数学的六年级教案

时间:2024-07-27 01:42:58 教案 我要投稿

数学的六年级教案

  作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那要怎么写好教案呢?以下是小编收集整理的数学的六年级教案,希望对大家有所帮助。

数学的六年级教案

数学的六年级教案1

  教学目标:

  1.通过观察、操作,体会比例尺产生的必要性和按相同的比扩大或缩小的实际意义。

  2.通过图形的放缩,结合具体情境,感受图形的相似。

  教学重点:

  图形的缩小与放大。

  教学难点:

  图形放缩的原理。

  教学过程:

  一、 揭示课题

  1.谈话引入:小红一家外出旅游,照了许多照片,小红把几张照片放大后,挂在家里,把几张照片缩小后,放在夹子里。你知道相片放大缩小的原理吗:

  2.板书课题:图形的放缩。

  二、 探索新知

  1.教学例题

  (1)出示例题。

  ①认真观察图形。

  ②说一说:谁画得像?

  ③你是怎么想的?说出你的思维过程。

  ④教师引导学生得出正确的看法:笑笑和淘气画得最象。

  (2)讨论:

  师:你知道他们是怎样画的?

  ①学生独立思考,探究他们的画法。

  ②教师巡视课堂,帮助有困难的学生,引导他们观察图形的长与宽的长度变化情况

  ③同学之间交流、讨论。

  ④反馈讨论结果。

  (3)小结。

  ①由学生说说有什么体会。

  ②教师小结:只有长与宽都按相同的比来画,画得才象。

  3. 完成课本画一画。

  三、 探索活动

  活动(1)

  1. 说一说点A(2,0)中,2和0分别表示什么?

  (1) 学生尝试说说自己的'理解。

  (2) 教师明确说明,2表示列,0表示行。

  2. 分别说说B(4,0),C(6,2),D(6,6)各数对中的数字所表示的意义。

  3. 把表示点E、F、G、H、I、J的数对填入相应的空格。

  活动(2)

  (1) X表示什么?Y表示什么?

  (2) 2X表示什么?2Y表示什么?

  活动(3)

  1.学生独立描点。

  2.展示学生的作品。

  3. 观察比较,说说哪只猫长得象乐乐。

  4.你知道为什么?

  四、 课堂小结

  说一说把图形放大或缩小的关键是什么。

数学的六年级教案2

  教学目标:

  1、通过对圆柱和圆锥知识的复习,进一步熟练解答基本的数学问题。

  2、通过猜想、估算、验证等数学活动,应用圆柱圆锥之间的内在联系解决生活中的问题,同时培养学生的估算能力。

  教学重、难点:灵活计算圆柱体的表面积,圆柱体和圆锥的体积,解决实际问题。

  教学过程:

  一、开门见山、温固引新。

  师:还记得哪些与圆柱圆锥有联系的计算公式?

  生:回答相联系的数学公式。

  师:到底同学们的掌握情况怎样呢?我们一起来做个抢答练习好吗?

  生:回忆基本知识。

  师:到底同学们掌握得怎样呢?老师想通过一个练习来检查同学们公式灵活运用的情况,愿意接受这次挑战吗?

  1、抢答练习,请说出你的思考过程。

  (1)一个圆柱体底面周长12.56米,求它的底面积是多少平方米?

  (2)一个圆柱体木块的体积是90立方米,用他削成一个等底等高的圆锥模型,被削掉的部分是多少立方米?

  (3)一根圆柱形状的木料底面直径16厘米、高20厘米,沿着它的底面直径和高切成相等的两块,表面积增加多少平方厘米?

  学生抢答,并说出自己的思考过程,教师板书。

  2、解决数学问题:

  (1) 出示一圆柱图

  师:看到这个圆柱体,你能提出哪些有关圆柱、圆锥的数学问题?怎样解答?

  竞赛的形式来解决,竞赛要求:

  1、时间3分钟。

  2、请把问题、列式和结果写下来。比一比看谁的问题最多、列式和结果最正确。

  (1) 学生独立完成;

  (2) 同桌互查;

  (3) 学生汇报;

  (半径是多少?周长是多少?圆柱体的侧面积是多少?底面积是多少?圆柱体的体积是多少?等底等高的圆锥的体积是多少?剩余的部分是多少?)

  (4)如果出现问题下面改正。

  师:同学们数学只有在生活中才能体现它真正的价值,现在出现了一道生活中的数学问题大家愿意帮忙解决吗?

  二、解决实际问题:

  最佳设计方案。

  师:问题是这样的:面粉厂准备要招收仓库保管员,领导们打破了常规中只面试就招工的办法,而采用数学考试的方法,出了一道数学题。同学们有兴趣来应聘吗?

  有一张长方形的铁板长9.42米,宽6.28米。请你设计出一种就地围装粮食最多的方案。(接口忽略不计)

  学生活动,老师巡视。小组成员汇报方案。

  三、深化应用。

  师:如果每立方米可装粮食400千克,能算出最佳方案中大约可装多少粮食吗?

  四、课堂总结。

  师:刚才同学们都能全身心地投入到猜想、验证、合作、估算中,老师很高兴。哪些同学可以得到仓库保管员的`应聘书呢?请来谈一谈你现在的心情及感受。

  其他同学,通过今天这节课的学习,谁来说一说你有哪些收获?你还存有疑惑或问题吗?

  五、补充题详见共享空间

  课前思考:

  潘老师设计的本课时教案在教学组织形式上与以往的复习课有所不同,重在将所学知识以竞赛的形式进行系统复习,估计这样的形式会让学生对复习产生一些兴趣。

  因为这一单元涉及到的知识较多,而且相关的一些实际问题也都比较复杂,所以我们在复习时还要结合班级实际情况,有针对性地开展复习。

  下面补充这样几题:

  市民广场砌了一个圆柱形的喷水池,从里面量水池的底面半径是5米,深1.2米。

  1.

  (1)这个水池占地多少平方米?

  (2)要在这个水池的四周和底面抹上水泥,抹水泥部分的面积是多少?

  (3)这个水池装满水,最多能装多少立方米?

