分数与除法教案
在教学工作者开展教学活动前,往往需要进行教案编写工作,借助教案可以更好地组织教学活动。那么你有了解过教案吗?下面是小编精心整理的分数与除法教案,欢迎大家借鉴与参考,希望对大家有所帮助。
分数与除法教案1
教学内容:
分数乘法、除法计算练习
教学目标:
1、通过练习,更好地掌握分数乘法和分数除法的计算方法,形成相应的计算技能,提高计算能力,培养良好的计算习惯。
2、通过练习,进一步提高运用分数乘法计算解决简单的实际问题的能力。
3、通过练习,进一步体会数学知识之间的内在联系,感受数学知识和方法的应用价值,增强学好数学的信息。
教学重、难点:
掌握运用分数乘法解决简单实际问题的基本思路与方法。
教学对策:
设计一些找单位1的量和分析数量关系式的练习,多组织学生说思考过程,通过交流感受一些方法。
教学准备:
自制投影片或小黑板
教学过程:
一、揭示课题
谈话:国庆长假之前,我们学习了分数乘法和分数除法的有关内容,在计算中,同学们还存在一些问题,所以今天这节课,我们将进行相关练习,帮助大家更好地掌握这些知识。(板书课题:分数乘法和分数除法)
二、基本练习
1、计算练习。
5/129/10 3410/51 22/3926/11
10/2112/257/8 3/20145/7
8/15 6 11/622 2515/16 812/13
11/1222/9 15/165/12 5/1410/21
学生任选3道乘法、3道除法进行计算,同时指名学生板演,教师及时结合学生计算情况进行讲评。
组织学生小结分数乘法和分数除法的计算方法。
2、解方程。
12x=9/11 3/8x=9/10 6/5x=15
学生先独立完成,再指名学生板演,结合板演情况进行讲评时指出解方程的格式及依据,及时纠正学生计算中的错误。
3、在○里填上、或=。
5/711/13○5/7 7/916○7/91/16
5/71○5/7 5/77/5○5/7
6/73/5○6/7 3/84/ 3○3/8
110/9○1 8/111○8/1
学生不计算,通过已学知识进行判断,然后交流判断理由。
教师及时组织学生小结:
一个数乘真分数,结果小于这个数;一个数乘以1,结果等于这个数;一个数乘比1大的假分数,结果大于这个数。
一个数除以真分数,结果大于这个数;一个数除以1,结果还等于这个数;一个数除以比1大的假分数,结果小于这个数。
4、根据已知条件找准单位1的量并说说数量关系式。
(1)白兔只数的5/12是黑兔的只数。
(2)已经修了公路全长的3/4。
(3)今年棉花产量比去年增加1/8。
(4)第三季度冰箱价格比第二季度便宜1/10。
(5)二班植树棵数相当于一班的9/8。
(6)还剩这堆煤的3/8。
学生同桌之间进行练习,每人选3题说说数量关系,然后指名交流。
5、解决实际问题。
(1)小明用3/10小时走了15/16千米,平均每小时走多少千米?照这样的速度,小明走1千米要多少小时?
(2)一种柴油2/3升重8/15千克。1升这样的.柴油重多少千克?1千克这样的柴油有多少升?
(3)鹅的孵化期是30天,鸡的孵化期是鹅的7/10,鸭的孵化期是鸡的4/3倍,鸭的孵化期是多少天?
(4)一个乒乓球从50分米的高度下落,每次弹起的高度是下落时高度的2/5,第三次下落时能弹起多少分米?
(5)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是鲜牛奶的2/15。一盒酸奶的净含量是多少升?
(6)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量比鲜牛奶少13/15。一盒酸奶比一盒鲜牛奶少多少升?
(7)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是1/5升。一盒酸奶的净含量比一盒鲜牛奶少多少升?
学生独立完成后进行交流,主要交流思考过程。
三、全课总结
评价一下自己的练习情况,分析一下还存在什么问题。
课后反思:
按照课前的教学设想,我先组织学生进行了分数乘、除法计算练习,然后进行了分析数量关系式的练习,最后进行了解决实际问题的练习。课堂上学习效果还不错。
但从学生作业情况看,有些学生解决实际问题时,还未认真读题就列式计算,这样就存在一个问题,当天所学的如果是分数乘法,这部分学生在解题时就会全部用乘法来解决问题;如果今天学的是分数除法,他们就全部用除法来计算。也就是说完全是模仿,没有自己的理解和对问题的思考、分析。长此下去,造成的后果是严重的。所以要把问题杜绝在源头,在练习过程中,我经常组织学生进行对比练习,逼着他们要独立思考,让他们感到没有自己的思考是无法正确解答题目的。
分数与除法教案2
教学内容:
49~50页的内容及练习十二1~12题。
教学目标:
1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。
2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程
3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重点:
掌握分数与除法的关系,会用分数表示两个数相除的商。
教学难点:
理解可以用分数表示两个数相除的商。
教具准备:
课件
教学过程:
一、复习导入
1. 表示什么意思?它的分数单位是什么?它有几个这样的分数单位?
