验转化,用于解决实际问题。编排2道例题、一个练习,把教学分成两段进行。

  例1,回顾以前进行的转化,从策略层面上认识它,体会转化的价值。

  例2,利用已有分率进行推理,转化较复杂的分数问题,发展思维的开放性和灵活性。

  二、教材编写特点和教学建议

  1.让学生体会转化,感悟策略。

  策略是在解决问题的活动中逐渐形成的,再认解决问题的过程,体验其中的思想方法是形成策略的有效途径。学生曾经进行过许多转化,是感悟策略的宝贵资源,本单元从回顾以前进行的转化开始,例1的教学分三步进行。

  利用图形的直观作用引发转化。方格纸上呈现两个形状不同的图形,不容易直接看出面积是否相等。学生会想到把两个图形都转化成长方形,再比较面积的大小。其中一个图形平移它的一部分,另一个图形旋转它的两小块,转化成的两个长方形长相等、宽也相等,面积肯定相等。这个问题利用直观情境让学生主动转化,初步体会转化有助于解决问题。

  回忆曾经进行过的转化,体会转化是一种策略。教材指出转化是策略,让学生回忆曾经运用转化策略解决的问题,进一步体验转化。第72页列举了推导面积公式时转化,计算小数乘法、分数除法时转化,这些仅是曾经进行过的一部分转化,学生还能说出许多。教学时要让学生充分回忆,简要说说怎样转化的,转化有什么好处,达到体验转化的目的。

  有意识地应用转化解决问题。试一试计算四个异分母分数的加法,数形结合,把原式转化成1-,能很快说出得数。练一练计算多边形周长,在图形启发下转化成求长方形周长的问题,实现了化繁为简。通过这两个问题的解答,再让学生说说解题策略,不仅深刻体会了转化,还能产生积极的情感体验。

  2.指导学生转化稍复杂的分数问题。

  例2是较复杂的分数问题,在本册教材第一单元里,这样的问题要列方程解答。通过转化,能很容易地列式计算。

  本单元转化分数问题,目的在于让学生体会化繁为简,增强策略意识。同时,更好地理解分数的意义及相关的概念,发展推理能力。并不要求学生掌握转化复杂分数问题的技巧,更不要求他们独立进行转化。例2以及练习十四里的分数问题,都是教材指点下的学生转化。。

  用原有的方法解题。教学例2,先让学生列方程解答,这是旧知识。用原有方法解题有两个目的,一是熟悉题目里的数量关系,理解题中的分数的意义,为转化作准备。二是感受原来的解题比较麻烦,转化后的解题十分方便,为比较解法作准备。

  指出转化的方向。教材说:如果把男生人数是女生的转化成女生人数是美术组总人数的几分之几,就可以直接用乘法计算。在这句话里提出了转化,指出了方向,要通过转化题目里的分数,使题目变成简单的分数乘法问题。教学时应该让学生仔细阅读这句话,明白把已有的那个分数转化成什么分数,解释为什么转化后就可以直接用乘法计算。

  学生联系已有经验进行转化。转化要应用概念进行推理,对现有的信息进行深度开发,创造出新的有价值的'信息。把男生人数是女生的转化成女生人数是总人数的几分之几,是进一步沟通男生人数、女生人数、总人数三者的倍数关系。由于分数与除法、比都有联系,因而学生转化的思路必定是多样的,而最终的结论是一致的。

  解答转化后的问题。得出女生人数是美术组总人数的,求女生人数就很方便了,因为原来的题被转化成求一个数的几分之几是多少的乘法问题了。让学生列式计算,能感受方便,从而又一次体会转化对解决问题的作用。

  需要再次指出的是,练习中的分数问题也是在教材指点下的学生转化。呈现图形直观,填写应联想的分数,降低了转化的坡度。学生只要在教材提供的条件下通过推理实现转化。

《解决问题的策略》教案15

  教学内容:教科书第63~64页的例1、例2和随后的“练一练”,练习十一的第1~3题。

  教学目标:

  1、使学生经历用列举策略解决简单实际问题的过程,能通过不重复、不遗漏的列举找到符合要求的答案。

  2、使学生对解决简单实际问题的过程的反思和交流中,感受一一列举的特点和价值,进一步发展思维的条理性和严密性。

  3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,并获得解决问题的成功体验,提高学习数学的信心。

  教学过程:

  一、导入:

  1、导入语:今天老师要带大家去参观生态园(出示图片),看,多漂亮啊!