  (4)在池口围一圈栏杆,栏杆长多少米?

  2.一辆压路机的前轮是圆柱形,轮宽1.8米,直径是1.5米。如果车轮每分钟滚动5周,10分钟压路面多少平方米?压路机10分钟前进了多少米?

  3.一个圆锥形沙堆,底面半径3米,高2米,用这堆沙在5米宽的公路上铺10厘米厚的路面,能铺多长?

数学的六年级教案3

  变化的量

  教学内容:变化的量

  教学要求:使学生理解什么是变化的量,通过教学培养学生初步的综合、概括能力。

  教学重点:变化的量

  教学难点:理解什么是变化的量。

  教学过程:

  一、铺垫孕伏:

  l.什么叫做两个数的比?请你说出两个比。(教师板书)

  2.什么是比的比值?上面两个比的比值是多少?

  3.引入新课。

  我们已经认识了比,知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题)

  二、自主探究:

  1.教学比例的意义例1。

  让学生算出下面各比的比值,再比较每组里两个比的比值有什么关系。(指名板演)

  (1)3:524:40(2):7.5:3

  追问:比值相等,说明每组里两个比怎样?

  说明3:5的比值和24:40的比值都是,比值相等,也就是两个比相等,可以写成:

  3:5=24:40(板书)这个式子表示两个比怎样?:和7.5:3也有怎样的关系?为什么?板书::=7.5:3这个式子也表示什么?谁来说一说,上面两个等式表示的是怎样的式子?指出:表示两个比相等的式子叫做比例。(板书)

  2.下面两个比之间的哪些○里能填=,为什么?

  1:2○3:60.5:0.2○5:2

  1.5:3○15:3:2○:1

  提问:填了等号后的式子是什么?1.5:3和15:3为什么不能组成比例?要判断两个比能不能组成比例,可以看它们的什么?指出:要判断两个比是不是相等,可以看比值是不是相等;也可以把两个比化简后看是不是相同的两个比。

  3.教学例2。

  出示例2,让学生先写出两天中汽车行驶的路程与行使时间的比。提问:怎样判断这两个比能不能组成比例?让学生判断并写出比例。提问:能不能组成比例?(板书比例式)为什么?强调:只有两个比值相等的比才能组成比例。

  4.教学比例的基本性质。

  让学生看书自学比例各部分的名称。看黑板上的比例,说一说其中的内项和外项。让学生自己选择比例,计算比例里两个外项的积和两个内项的积,并要求观察,从中发现什么。让学生口答结果。提问:从上面的计算里,你发现了什么,出示比例的基本性质,并让学生说一说。如果把比例写成分数形式,请你说一说外项和内项。提问:在这个比例里交叉相乘的积有什么关系?追问:为什么交叉相乘的积相等?

  5.判断能否组成比例。

  出示3.6:1.8和0.5:0.25。让学生自己判断,如果能组成比例就写出这个比例式。提问:2.6:1.8和0.5:0.25能组成比例吗?你怎样判断的'?指出:根据比例的基本性质,也可以判断两个比能不能组成比例,判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。

  三、巩固练习算。填写以后,提问学生:为什么填这个数?

  1.提问:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎样判断两个比能不能组

  2.让学生在()里填上适当的数。

  3:6=5:()0.8:()=1:自己填写后小组交流。

  完成练一练。

  自己完成后小组交流,然后集体订正,让学生说说是怎样判断的,并说明可以用两个比是不是相等判断,也可以用比例的基本性质判断。

  四、全课小结

  这堂课学习了什么内容?什么叫做比例?比例的基本性质是什么?可以怎样判断两个比能不能组成比例?

  五、布置作业

  练习九第1~6题。

数学的六年级教案4

  教学内容:

  北师大(版)六年级数学(上册)第80页~第81页。

  教学目标:

  1、同学们要经历将眼睛、视线与观察的范围抽象为点、线、区域的过程。

  2、我们还要理解观察点、遮挡点、可视区域等词语的意思。

  3、感受观察范围随观察点、观察角度的变化而改变。

  教学重点:

  经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念。

  教学难点:

  能运用“观察的范围”的相关知识解决日常生活中的一些问题。

  教学过程:

  一、古诗引入,导入课题。

  1.我们在小学学了五年的古诗,那么你们积累了那些古诗呢?谁能说一说。谁还记得王之涣写的诗《登鹳鹊楼》?齐读。

  这首诗中哪一句描述诗人登高远望时的感受,(欲穷千里目,更上一层楼)。作者为什么要说:欲穷千里目,须“更上一层楼 ”呢?今天我们就来研究“观察的 范围”,从数学的角度来研究这个问题。

  2.引入课题:观察的范围(板书课题)

  二、自主探究、发现规律。

  1、秋天到了,桃树下落了一地桃子,小猴闻到香味,在墙外向里张望 。可是前面一堵墙,小猴子能看到墙内的桃子吗?

  2、看,小猴子爬到了这个位置,能看见地上全部的桃子吗?你猜想小猴看见多少个桃子?看来,光靠眼睛看是不准确的,你们能不能想出办法,准确找到猴子看到多少桃子呢?说说你的想法。

  3、在A点时,我们把猴子的眼睛看作“观察点”,(板书:眼睛 观察点)。

  4、阻碍小猴子观察视线的是什么?(墙) 它的最高处在哪里?(墙的右上角 )

  5、我们把阻碍视线的这个最高点叫“阻碍点“(板书:阻碍点)。

  6、观察点和阻碍点进行连线,这条连线和地面的.交点,就是离墙最近的点。

  连接观察点、墙的右上角、到地面的交点的线是一条什么线?(虚线) 这条虚线就是观察的视线。为什么要把视线画成虚线?(视线是看不见的,所以要画虚线)

  7、这条线能往上画一点吗?往上画会怎么样?(观察范围变小)

  这条线能往下画吗?往上画会怎么样?看来,这条线必须穿过围墙的右上角 。

  8、小猴子想看得更多桃子,该怎么办?(再往上爬)

  9、如果小猴子继续往上爬,爬到B处、C处,你能找到墙内离墙最近的点吗?(打开课本第80页,画一画)

  10、汇报

  11、观察点的变化,直接影响观察范围 的变化。那么,怎样确定观察范围 呢?