2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位“1”?
3.引入:5除以9,商是多少?板书:5÷9
如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。
二、新课讲授
1.教学例1:出示题目
(1)列出算式。(板书:1÷3=)
(2)讨论:1除以3结果是多少?你是怎样想的?
(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个“1”。
板书:1÷3= 1/3(个)
2.教学例2:出示题目
(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。
(2)口述方法及每份分得的结果,教师总结几种不同的分法。
(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,3÷4=3/4 (块)。
由此可见, 不仅可以理解为把1块饼(单位“1”)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位“1”)平均分成4份,表示这样1份的'数。
学生相互说说 表示的意义。
3.教学分数与除法的关系。
(1)观察1÷3= 3÷4= 这两道算式,
想一想
①两个(非0)自然数相除,在不能得到整数商的情况下还可以用什么数表示?
②用分数表示商时,除式里的被除数,除数分别是分数里的什么?
③分数与除法的关系是怎样的?
(2)总结三点
①分数可以表示除法的商。
②在表示除法的商时,要用除数作分母,被除数作分子。
③除法里的被除数相当于分数里的分子,除数相当于分数里的分母(强调“相当于”一词)。分数与除法的关系可以表示成下面的形式
(3)如果用a表示被除数,b表示除数,那么分数与除法的关系可以怎样表示
板书:a÷b=a/b (b≠0)
(4)这里的b能为0吗?为什么?
明确:两个整数相除,商可以用分数表示,反过来,分数能不能看作两个整数相除?(可以,分数的分子相当于除法中的被除数,分母相当于除数)
(5)分数与除法有区别吗?区别在哪里?
(分数是一种数,但也可以看作两个数相除,除法是一种运算)
4.教学例3:出示题目
(1)列出算式。板书:7÷10
(2)怎样计算?。7÷10=
三、巩固练习。
1.做一做:独立完成,集体订正。
2.练习十二的第1、2题:独立完成,订正时说一说怎样计算。
第3、4题:做在书上,集体订正。
第5、6题:独立完成,订正时说一说是怎么想的。
3.作业:练习十二7----11题,选作12题。
四、课堂小结
这节课学习了什么知识,你有哪些收获?
板书设计:
分数与除法
例1:1÷3= 1/3(个)
例2:3÷4=3/4 (个)
例3:7÷10= 7/10
分数与除法教案3
教学内容:
教材第27~28页的内容及练习。
教学目标:
1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2.掌握一个数除以分数的计算方法,并能正确计算。
3.培养学生解决简单实际问题的能力。
教学重难点:
1.掌握一个数除以分数的计算方法,并能正确计算。
2.整数除以分数的.计算法则推导过程。
教学过程:
一、创设情景 激趣揭题
1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?
2.引入并板书课题:分数除法(二)
设计意图:设疑激趣。 明确目标。
二、扶放结合 探究新知
1.分一分,引导感知一个数除以分数的意义。
2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。
3.引导完成28页的填一填,想一想,你发现了什么?
4.引导归纳计算方法。
设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。
三、反馈矫正
出示P28的试一试。
1.统一分数除法的计算法则。
2.指导完成P28练一练的1~4题。
四、小结评价 布置预习
1.引导小结:通过这节课的学习,你有什么收获?
2.布置预习: P29 分数除法(三)
板书设计: 分数除法(二)
4÷1/2=4×2=8 ;4÷1/4=4×4=16
一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。
分数与除法教案4
教学内容:
五年级下册教科书第65—66页。
教学目标:
1.在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。
2.在探究过程中,培养学生观察、比较、归纳等探究的能力。
3.体会知识来源于实际生活的需要,激发学习数学的积极性。
教学重点:
经历探究过程,理解和掌握分数与除法的关系。
教学难点:
通过操作,让学生理解一个分数可以表示的两种意义。
教材分析:
《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。
本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的`情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。
教具学具:
课件,模型。
教学设计
一、导入
师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?
生:月饼。
师:你们的课外知识真丰富,你们喜欢吃月饼吗?
生:喜欢。
师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?
生:2块,6÷3=2(块)。(板书)
师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?
生:0.5块,1÷2=0.5(块)。(板书)
师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?
师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?
生:七分之五。
师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?
生:可以用分数表示。
师:在表示整数除法的商时,用谁作分母?用谁做分子?
生:用被除数作分子,除数作分母。
师:那么分数与除法有什么样的关系呢?谁能用语言概括下?