  二、教学例1,感知一一列举

  1、出示例1

  园长叔叔想找我们同学帮一个忙,你们愿意吗?

  (出示图片)用18根1米长的栅栏围成一个长方形羊圈。

  师:你想可以怎样围?

  要求:独立思考,已经想好的可以和同桌轻声交流(教师参与讨论)

  还有这么多举手的同学,说明同学们还有不同的围法,那么这个长方形羊圈有多少种不同的围法呢?这就是我们今天要解决的问题(板书:解决问题)

  2、布置任务,小组合作

  提问:请你仔细想你想,把所有不同的围法都找出来,并且纪录在表格内,如果有困难,可以用18跟小棒摆一摆,填好后在小组中交流。

  长方形的长/米

  长方形的宽/米

  全班交流:说说你是怎样找的,有哪几种围法?(实物投影展示学生不同的写法)

  比较:有序和无序的两种,你更喜欢哪一种?为什么?

  3、 揭示课题

  师:同学们,通过大家的努力,我们解决了园长叔叔的难题,回顾一下,我们怎样找出4中不同围法的呢?(表格—一个一个写下来)

  指出:在我们解决一些实际问题的时候,可以像刚才这样把事情发生的可能按照一定的顺序,有条理的一个一个列举出来,从而找到问题的答案,这就是我们今天研究的解决问题的一个重要策略——一一列举。(板书:策略、一一列举)

  4、 园长叔叔的羊圈问题我们已经找到了4种不同的围法,你能算一算各种围法的面积吗?

  ① 指名口答

  ② 比较一下它们的长、宽、和面积,你有什么发现?

  指出:周长相等的长方形,面积不一定相等

  周长一定时,长与宽的数值越接近,面积就越大。

  师:如果你是园长,你会采用哪种围法?

  三、教学例2

  1、出示例2

  图书角有3本书,最少借1本,最多借3本。一共有多少种不同的'借阅方法?

  ① 你是怎么理解最少借1本,最多借3本的?

  ② 引导学生说出可以借1本 (师板书)

  借2本

  借3本

  ③ 师:一共有多少种不同的借法呢?你准备怎样找出不同的借法?(列表,一个一个写下来,一一列举)

  2、布置任务,小组交流

  用你喜欢的表示方法有序地分析一共有多少种不同的借法。

  先独立思考,把你的想法或者表格写在自备本上,再在小组里交流(请各个组长组织安排好交流的顺序)

  全班交流

  (把不同的表示方法分别展示在实物投影上,并说说你是怎样想的)

  提问:如果只订阅1本,有几种不同的方法?具体说一说。

  如果订阅2本,有几种不同的方法?你是怎样想的?

  如果订阅3本呢?

  那么一共有多少种不同的方法?(分别板书)

  2、那么为了不遗漏、不重复,解决这个问题我们也可以利用这样的表格一一列举。

  ① 出示表格

  ① 出示表格

  只订1本 订2本 订本

  《科学世界》

  《七彩文学》

  《数学乐园》

  ② 指导生用划√的方法表示订阅的种类

  先指导只订1本的

  再指导订2本的(让生自己先分析怎么划√,再让生形成共识,划两个√代表一种订法)

  最后指导订3本的

  ③ 看表格找出共有几种不同的订法(竖行数出)

  4、:刚才用了一一列举的策略解决了这个问题,想一想要想得到全部答案,列举时要注意什么?(既不重复,也不遗漏)

  四、巩固新知

  生活中有很多类似的问题,我们也能够用一一列举来解决。

  1、P64练一练:

  一张靶纸共3环,投中内圈得10环,投中中圈得8环,投中外圈得6环。小华投中两次,可能得到多少环?(列举出所有可能的答案)

  你打算用什么策略解决这个问题?你会列举吗?

  试一试(注意有序性)

  2、练习十一第一题:

  课件显示问题:

  先分析题意(红色标出部分表示什么)

  生完成表格(完成在书上P66)

  用你喜欢的方法,标记出几时几分第二次同时发车。(并和同桌轻声交流)

【《解决问题的策略》教案】相关文章:

《解决问题的策略》教学反思01-16

解决问题的策略教学反思06-28

《解决问题数数策略》教学设计01-16

分数的解决问题教案09-06

解决问题的教学教案06-26

解决问题说课稿12-23

解决问题说课稿05-15

《解决问题》教学反思05-24

用比例解决问题说课稿12-09