  先看( 观察点),再找(阻碍点),连接这两点,延长到(地面的交点)确定观察范围(齐读一遍)。

  12、我们把三次观察的结果放在一起,你发现了什么?

  观察的范围与观察的高度有关,还与什么有关?

  (观察的范围与观察的高度、观察的角度有关)

  小猴爬得越高,看到的桃子越 多 ;说明小猴看到的范围就越 大 。

  可见,观察点越高,观察的范围越大。(板书:观察点越高,观察的范围越大。)

  13、联系古诗:现在你明白王之涣为什么说“欲穷千里目,更上一层楼”吗?

  你能从数学的角度来探究其中的道理吗?说明了“站得高才能看得远”的道理。

  三、应用新知,解决问题。

  下面,请同学们 用学过的知识,解决一些生活问题。

  1.完成课本80页试一试第1题。

  2.课本80页试一试第2题。变化的楼房。

  (1) 如果客车继续向前行驶,那么他所能看到B楼的部分是如何变化呢?生:逐渐缩小

  (2) 客车行驶到位置2时,司机还能看到建筑物B吗?为什么?

  3.小猫捉老鼠。一天小花猫出来散步,迎面遇到了一堵残墙,有一只聪明的小老鼠就躲在这堵残墙的后面。

  (1)请你在图中画出小老鼠可以活动的区域。(学生在课本上操作)

  (2)如果你是小猫,你希望自己的位置怎样变化?如果你是小老鼠,你希望小猫的位置怎样变化?

  (3)比一比:小猫的位置改变后,它的观察区域分别有什么变化?说一说你的发现。

  4.(1)在黑夜里把一个球向电灯移动时,球的影子是怎样变化的?

  (2)晚上与家长在路灯下散步,当走向路灯时,你的影子是如何变化的?远离路灯 时呢?

  5、在城市建设中,规定两幢楼的距离不能太近。为什么?

  6、小丽能看到甲楼上的A点吗?能看到甲楼上的B点吗?

  7、填空

  (1)观看物体时,站的越( ),观察到的范围就越( )。

  (2)路灯下物体影子的变化规律是,离路灯越近,物体的影子就越( );离路灯越远,物体的影子就越( )。

  (3)红红和芳芳分别住在同一栋房的4楼和8楼,她们观看夜景,( )比 ( )观察的范围要大。

  8、判断题

  (1) 同样的电线杆离路灯越远,它的影子就越长。( )

  (2)人远离窗子时,看到窗外的范围变大。 ( )

  四、归纳整理,全课总结。

  这节课学习了什么?你学到了什么?你认为观察的范围与什么有关?这节课学习了什么?你学到了什么?你认为观察的范围与什么有关?怎样确定观察范围?

数学的六年级教案5


  知识整理

  1回顾本单元的学习内容,形成支识网络。

  2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

  复习概念

  什么叫比?比例?比和比例有什么区别?

  什么叫解比例?怎样解比例,根据什么?

  什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

  什么叫比例尺?关系式是什么?

  基础练习

  1填空

  六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。

  小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。

  甲乙两数的'比是5:3。乙数是60,甲数是( )。

  2、解比例

  5/x=10/3 40/24=5/x

  3 、完成26页2、3题

  综合练习

  1、 A×1/6=B×1/5 A:B=( ):( )

  2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

  3用5、2、15、6四个数组成两个比例( ):( )、( ):( )

  实践与应用

  1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。

  2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?

  板书设计: 整理和复习

  比例的意义

  比例 比例的性质

  解比例

  正反比例 正方比例的意义

  正反比例的判断方法

  比例应用题 正比例应用题

  反比例应用体题

  教学要求:

  1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

  2、使学生能正确理解正、反比例的意义,能正确进行判断。

  3、 培养学生的思维能力。

数学的六年级教案6

  教材分析:

  本课是一节数学综合应用的实践活动课,是课程标准实验教材新增加的一个内容。培养学生用数学解决问题的能力是义务教育阶段数学课程的重要目标之一,因此解决问题教学在数学教学中有着重要的作用。它既是发展学生数学思维的过程,又是培养学生应用意识、创新意识的重要途径。本册教材设计了确定起跑线这个数学综合运用活动,让学生通过小组合作的探究性活动,综合运用所学的数学知识和方法(如:圆的知识),动手实践解决问题,体会数学在日常生活中的应用价值,增强学生应用数学的意识,不断提高学生的实践能力和解决问题的能力。

  学生分析:

  在教学本课之前,大部分学生已经掌握圆的概念、圆的画法还有圆周长的计算方法等知识。学生具备一定的小组自我探究的能力,可以利用小组合作的形式进行学习。

  学生对体育活动也很喜欢,相当一部分学生去过体育场,对体育场的跑道和起跑线并不陌生。通过电视节目学生对起跑时运动员不能站在同一起跑线的现象也有一定的认识,但具体这样做是为什么、相邻两跑道起跑线该相差多远呢?学生可能很少从数学的角度去认真的思考。也很难通过经验和观察得到,需要学生收集相关的数据,具体分析起跑线的位子与什么有关。所以在教学中学生可能会在相邻跑道相差多远这一点上有些困难。

  教学目标:

  1、通过该活动让学生了解椭圆式田径场跑道的结构,学会确定起跑线的方法。

  2、通过活动培养学生利用小组合作,探究解决问题的能力。

  3、通过活动让学生切实体会到探索的乐趣,感受到数学在体育等领域的广泛应用。

  教学重点:运用圆的有关知识计算。

  教学难点:

  结合具体问题,让学生独立思考,提高解决简单问题的能力。

  关键:体会数学知识在体育中的应用。

  教学过程:

  一、汇报调查,引入课题(8分钟)

  1、汇报调查情况

  课前,我让大家调查运动场的情况,你们得到了哪些信息?