生:被除数除以除数等于除数分之被除数。
师:你表达得这么清晰流畅,了不起!
师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?
生:a÷b= a/b(b≠0)(板书)
师:这个关系式里每个数的范围要注意什么?
生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。
师:想一想分数与除法有哪些联系和区别?
教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。
师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)
二、巩固练习
师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?
1.1.用分数表示下面各式的商。
(1)3÷2 =()
(2)2÷9 =()
(3)7÷8 =()
(4)5÷12 =()
(5)31÷5 =()
(6)m÷n =()n≠0
2.把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖
的( )是相等的
三、课堂小结
说说你的收获是什么?重点说说分数与除法的关系。
结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!
四、作业布置
练习十二第1,3题。
板书设计
分数与除法
被除数÷除数=被除数/除数
a÷b= a/b(b≠0)
教学反思
这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。
分数与除法教案5
教学内容:
分数与除法的关系
教学目标:
1、使学生理解分数与除法的关系,掌握两个自然数相除,可用分数表示。
2、运用分数与除法的关系,学会把低级单位的名数聚成高级单位的名数,并学会解答“求一个数是另一个数的几分之几”的应用题。
教学过程:
一、复习
1、说说下面各分数的意义,分数单位,以及有几个这样的分数单位。
2、看句子说把()看作单位“1”,平均分成()分,()占其中的()份。
二、教学应用题
例2把1米长的钢管平均截成6段,每段长多少米?
分析:求每段长多少米,就是求每份数
列式:1÷6=1/6(米)
根据分数的意义,把一米长的钢管看作单位“1”,平均分成6份,表示这样1份的数
二、引入新课
1、分数与除法有什么关系?
2、教学例3
把3只月饼平均分成4份,每份是多少只?
分析:(1)每份是多少?就是计算3÷4得多少
(2)图示,把3只月饼平均分成4份,每人得到的1份,是3只月饼的1/4,也就是一只月饼的3/4。
因此:3÷4=3/4(只)
3、找一找
(1)分数与除法的关系
两个自然数相除,它们的商可以用分数表示。
被除数÷除数=被除数/除数
(2)想一想,分数的分母能是0吗,为什么?
三、巩固练习
例4五年级同学参加登山活动,男同学有36人,女同学有9人
(1)男同学人数是女同学的几倍?
(2)女同学人数是男同学的几分之几?
分析:男同学人数是女同学的`几倍,是以女同学人数为标准,就是求36里面有几个9,用除法计算36/9。女同学人数是男同学的几分之几,是以男同学人数为标准,就是求9是36的几分之几,也用除法计算9/36。
答:男同学人数是女同学的4倍。
女同学人数是男同学的9/36。
四、总结归纳
1、求一个数是另一个数的几分之几,用除法计算的道理。
2、让学生应用求一个数是另一个数的算理。
五、布置作业
反思:这节课的重点是分数与除法的关系。学生比较容易理解表象,记住分数与除法的关系。但对于深层意义的理解比较困难。教师应采用多种教学手段,在学生自己总结的基础上来掌握概念。可能效果会更好些。在教学谁是谁的几分之几的时候,对于如何列式子的指导应该从谁是谁的几倍这个知识点着手来教学比较妥当。
分数与除法教案6
教学目标:
1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。
2、根据题意,能画线段图分析图意。
3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。
教学过程:
一、巩固旧知,过渡引入
1、根据题意,判断谁是单位1,并写出各题的数量关系。
(1)故事书本的2/5等于连环画的本数。
(2)梨重量的7/8是840千克。
(3)男生人数是全班人数的'2/3 。
2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的水分有多少千克?
[这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]
二、学习新知
1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?
(1)读题,找出已知条件和问题。
(2)根据题意与线段图理解题中的条件和问题。
(3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。
体重× 4/5 =体内水分重量
师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?
(4)学生尝试练习方程解答,个别板演,教师点评。
(1)解:设这个儿童体重χ千克
(2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5
χ=35答:这个儿童体重35千克。
分数与除法教案7
第课时分数与除法
1、通过学习,使学生进一步理解分数的意义,知道分数还可以表示除法的商,被除数相当于分数的分子,除数相当于分数的分母,学生能够用分数表示整数除法的商。
2、通过学习,使学生进一步理解分数的意义,知道分数还可以表示数量,理解并掌握1个的几分之几就是几分之几个,几个的几分之一就是几分之几个。
3、能运用分数与除法的关系解决相关的问题。
4、让学生经历分数与除法的关系的探究过程,经历求一个数是另一个数的几分之几的解答过程。
【重点】理解和掌握分数与除法的关系。
【难点】理解用分数可以表示两个数相除的商。
【教师准备】 PPT课件,口算卡片。
【学生准备】 3个完全相同的圆片,剪刀。
填一填。
(1)表示的意义是()。
(2)的分数单位是(),它有()个这样的.分数单位。
【参考答案】
(1)4个是多少
(2)7
老师出示口算卡片,学生口答。
8÷4= 15÷5= 12÷3=
5÷4= 6÷5= 7÷3=
师:比较这6道题的商,你发现了什么
预设生:上面3题的商没有余数,下面3题的商都有余数。
师:以前计算整数除法时,如果遇到除不尽或得不到整数商的情况,我们就只算到个位,然后写出余数是几,有了分数以后,就可以解决这个问题了。除法的商怎么能用分数表示呢除法与分数有什么关系呢这就是我们今天要研究的问题。(老师板书课题:分数与除法)
由比较两组口算题的结果引入课题,使学生明确用分数可以表示除法的商。
师:请同学们回忆一下,在计算除法时,如果遇到除不尽或得不到整数商的情况,我们是怎样处理的。
预设生:可以用小数表示商,或者除到个位后,用余数表示结果。
师:你们知道吗有了分数,再遇到这种情况,我们就可以用分数来表示商。想不想知道怎样用分数来表示除法的商(想)要想知道怎样表示,就要先理解分数与除法的关系。(老师板书课题:分数与除法)
通过老师提问,引起学生思考,激发学习欲望。
一、教学例1,掌握用分数表示除法的商的方法。
1、PPT出示例1。
(1)学生看图、读题,思考解答方法。
(2)指名回答:求每人分得多少个,怎样列式
预设生:根据题意应该列式为:1÷3。
(3)用PPT出示:用一个圆表示一个蛋糕,把一个圆平均分成3份,其中1份涂色。让学生根据图意说出结果是多少。
预设生:每人分得个。
老师根据学生回答板书:1÷3=(个)。
2、巩固练习。
用分数表示下面各题的商。
3÷7= 5÷8= 9÷10=
21÷32= 4÷11= 6÷13=
【参考答案】
使学生了解用分数表示商的方法。
二、教学例2,使学生理解分数与除法的关系。
1、PPT出示例2。
(1)学生看图、读题,思考解答方法。
(2)指名回答:求每人分得多少个,怎样列式
预设生:根据题意应该列式为:3÷4。
(3)让学生拿圆片代替月饼实际分分,可能有不同的分法。然后让学生汇报。
(4)用PPT出示:把3个月饼平均分成4份,其中1份是3个四分之一个月饼,再把这3个四分之一拼起来,可以看出得到了四分之三个月饼。然后让学生说出结果是多少。
预设生:每人分得个。
老师根据学生的回答进行板书:3÷4=(个)。
2、老师引导学生观察除法算式与分数,探究它们之间的关系。
(1)用文字进行表述例1和例2的算式。
1÷3=
3÷4=
被除数÷除数的结果怎样表示得到:
被除数÷除数=
(2)学生在小组中学习用语言描述分数与除法之间的关系,然后指名回答。
预设生:被除数相当于分数中的分子,除数相当于分数中的分母,除号相当于分数中的分数线。
(3)小组讨论,用字母表示出分数与除法的关系,然后派代表发言。
预设生:a÷b=。
(4)引导学生思考b可以是0吗学生通过小组讨论后明确,因为除数不能为0,所以分数的分母不能为0,因此b也不能等于0。
老师根据学生的回答进行板书。
a÷b=(b≠0)
被除
除数
数
(5)教师小结:现在学习了分数与除法的关系,复习题中表示的意义,还可以看作把“4”平均分成5份,表示这样一份的数。
通过小组讨论,使学生明确分数与除法的关系。
三、教学例3,使学生经历求一个数是另一个数的几分之几的过程,进一步理解分数的意义,知道分数还可以表示两种数量比较的关系。
1、PPT出示例3。
(1)学生读题,理解题意。
(2)出示自学要求:
①想一想,答案是多少
②有什么办法说明自己的答案是正确的怎样说明
③题中的两个问题有什么关系
学生根据自学要求翻开教材第50页,自主学习、交流,老师巡视了解学情,对学生进行指导。
(3)组织学生汇报自学情况,展示答案。
自学要求①:
预设生:求“鹅的只数是鸭的几分之几”就是求7只是10只的几分之几,用除法计算,列式为:7÷10,根据分数与除法的关系可知结果是。求鸡的只数是鸭的多少倍,也用除法计算:20÷10=2。
自学要求②:
预设生:可以通过画图分析,证明自己的答案是正确的。
(根据学生回答,展示学生画的图或用PPT出示教材第50页的图)
自学要求③:
预设生:第1问是求一个数是另一个数的几分之几;第2问是求一个数是另一个数的几倍。这两个问题都用除法计算。
2、老师引导学生小结:求一个数是另一个数的几分之几,或几倍,都用除法计算。两个数相除,如果商是整数,那么用几倍来表示;如果商不是整数,那么用几分之几来表示。(老师板书)
3、师:根据题意,你们还能提出其他的数学问题并解答吗
(1)学生在小组里讨论,提出问题并解答。
(2)各小组展示提出的问题和解答的过程。
预设生1:我们提出的问题是:鹅的只数是鸡的几分之几解答是:7÷20=。
生2:我们提出的问题是:鸭的只数是鸡的几分之几解答是:10÷20=。
……
4、巩固练习。
五、(1)班有男生23人,女生22人。
(1)女生人数是男生人数的几分之几
(2)女生人数是全班人数的几分之几
(3)男生人数是全班人数的几分之几
学生独立解答,指名回答,集体订正。
分数与除法教案8
教学目标
1.通过比较,进一步弄清求一个数的几分之几是多少的乘法应用题和相应的列方程解的应用题的数量关系之间的内在联系,解题思路,解题方法的联系和区别.