  2、课件显示如下情境图:

  师:图上画的是什么?指名学生回答,并引导得出:运动员进行跑步比赛。

  师:在一些短跑比赛中,运动员所在的.起跑位置是不一样的,你知道为什么吗?引导学生回答:弯道处外圈比内圈长一些。

  3、揭示课题,下面我们就用几个具体的例子来验证同学们想法是否正确。

  二、结合实例、探究问题(24分钟)

  实例一:

  课件显示:

  淘气和笑笑分别从A,B处出发,沿半圆走到C,D。他们两人走过的路程一样长吗?

  (1)笑笑所走路线的半径为10米,她走过的路程是()米。

  (2)淘气所走的路线半径为()米,他走过的路程为()米。

  (3)两人走过的路相差()米。

  1、理解题意

  根据这幅情境图,你能获得哪些信息?指名回答。

  2、小组讨论

  先让学生独立思考,待大多数学生基本解决上面3个小题后,在组织学生在小组内交流。

  3、全班交流

  抽生汇报,教师板书。

  实例2:

  课件显示: (一)了解跑道结构:出示完整跑道图(跑道最内圈为400米)

  1、观察跑道由哪几部分组成?

  2、在跑道上跑一圈的长度可以看成是哪几部分的和?

  (板书:跑道一圈长度=圆周长+2个直道长度)

  (二)简化研究问题:

  1、85.96米是指哪部分的长度?一条直道吗?

  2、讨论:运动员沿跑道跑一圈,各跑道之间的差距会在跑道的哪一部分呢?

  3、小结:既然与直道无关,为了便于我们更好的观察,暂时将直道拿走看看差距在那里,好吗?(课件:直道消失,屏幕上只剩下左右两个弯道。)

  (三)寻求解决方法:

  1、左右两个半圆形的弯道合起来是一个什么?

  2、讨论:你怎样找出相邻弯道的差距?相邻弯道差距其实就是谁的长度之差?

  3、交流小结:只要计算出各圆的周长,算出相邻两圆相差多少米,就是相邻跑道的差距,也就是相邻起跑线相差多少米。

  (四)、动手解决问题:

  1、计算圆的周长要知道什么?(直径)

  2、课件出示:第一道的直径为72.6米,第二道是多少?第三道呢?

  3、教师带领学生填写表格的前两道,注意计算第1道和第2道相差米数,应指导学生完成。

  引导学生将3.14159换成进行计算

  汇报结论:相邻起跑线相差都是2.5,也就是道宽2。说明起跑线的确定与道宽最有关系。

  4、计算相邻起跑线相差的具体长度:2.5=2.53.14=7.85米

  师:同学们通过努力找到了起跑线的秘密,运动员们的比赛应该把起跑线依次提前7.85米才公平。

  三、巩固练习、实践应用(3分钟)

  400米的跑步比赛,道宽为1.5米,起跑线该依次提前多少米?

  四、拓展延伸、自我评价(5分钟)

  1、解决问题:在运动场上还有200米的比赛,道宽为1.25米,起跑线又该依次提前多少米?

  2、课后自学课本第45页你知道吗?

  五、全课小结:

  谈一谈,这节课你有什么收获?

  六、布置作业

数学的六年级教案7

  教学内容:

  本内容是六年级下册第8页至第9页。

  教材分析:

  本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。

  学生分析:

  学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。

  学习目标:

  1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。

  2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。

  3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。

  教学过程:

  出示教学情境:一个杯子能装多少水呢?

  想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

  让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。

  (设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)

  出示第二情境:圆柱形的`木柱子的体积是多少?用这种方法还行吗?怎么办?

  (设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)

  探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)

  大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)

  长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

  (设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)

  验证:能否将圆柱转化为学过的立体图形?

  让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。

  思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?

  (设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)

  用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。

  学生讨论交流:

  1、把圆柱拼成长方体后,什么变了,什么没变?

  2、拼成的长方体与圆柱之间有什么联系?

  3、通过观察得到什么结论?

  得到:圆柱的体积=底面积×高

  V=Sh=πr2h

  (设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)

  练习设计:

  1、计算下面各圆柱的体积。

  (1)S=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm

  2、算一算:已知一根柱子的底面半径为0。4米,高为5米,你能算出它的体积吗?

  (设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)

  3、试一试:

  (1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?

  (2)一根圆柱形铁棒,底面周长是12。56厘米,长是100厘米,它的体积是多少?

  (设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)

  4、拓展练习:

  (1)填表:

  填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。

  (设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)

  (2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?

  (设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)

  课堂小结:谈谈这节课你有哪些收获?

  (设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)

  教学反思:

  本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。

  情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。

数学的六年级教案8

  教学目标

  1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。

  2、培养学生比较、分析和概括等思维能力。

  教学重难点

  使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系

  教学准备

  幻灯片

  教学过程设计

  教学内容

  师生活动

  备注

  一、 引入新课

  二、教学新课

  三、巩固联系

  四、作业

  1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)

  引入新课

  2、出示两道文字题

  (!)3千米是5千米的几分之几?

  (2)8吨是4吨的几倍?

  学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的.比。今天我们就来学习比的意义。

  1、学生用十分钟自习书本52到53页

  2、问:通过自习你知道了哪些知识?还有哪些疑问?

  3、小组内互相说,解决问题。

  4、教师请个别同学说,然后师生一起探讨、研究。

  5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。

  6、说明相关注意点。如:单位、比值、名称、写法、读法......

  1、书本53页练一练

  2、练习十二1、2

  练习十二3、4、5

数学的六年级教案9

  教学目标

  1.进一步理解采用法定计量单位的重要意义.

  2.复习长度、面积、体积、质量、时间单位.

  3.复习各种计量单位间的进率.

  教学重点

  指导同学汇总整理学过的计量单位,牢固掌握各种计量单位及单位间的进率.

  教学难点

  掌握各种计量单位的实际大小及进率,正确使用计量单位.

  教学步骤

  一、直接导入.

  提问导入:同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能说说这是为什么吗?(同学自由回答)

  教师归纳:我国从1990年起废除原来的计量单位,采用国际上通用的法定计量单位,目的.是为了便于国际交流,扩大开放,不断发展面向世界的外向型经济.因此,我们要认真学好有关计量的知识.这节课我们整理和复习量的计量.(教师板书课题)

  二、归纳整理.