2.能正确熟练地解答稍复杂的分数应用题.
3.培养学生分析问题和解决问题的能力.
教学重点
明确分数乘、除法应用题的联系和区别.
教学难点
明确分数乘、除法应用题的联系和区别.
教学过程
一、启发谈话,激发兴趣.
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答
时易混淆.这节课我们就来一起对这两类应用题进行比较.通过比较弄清它们之间的联系与区别.
二、学习新知
(一)出示例8的4个小题.
1.学校有20个足球,篮球比足球多 ,篮球有多少个?
2.学校有20个足球,足球比篮球多 ,篮球有多少个?
3.学校有20个足球,篮球比足球少 ,篮球有多少个?
4.学校有20个足球,足球比篮球少 ,篮球有多少个?
(二)学生试做.
1.第一题
解法(一)
解法(二)
2.第二题
解:设篮球有 个.
解法(一)
解法(二)
解法(三)
3.第三题
解法(一)
解法(二)
4.第四题
解:设篮球 个.
解法(一)
解法(二)
解法(三)
(三)比较区别
1.比较1、3题.
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有
什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把足球看作单位“1”,单位“1”的`量是已知的,求篮球有多少个?
就是求一个数的几分之几是多少?用乘法计算,不同的是(1)题篮球比足球多 ,而第(3)题是篮球比足球少 ,计算进一个要加上多的数,一个要减去少的个数.
2.比较2、4题
教师提问:这两道的第二个已知条件有什么不同?解题思路有什么相同的地方?有什么不同的地方?
(1)观察讨论.
(2)全班交流.
(3)师生归纳.
这两道题都是把篮球看作单位“1”,而且单位“1”的量者是未知的,因此要设单位“1”的量为 ,根据一个数乘以分数的意义找出等量关系列方程解答.熟练之后也可以直接列除法算式解答.
三、巩固练习.
(一)请你根据算式补充不同的条件.
学校有苹果树30棵,________________,桃树有多少棵,
1. 2.
3. 4.
5. 6.
(二)分析下面的数量关系,并列出算式或方程.
1.校园里有柳树60棵,杨树比柳树多 ,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少 ,杨树有多少棵?
3.校园里的杨树比柳树多 ,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少 ,杨树有25棵,柳树有多少棵?
四、归纳总结.
今天我们通过对分数乘、除法应用题进行比较,找到了它们之间的联系和区别,这些对于我们正确解答分数应用题有很大帮助,大家一定要掌握好.
五、板书设计
数学教案-分数乘、除法应用题的对比
分数与除法教案9
【学习目标】
1、掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的
解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、培养并提高分析、判断、探索能力及初步的逻辑思维能力。
3、提高解答应用题的能力。
【学习重难点】
1、重点是弄清单位“1”的量,会分析题中的数量关系。
2、难点是分析题中的数量关系。
【学习过程】
一、复习题:
小红家买来一袋大米,重40千克,吃了5,还剩多少千克? 8
1、分析题目的条件和问题,画出线段图。
2、交流讨论并解答。组内检查核对,提出质疑。
1”,如果单位“1”的具体数量是已
知的.,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,
直接用乘法计算。
二、探索新知
1、补充例题:小红家买来一袋大米,吃了
(1)吃了5,还剩15千克。买来大米多少千克? 85是什么意思?应该把哪个数量看作单位“1”? 8
(2)理解题意,画出线段图。 (3)根据线段图,分析数量关系式:____________________________
(4)根据等量关系式解答问题。___________________________
2、学习例2
(1)阅读例5的主题图及题目,用自己的话表述题意,说一说“美术小组的人数比航模
小组多1”的含义,把谁看作单位“1”?_________________________________ 4
(2)自己动手,画线段图表示两个小组的人数,将已知条件和问题标注在线段图上,图
中的未知数可以用X表示。
(3)结合线段图,写出等量关________________________________________________
(4)列出方程式并解答,算完后梳理一下自己整道题的解题思路?(注意解题格式)
三、知识应用:独立完成P40练习十第4题,组长检查核对,提出质疑。
四、层级训练:1、巩固训练:完成练习十第10--13题
2、拓展提高:练习十第14题以及P42最后一题“思考练习”。
五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?
学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)
分数与除法教案10
教学目标:
1、能正确进行分数乘除的混合运算。
2、能用分数乘除的混合运算解决生活中的实际问题。
3、初步形成独立思考和探索的意识。
4、感受数学与生活的密切联系,激发学生学习数学的兴趣。
教学重点:
用分数乘除的混合运算解决实际问题。
教学难点:
分析题中的数量关系,正确地列出算式。
教学准备:
多媒体课件、实物投影
教学过程:
一、 课前三分钟口算练习。
师:老师要先考考大家的口算能力
出示口算卡片,指生答
(挑选一两道题让学生说说计算方法)
二、情境导入:
师:同学们,规范认真的'书写是每一个同学应具备的基本素质,不光语文上要规范书写,数学亦如此,经过一段时间的努力,同学们的书写水平都有了很大的进步,我们班也涌现出了数学书写之星,想知道他们是谁吗?想看看他们的作品吗?
师:好,那大家必须接受考验,闯过三关,找到三把金钥匙,有信心吗?
师:上节课我们学习了“分数乘除的混合运算”,这节课我们要运用所学知识解决生活中的数学问题。上一节分数乘除混合运算的练习课。
三、检查复习知识点与指导练习。
1、我会说
师:不计算,只说运算过程,你会说吗?
指生说
2、计算
师:知道了分数乘除混合运算的运算顺序和计算方法,你能准确无误的计算这两道题吗?试试看
指生到台前做。
学生讲解
师:能不能告诉大家,在计算时应该注意什么问题?
师:同学们说得真不错,这就是我们在计算时容易出现的错误,在做题的时候,大家要注意这些问题,正确进行分数乘除混合运算的计算。能做到吗?
指生到黑板上做
订正答案,及时反馈。出示错题,让学生找错误。并说说计算应注意什么问题。
3、解方程
师:看来,刚才这道题太简单了,没有难住大家。下面老师就要增加一点难度了,愿意接受挑战吗?(出示课件)
师:你能说一说解方程的步骤吗?
指生说
学生在练习本上完成本题,订正反馈
师:恭喜大家,拿到了第一把金钥匙。有信心拿到第二把吗?让我们继续闯关吧。
4、解决问题
学生独立完成,分析题意,订正答案
师:在大家的共同努力下,我们拿到了第二把金钥匙。第三把钥匙得靠自己了。有信心超越自我吗?
四、当堂测试:
师:请同学们独立完成当堂测试,检验一下自己的学习成果吧。
订正答案,及时反馈
师:恭喜大家,拿到了最后一把金钥匙。
师:现在三把钥匙都找到了,让我们一起来看看是谁获得了数学书写之星的称号,共同来欣赏他们的作品吧。(课件出示)
师:看了大家的书写,你想说点什么?
五、小结
师:通过本节课的学习,你有什么收获?
学生交流
师:同学们,这节课你学得快乐吗?希望同学们每一节课都能快乐学习,健康成长。
分数与除法教案11
教学目标
1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.
2.掌握分数除以整数的计算法则,并能正确的进行计算.
3.培养学生分析能力、知识的迁移能力和语言表达能力.
教学重点
正确归纳出分数除以整数的计算法则,并能正确的进行计算.
教学难点
正确归纳出分数除以整数的计算法则,并能正确的'进行计算.
教学过程
一、复习引新
(一)说出下面各数的倒数.
0.3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)
(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)
二、新授教学
(一).教学分数除法的意义(演示课件:分数除法的意义)
1.每人吃半块月饼,4个人一共吃多少块月饼?
教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()
2.两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
3.两块月饼,分给每人半块,可以分给几个人?
列式:
教师提问:说一说结果是多少?你是如何得出结果的?
4.组织学生讨论:分数除法的意义.
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.
5.练习反馈.
根据:,写出,
(二)教学分数除以整数的计算法则
1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)
(1)求每段长多少米怎样列算式?
(2)以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米.
(3)教师板书整理.
(米)
2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:
把米铁丝平均分成6段,就是求米的是多少,列式是:
3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?
(米)
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.
4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.
三、巩固练习
(一)计算下面各题.
学生独立完成,教师巡视,进行个别辅导.
(二)求未知数
1.2.
(三)判断.
1.分数除法的意义与整数除法的意义相同.()
2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.()
3.()
4.()
5.()
(四)解答下面各题.