  (一)启发同学回忆:我们学过了哪些量的计量?

  教师板书:

  长度 质量 时间

  面积

  体积(容积)

  (二)复习长度、面积、体积单位及进率.

  1.启发同学回忆:已学过的长度单位有哪些?每个长度单位实际有多大?相邻单位间的进率是多少?

  2.启发同学回忆:已学过的面积单位有哪些?每个面积单位实际有多大?相邻单位间

  的进率是多少?

  同学讨论:相邻面积单位之间的进率为什么都是100?

  师生归纳:面积单位是根据长度单位确定的,长度单位间的进率是10,面积单位间的进率就是100.

  3.启发同学回忆:已学过的体积(容积)单位有哪些?相邻单位间的进率是多少?

  同学思考:相邻体积单位之间的进率为什么是1000?

  教师说明:面积单位体积(容积)单位都是依据长度单位确定的,长度单位间的进率是10,面积单位间的进率是100,体积(容积)单位间的进率是1000,要注意它们之间的联系与区别,在实际计量时做到准确无误.

  4.练习.

  (1)在( )里填上适当的计量单位名称.

  一枝铅笔长176( ) 一个篮球场占地420( )

  一张课桌宽52( ) 一个火柴盒的体积是21( )

  一间教师的面积是48( ) 一种保温瓶的容量是2( )

  (2)一个正方体的体积是1立方米,它的棱长是多少?它的每个面的面积是多少?

  (3)用棱长1厘米的小正方体木块堆成一个棱长1分米的正方体,需要多少块?把这些小正方体木块排成一行,有多长?

  (三)复习质量单位.

  1.启发同学回忆:学过的质量单位有哪些?它们之间的进率是多少?(并填写下表)

  2.练习.

  ①10麻袋大米约1( )

  ②l个鸡蛋约6.5( )

  ③1棵白菜约2.5( )

  ④1名六年级同学体重是40( )

数学的六年级教案10

  教学内容

  教科书第48~50页例1、例2,课堂活动及练习十一1,2题。

  教学目标

  1.理解比例的意义,认识比例各部分的名称。

  2.让学生经历探讨两内项之积等于两外项之积的过程,使之更好理解并掌握比例的基本性质。并能运用比例的意义和比例的基本性质,判断两个比能否组成比例,会组比例。

  3.培养学生自主参与的意识、主动探究的精神;培养学生进行初步的观察、分析、比较、判断、概括的能力,发展学生思维,能够在解决问题的过程中体验到学习数学的愉悦。

  教学重点

  理解比例的意义和基本性质。

  教学难点

  应用比例的意义和基本性质判断两个比能否组成比例,并能正确地组成比例。

  教学准备

  课件,扑克牌10张(2~10以及A),圆规一个。

  教学过程

  一、复习准备

  (1)一辆汽车4时行160 km,路程和时间的比是多少?这个比表示什么?

  (2)求下面各比的比值,你发现了什么?

  12∶16 34∶18 4.5∶2.7 10∶6

  教师:同学们发现4.5∶2.7和10∶6的结果是一样的,说明了什么?(这两个比相等。)这两个比你能用等号连接起来吗?(能。)请同学们用等号把这两个比用等号连接起来。

  二、探究新知

  1.提出问题

  这节课我们在比的知识基础上,进一步学习新知识。

  揭示课题--比例的意义和基本性质。板书:比例的意义和基本性质

  2.探究比例的.意义

  课件出示例1:两组同学同时在操场探讨竹竿长与影子长之间的规律。列表如下:

  竹竿长26

  影子长39

  教师:观察上表,你能写出多少个有意义的比?并求出比值。把这些比都写出来。

  学生讨论并写出比,完成后抽几个学生的作业在视频展示台上展示,教师选几个有代表性的比在黑板上板书。

  教师:观察这些比,哪些能用等号连接?把能用等号连接的比用等号连接起来。

  学生口答,教师板书:3∶2=9∶6,6∶2=9∶332=96,62=93

  教师:这些都是比例。你能用自己的语言说一说什么是比例吗?

  引导学生用自己的语言归纳比例的意义。(板书:比例的意义)

  教师:2∶9和3∶6能组成比例吗?你是怎么知道的?

  指导学生说出判断两个比能不能组成比例,要看他们的比值是否相等。再判断2∶5和80∶200能否组成比例?并说明理由。

  组织并指导学生完成书上第50页的课堂活动。

  3.认识比例的各部分

  教师:在一个比例里,有四个数,这四个数分别叫什么名字?同学们看看书就明白了。

  指导学生看书后汇报。

  教师:请同学们分别找出3∶2=9∶6和6/2=9/3的内项和外项。

  学生找出后,随学生的汇报教师板书:

  要求学生找出刚才自己说的几个比例的内项和外项,然后引导学生分析归纳出:在比例里,靠近等号的两个数是内项,剩下的两个数是外项;如果写成分数形式,那么可以用交叉的方法找出比例的内项和外项。

  4.教学比例的基本性质

  教师:前面我们已经探究发现了比例的一个秘密,就是组成比例的两个比的比值相等,比例还有一个秘密,你们愿意去寻找吗?(愿意)你们任意找一个比例,把它们的内项和外项分别乘起来,又可以发现什么?

  学生初步发现两个内项的积等于两个外项的积后,教师提醒学生:是不是每个比例都有这个规律,多找几个比例试一试,如果把这个比例写成分数形式,它是不是也有这样的规律呢?

  教师:同学们通过多个比例的探究,发现它们都有这个规律。你能用你自己的语言归纳这个规律吗?

  指导学生归纳后,教师板书:在比例里,两个内项的积等于两个外项的积,并且告诉学生,这就是比例的基本性质。

  5.运用比例的基本性质判断两个比是否能组成比例

  教师:用比例的基本性质,也可以判断两个比能不能组成比例。请同学们用比例的基本性质判断一下,0.4∶25能否和1.2∶75组成比例?为什么?