1.把平均分成4份,每份是多少?
2.什么数乘以6等于?
3.一个正方形的周长是米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
(一)计算下面各题.
(二)解下列方程.
六、板书设计
分数除法
分数与除法教案12
教学目的
1理解分数除法的意义,掌握分数除法的计算方法。
2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影
板书设计1分数除以整数例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动
一、复习导入新课为迁移做准备
明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果
二、新课学习分数除法的计算方法
学习分数除法的计算方法板书 激发兴趣 汇报 板书
板书 1出示例1:把一根长4/5米的铁丝,截成相等的'两段,每段长几米?理解4/5米的意义 ?米 ?米
4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314
5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义
讨论方法
选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外
三、练习巩固分数除法的计算法则投影
投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算
分数与除法教案13
教学目标
1.使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题.
2.加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力.
教学重点
理解分数乘、除法应用题的异同点,会正确解答.
教学难点
能正确解答分数乘、除法应用题.
教学过程
一、复习引新
(一)下面各题中应该把哪个数量看作单位“1”?
1.花手绢的块数是白手绢的
2.白手绢块数的 正好是花手绢的块数.
3.花手绢的块数相当于白手绢的
4.白手绢块数的 倍相当于花手绢的块数
(二)教师提问
1.求一个数是另一个数的的`几分之几用什么方法?
2.求一个数的几分之几是多少用什么方法?
3.已知一个数的几分之几是多少,求这个数,用什么方法?
(三)谈话导入
为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习.
二、讲授新课
(一)教学例3
1.课件演示:分数除法应用题
2.比较.
(1)我们把这三道题放在一起比较,它们有什么相同点?
相同点:三个数量是相同的;需要找准单位“1”来分析.
(2)它们有什么区别呢?
不同点:已知和所求不同;解题方法不同.
3.小结:分数应用题主要有以上三类:
(1)求一个数是另一个数的几分之几.
(2)求一个数的几分之几是多少.
(3)已知一个数的几分之几是多少求这个数.
4.解答分数应用题的方法是什么?
抓住分率句;找准单位“1”;画图来分析;列式不必急.
三、巩固练习
(一)应用题
1.一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?
(1)学生独立分析列式
(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题.
2.学校有故事书36本,是科技书的 ,科技书有多少本?
3.学校有故事书36本,科技书是故事书的 ,科技书有多少本?
(二)补充条件并列式解答.
一条路长15千米,修了全长的 ,_________________?
(三)选择正确答案
1.修一条长240千米的公路,修了 ,修了多少千米?
2.修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?
240× 240÷ 150÷240 240÷150
(四)思考题
有一个两位数,十位上的数是个位上的数的 .十位上的数加上2,就和个位上的数相等.这个两位数是多少?
四、课堂小结
这节课我们进行了三类题的对比练习.解决这三类题的关键是什么?
五、课后作业
(一)解答下面各题
1.六一班有学生45人,其中女生有20人.女生人数占全班的几分之几?
2.六一班有学生45人,女生占 .女生有多少人?
3.六一班有男生25人,占全班的 .全班共有学生多少人?
(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的 ,校园里栽了松树多少棵?
(三)学校买了蓝墨水30瓶,红墨水24瓶.蓝墨水是红墨水的几倍?
六、板书设计
分数乘除法对比练习
1.池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?
4÷12=
2.池塘里有12只鸭,鹅的只数是鸭的 .池塘里有多少只鹅?
12× =4(只)
3.池塘里有4只鹅,正好是鸭的只数的 .池塘里有多少只鸭?
4÷ =12(只)
教案点评:
本教学设计把三类应用题放在一起进行教学,既突出了每一类题的特点及解题思路,又通过对比,使学生真正掌握了这三类题的异同点。巩固练习形式多样,使学生的思维得到进一步发展。
分数与除法教案14
教学目标:
使学生理解当一个数为整数时,整数除以分数的计算方法,并能正确地进行计算。
教学重点:
整数除以分数的计算方法的.推导。
教学难点:
理解“÷”转化为“×”的转化过程。
教学过程:
一、复习
1、说一说÷18的意义。
2、一辆汔车2小时行驶90千米,1小时行驶多少千米?
(1)口述算式和结果。
(2)板书:数量关系:速度=路程×时间
二、新授
今天,我们学习一个数除以分数,当这个数是整数时,怎样计算整数除以分数?
板书课题:一个数除以分数
(1)教学例2:出示例2,弄清题意后,由学生根据“速度=路程÷时间”列出算式?
教师板书:18÷ (出示线段图)
(2)推导18÷的计算方法。
引导学生分两步进行计算
第一部分:求小时行多少千米。
提问
1)、小时里面有几个小时?
2)、2个小时行驶多少千米?
3)、1个小时行驶多少千米?即小时行驶多少千米?
明确:因为2个小时行18千米,所以要算18÷2,也就是18×(千米)。第二步:求1小时行多少千米。
提问
1)、1小时里面有几个小时?
2)、1个小时行驶18×(千米),那么要求5个小时行驶多少千米,算式应该怎样写?
明确
1) 为1小时5个小时,所以,要算18××5,也就是18×。
2) 18××5用18×代替,因为18××5=18×。(这里实际上是运用了乘法结合律)。
根据上面的推想,板书:18÷=18×,=45千米
答汔车1小时行驶45千米。
强调
1)18÷不便于直接除,把它转化乘法。
2)18÷=18×,“÷”转化为“×”,被除数不变,除数发生了变化。
3)是的倒数,即的倒数是。
2、小结:引导学生归纳整数除以分数的计算方法。
板书:整数除以分数可以转化为乘以这个数的倒数。
三、巩固练习
1、在( )里填上适当的分数,使等式成立。
15÷=15×( )10÷ =10×( )
8÷=8×( ) ÷9=×( )
2、列式计算。
(1)一堆煤,每次用去 ,多少次才能用完?
(2)王晶小时做15朵花,1小时做多少朵花?
3、教科书第29页的“做一做”
四、作业 练习八第1——4题。
分数与除法教案15
教学内容:
教科书第44-45页例6和相应的“试一试”、“练一练”,练习八第1-5题。
教学目标:
1、结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除,会用分数表示有关单位换算的结果,能列式解决求一个数是另一个数的几分之几的简单实际问题
2、在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。
教学重点:
探索并理解分数与除法的关系,会用分数表示两个整数相除。
教学难点:
会用分数表示有关单位换算的结果能列式解决求一个数是另一个数的几分之几的简单实际问题。
教学对策:
引导同学探索并理解分数与除法的关系,并根据分数与除法的'关系进一步掌握求一个数是另一个数的几分之几的实际问题的解决。
教学准备:
教学光盘; 3个同样的圆形纸片。
教学过程:
一、导入
1.出示情境图:把4块饼平均分给4个小朋友。
2.你能提出哪些问题?
二、新课
1.教学例6
(1)把刚才出现的题目改为:把3块饼平均分给4个小朋友。
你能提出什么问题?怎样列式?
把3块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?
每人分得的不满1块,结果可以用分数表示。
那么,可以用怎样的分数表示3÷4的商呢?请大家拿出3张同样的圆形纸片,把它们看作3块饼,依照题目分一分,看结果是多少?
(2)同学操作,了解同学是怎样分和怎样想的。组织交流,你是怎么分的?
(3)小结:把3块饼平均分给4个小朋友,每人分得4/3块。完成板书。
把题目改为:把3块饼平均分给5个小朋友,每人能分得多少块?
3除以5,商是多少?怎样用分数表示?小组交流
(4)总结归纳
请大家观察上面两个等式,你发现分数与除法有什么关系?
被除数÷除数=被除数/除数
假如用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b
讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。)
2. 教学试一试。同学尝试填空。你是怎样想的?
把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)
3. 做练一练的第1题
同学填写后,引导比较:上下两行题目有什么不同?
4.做练一练第2题
同学独立填写,要求说说填写时是怎样想的。
三、练习
1.练习八第1题
让同学在小组里说说,再指名口答。
2. 练习八第2题
同学独立填写,交流。
3. 练习八第3题
同学看图填写后,可让同学说一说是怎样想的。
4. 练习八第4题
同学填写后,提问:这道题中的两个问题有什么不同?
5. 练习八第5题
让同学联系分数的意义填空,再引导同学根据分数与除法的关系列算式,并写出得数。
四、总结:
今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?
教学反思:
探索是同学亲自经历和体验的学习过程,也就是让同学用自身理解的方式实现数学的“再发明”,在这其中教师的指导作用是潜在和深远的。本课中,我让同学充沛动手分圆片,让他们在自身的尝试、探究、猜测、考虑中,不时发生问题、解决问题、再生成新的问题,给同学留与了操作的空间,因此同学对分数与除法的关系理解得比较透彻。
授后小记
在教学例题是我是让同学先列式表示题目所提出的问题的,接着让同学通过折圆片得到用分数表示的结果,进而使同学明确3÷4=3/4(块);3÷5=3/5(块)。同学通过比较这两个算式与分数结果,感受到除法与分数的关系。
【分数与除法教案】相关文章:
分数除法教案11-17
分数与除法的教案03-05
《分数除法》教案02-23
有关分数除法教案01-01
分数除法教案范文06-14
分数与除法教案15篇01-19
分数与除法教案(15篇)01-19
分数除法教案(15篇)01-15
分数除法教案15篇01-14