  学生讨论后回答:因为0.475=251.2,所以0.4∶25和1.2∶75能组成比例。

  三、巩固提高

  (1)说一说比和比例有什么区别。

  讨论后指名说:比是表示两个数相除的关系,有两项;比例是一个等式,表示两个比相等的关系,有四项。

  (2)在6∶5=30∶25这个比例中,外项是()和(),内项是()和()。根据比例的基本性质可以写成()()=()()。

  (3)下面的四个数可以组成比例吗?把组成的比例写出来(能组几个就组几个)。2,3,4和6

  四、全课总结

  先让学生总结本课所学内容,谈感想说收获,教师再进行全课总结。

  五、课堂作业

  (1)指导学生完成练习十一的第1题。

  要求:第(1)小题用比的意义来判断,第(2)小题用比例的基本性质判断,第(3),(4)小题学生自由选择方法判断。

  (2)学生独立完成练习十一的第2题,教师订正。

数学的六年级教案11

  教学内容:

  人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

  教学目标:

  1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

  2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

  3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

  教学重、难点:

  负数的意义。

  教学过程:

  一、谈话交流

  谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

  二、教学新知

  1.表示相反意义的量。

  (1)引入实例。

  谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。

  ①六年级上学期转来6人,本学期转走6人。

  ②张阿姨做生意,二月份盈利1500元,三月份亏损200元。

  ③与标准体重比,小明重了2.5千克,小华轻了1.8千克。

  ④一个蓄水池夏季水位上升米,冬季水位下降米。

  指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

  (2)尝试。

  怎样用数学方式来表示这些相反意义的量呢?

  请同学们选择一例,试着写出表示方法。

  ……

  (3)展示交流。

  ……

  2.认识正、负数。

  (1)引入正、负数。

  谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。

  介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

  “-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

  像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

  (2)试一试。

  请你用正、负数来表示出其它几组相反意义的量。

  写完后,交流、检查。

  3.联系实际,加深认识。

  (1)说一说存折上的数各表示什么?(教学例2。)

  (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

  ①同桌交流。

  ②全班交流。根据学生发言板书。

  这样的正、负数能写完吗?(板书:… …)

  强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

  4.进一步认识“0”。

  (1)看一看、读一读。

  谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(课件出示)。

  哈尔滨:-15 ℃~-3 ℃

  北京:-5 ℃~5 ℃

  深圳:12 ℃~23 ℃

  温度中有正数也有负数,请把负数读出来。

  (2)找一找、说一说。

  我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么?

  你能在温度计上找出这两个温度所在的刻度吗?(课件出示温度计,没有刻度数)为什么?

  现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

  说一说,你怎么这么快就找到了?

  (课件配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

  你能很快找到12 ℃、-3 ℃吗?

  (3)提升认识。

  请学生观察温度计,说一说有什么发现?

  在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

  “0”是正数,还是负数呢?

  在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

  (4)总结归纳。

  如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

  (完善板书。)

  5.练一练。

  读一读,填一填。(练习一第1题。)

  6.出示课题。

  同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

  根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

  7.负数的历史。

  (1)介绍。

  其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放):

  “中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

  (2)交流。

  简单了解了负数的'历史,你有什么感受?

  三、练习应用

  今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

  课件逐一出示:

  1.表示海拔高度。(“做一做”第2题。)

  通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作xx;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作xx。

  2.表示温度。(练习一第2题。)

  月球表面白天的平均温度是零上126℃,记作xx℃,夜间的平均温度为零下150℃,记作xx℃。

  3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

  4.表示时间。(练习一第3题。)

  5. “净含量:10±0.1kg”表示什么意思?

  四、总结延伸

  1.学生交流收获。

  2.总结。

  简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

  一、问题情境

  1.教师拿出自己的钥匙,并引出密码锁。分别说一说在什么地方或物品见过密码锁,见过几个数字的密码锁。

  师:同学们,看老师手里拿的是什么?

  生:钥匙。

  师:对,这些都是用来开锁的钥匙。现实生活中,还有一种锁是不用钥匙的,你们知道是什么锁吗?

  生:密码锁

  师:谁知道什么地方或物品上经常用密码锁?

  学生可能说出:保险柜、保险箱、旅行箱,等等。

  师:看来同学们知道的不少,那谁来说一说你在什么东西上见过几个数字的密码锁

  学生可能会说:

  ●我在旅行箱上见过三位数的密码锁。

  ●我在保险柜上见过六位数的密码锁。

  ●有的保险柜上的密码锁是8个数字。

  2.提出兔博士的问题,师生交流。师:那谁知道旅行箱上为什么用密码锁,而不是钥匙锁呢?

  学生可能会说:

  ●不怕丢钥匙。

  ●能够保密,别人不知道密码开不了,也不能仿制。

  ……

  师:还有一个非常重要的原因是,用一定个数的数字组成密码,可以有许多变化,也就是可以组成许多密码,即使你知道了密码锁是几个数字,也很难判断是哪个密码。今天,我们就来研究一下数字密码锁的秘密。

  板书:数字密码锁

  二、探索密码锁

  1.提出探索由两个数字组成多少个密码的问题,让学生分别写出0打头和1打头组成的密码。

  师:现在,我们先来研究一下最简单的情况。假如数字锁的密码是由两个数字组成的,同学们想一想,用0、1、2、3、4、5、6、7、8、9这十个数字可以组成多少个密码?自己在本上写一写。用0打头时可以组成几个密码?

  学生写密码,然后交流,得出:

  用0打头,得到的10个密码是00、01、02、03、04、05、06、07、08、09

  板书:0打头——10个

  师:再用1打头,写一写可以组成几个密码?

  学生写完后交流,得出:

  用1打头,得到的10个密码是10、11、12、13、14、15、16、17、18、19

  板书:1打头——10个

  师:想一想,用2打头,可以组成几个密码?

  生:10个。

  2.分别提出:用3、4、5、6、7、8、9打头各能组成多少个?一共能组成多少个?在学生讨论的同时,得出:10×10=100(个)师:分别用3、4、5、6、7、8、9打头呢?

  生:分别可以组成10个

  师:一共10个数字,每一个数字打头都能组成10个密码,那一共可以组成多少个密码呢?

  生:一共可以组成100个。

  教师板书:10×10=100(个)

  3.教师谈话并告诉学生用三个数字组成1000个密码,鼓励学生合作进行推算。师:刚才,我们通过写出几组密码,推算得出:用0到9的10个数字组成两个数字的密码,可以组成100个,那你们想知道,用这10个数字组成三个数字的密码,能组成多少个吗?

  教师板书:10×10×10=1000(个)

  师:可以组成1000个,你们知道是怎么推算出这个结果吗?同学合作,试着推算一下。

  学生先自己推算,教师巡视,个别指导。

  4.交流学生推算的方法,说明结果的准确性。给学生充分交流不同想法的机会。师:谁来汇报一下,你们是怎样推算的?

  学生可能有以下说法:

  ●组成密码的数字都可以是0、1、2、3、4、5、6、7、8、9的十个数字。如果第一位数字是0,第二位数字是0,第三位数字是0、1、2、3、4、5、6、7、8、9,即:000、001、002、003、…009共10个密码。

  如果第一位数字是0,第二位数字是1,第三位数字是0、1、2、3、4、5、6、7、8、9,即:010、011、012、013、…019共10个密码;……,所以第一位数字是0的密码共有10×10=100(个)

  同样第一位数字是1,也有100个,第一位数字是2,也有100个,…第一位数字是9,也有100个,所以由三个数字组成的密码共有10×10×10=1000(个)

  ●用0、1、2、3、4、5、6、7、8、9可以组成100个两个数字的密码,在每个密码后面再加一个数字,都能组成10个密码,所以一共可以组成100×10=1000(个)

  ●用0、1、2、3、4、5、6、7、8、9十个数字中任一个数打头,后面都能组成(10×10)个两个数字的密码,所以一共可以组成10×10×10=1000(个)

  只要学生能够大胆说出自己的推理过程,无论正确与否,教师首先给以鼓励,然后教师参与交流。

  5.简单说明1000个密码与密码箱的关系,然后,让学生计算偷偷打开一个三个数字的密码箱需要多少时间。算完后交流。师:同学们用不同方法推算出了由三个数字组成的密码有1000个。大家知道,一个密码箱只有一个密码,也就是说,一个三个数字的密码锁只是这1000个密码中的一个。所以知道密码的人,很容易就打开了,不知道密码的人,要想偷打开箱子,可就难了,你们知道难在哪吗?

  生:他得一个一个地试。

  师:对,要一个一个地去试,这样就有可能要试1000次才能打开。请同学们算一算,如果每试一个密码要10秒钟,试1000次需要多长时间。

  学生算完后,交流计算结果。

  1000×10÷60÷60≈2.7(时)

  6.告诉学生六个数字组成的密码有1000000个,让学生计算打开这样一个密码锁需要多少天。师:不知道密码,要想打开一个由三个数字组成的密码锁,就要花近3个小时的时间。重要的文件箱,都是由六个数字组成的密码锁,这样的密码有1000000个(板书:1000000个),不知道密码的人,想打开箱子所花的时间会更多。请同学们算一算,如果试一次的时间仍然是10秒,那么打开一个六位密码锁要用多少天呢?

  学生汇报计算结果。

  1000000×10÷60≈16666(分),

  16666÷60≈277(时),

  277÷24≈11(天)

  师:可见,数字密码锁具有很强的安全性,因为打开一个不知道密码的锁会用很长时间,因此就增加了密码锁的安全性。所以人们常把贵重物品或重要文件,放在安全可靠的密码箱中,防止泄密或丢失。

  三、汽车牌照问题

  1.让学生自己读书并解答。交流时,说一说是怎样推算的。

  师:刚才我们研究的数字密码问题,实际上是运用了我们数学上数的组成的知识请同学们打开书79页,看汽车牌照问题。试着计算可增加多少个车牌号?

  学生试算,教师巡视。

  师:谁来说一说你是怎样想的?怎样计算的?

  生:由四个数字组成的数码有10×10×10×10=10000(个),在这些数码前面增加一个字母,就可以增加1万个。

  四、电话号码问题

  提出电话号码问题,鼓励学生合作解决。交流时,给学生发表不同意见的机会。

  师:随着人们生活水平的提高,不仅私人汽车发展得很快,全球的电话拥有量更以空前的速度增长着。请同学们解决一下书中79页电话号码增位问题。这个问题较难,试一试!可以同桌商量。

  同桌讨论,试做。

  师:谁来说一说你是怎样做的?结果是多少?

  学生汇报情况,教师参与。

  学生可能会出现以下结果:

  ●由五个数字组成的数码有10×10×10×10×10=100000(个),把10万个数码每个后面增加一个数字,可增加10个数码。所以,一共可以增加100万个,即:10000×10=1000000(个)

  ●电话号码没有0打头的,所以要去掉0打头的,所以,五位数的电话号码有10×10×10×10×9=90000(个),变成六位后是10×10×10×10×10×9=900000(个),增加了810000个。

数学的六年级教案12

  复习目的:

  1.使学生进一步掌握分数、小数四则混合运算顺序和运算方法、技巧,提高计算能力。

  2.进一步发展学生思维的敏捷性和灵活性。

  复习过程:

  一、复习分数四则混合运算。

  1.口算。

  (1)让学生口算出结果。

  (2)指名说说是怎样算的。

  2.课本第101页“和复习”的第1题。

  先想一想分数四则混合运算的顺序与整数四则混合运算的顺序是否相同?再计算下面各题。

  (1)指名说出分数四则混合运算的顺序。

  (2)让学生独立计算。

  (3)教师巡视、辅导

  二、复习分数、小数四则混合运算

  1.课本第101页“和复习”的`第2题。

  说一说下面哪道题用分数计算比较简便,哪道题用小数计算比较简便,再计算:

  (1)学生独立思考。指名说说哪道题怎么计算简便。

  (2)学生自己计算。

  (3):当分数和小数混合乘除时,一般是把小数化成分数再计算比较简便。

  2.课本第101页“和复习”的第3题。

  计算下面各题,怎样简便就怎样算。

  (1)让学生自己完成。

  (2)指名说说是怎样进行简便运算的。

  (3):应根据题目的具体情况考虑怎样计算才简便。

  三、课堂练习。

  完成练习二十四的第3题。

  (1)揭示学生应注意检验答案是不是方程的解。

  (2)“ax±bx=c”的方程,可利用乘法分配律来计算“ax±bx”。

  (3)让学生独立完成。教师巡视、辅导。

  四、作业。

数学的六年级教案13

  教学目标:

  1.通过练习让学生理解抽屉原理,学会简单的原理分析方法。

  2.在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。

  教学重点:

  理解抽屉原理,掌握先平均分,再调整的方法。

  教学难点:

  理解总有至少的意义,理解至少数=商数+1。

  教学过程:

  一、教师出示练习题,学生完成

  二、学生完成后,集体订正。

  1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的'颜色相同,则最少要取出多少个球?

  2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有3张牌有相同的点数?

  3.有11名学生到老师家借书,老师的书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同

  4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜。试证明:一定有两个运动员积分相同。

  5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的?

  6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人数为多少人?

  7.有黑色、白色、蓝色手套各5只(不分左右手),至少要拿出多少只(拿的时候不许看颜色),才能使拿出的手套中一定有两双是同颜色的。

  8.一些苹果和梨混放在一个筐里,小明把这筐水果分成了若干堆,后来发现无论怎么分,总能从这若干堆里找到两堆,把这两堆水果合并在一起后,苹果和梨的个数是偶数,那么小明至少把这些水果分成了多少堆?

  9.从1,3,5,,99中,至少选出多少个数,其中必有两个数的和是100。

  10.某旅游车上有47名乘客,每位乘客都只带有一种水果。如果乘客中有人带梨,并且其中任何两位乘客中至少有一个人带苹果,那么乘客中有多少人带苹果。

  11.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有多少人得分相同?

  12.20xx名营员去游览长城,颐和园,天坛。规定每人最少去一处,最多去两处游览,至少有几个人游览的地方完全相同?

  13.某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有多少人植树的株数相同?

数学的六年级教案14

  教学目标:

  通过数学学习活动,使学生学会运用数学的思维方式支解决日常生活中的一些问题,增强应用数学的意识,发展学生的实践能力和创新精神。

  重点难点:

  知道如何寄信最经济 设计邮票的价值

  教具学具:

  各类邮票的图片资料

  教学过程:

  一、复习回顾,揭示课题

  1. 观察邮票。

  实物投影出示课文中的邮票。

  问:你寄过信吗?见过这些邮票吗?

  2. 说一说。

  (1) 上面这些都是普通邮票,你还见过哪些邮票?

  (2) 你知道它们各有什么作用吗?

  交流后,使学生明白普通邮票票面值种类齐全,可适用于各种邮政业务。

  3. 揭示课题。

  师:今天,我们就一起来探究邮票中的数学问题。

  板书课题:邮票中的数学问题。

  二、新知学习,组织活动

  1. 出示邮政相关的费用。

  业务种类 计费

  单位 资费标准/元

  本埠资费 外埠资费

  信函 首重100g内,每重20g

  (不足20 g按20 g计算) 0.80 1.20

  续重101~20xx g每重100 g

  (不足100 g按100 g计算) 1.20 2.00

  问:从表中你得到哪些信息?

  如

  (1) 不到20 g的信函,寄给本埠的朋友只要贴0.80元的邮票。

  (2) 不到20 g的信函,寄给外埠的朋友要贴1.20元的邮票。

  2. 一封45g的信,寄往外地,怎样贴邮票?

  (1) 学生观察表中数据,计算出所需邮资。

  (2) 说一说你是怎么算的。

  想:每重20g,邮资1.20元,40 g的信函,邮资是2.40元。不足20 g按20 g计算,所以45 g的信函,寄往外地所需邮资是3.60元。

  3. 如果邮寄不超过100g的信函,最多只能贴3张邮票,只用80分和1.2元的邮票能满足需要吗?如果不能,请你再设计一张邮票,看看多少面值的邮票能满足需要。

  (1) 不超过100g的信函,需要多少资费?

  ①学生说一说各种可能的资费。

  ②引导列表描述。

  1~20、21~40、41~60、61~80、81~100

  本埠

  外埠

  (2) 只用80分和1.2元两种面值可支付的资费是多少?

  一张:80分 1.2元

  两张:80分2=1.6元 1.22=2.4元 0.8+1.2=2.0元

  三张:0.83=2.4元

  1.23=3.6元

  0.82+1.2=2.8元

  1.22+0.8=3.2元

  (3) 你认为可以设计一张多少面值的邮票?

  ①学生自行设计各种面值的邮票。

  ②看看多少面值的邮票能满足需要。

  4. 如果想最多只用4种面值的邮票,就能支付所有不超过400g的`信函的资费,除了80分和1.2元两种面值,你认为还需要增加什么面值的邮票?

  (1) 先看看从101~400g的信函,有哪些可能的资费。

  101~200、201~300、301~400

  本埠

  外埠

  (2) 你想设计什么面值的邮票?

  ① 自行设计。

  ② 与同学交流。

  (3) 你见到你设计的这种面值的邮票吗?

  三、巩固提高

  小结 邮票是有益的爱好,可以扩展我们的视野,培养高尚的情操。

数学的六年级教案15

  一、学习目标

  (一)学习内容

  《义务教育教科书数学》(人教版)六年级下册第11页。本节课与现实生活紧密联系,通过介绍储蓄的意义、本金、利息、利率及利息的计算公式,然后在解决问题的过程中,掌握计算利息的基本方法,进一步牢固地掌握百分数问题的解决方法。

  (二)核心能力

  在理解利率有关概念的基础上,将利率相关问题与百分数应用题建立联系,发展迁移类推的学习能力。

  (三)学习目标

  1、通过自主学习、小组调查,能结合实例说明储蓄的意义、本金、利息、利率及利息的计算公式。

  2、通过独立思考,小组交流,能准确找到存期及相对应的年利率,进而解决问题,沟通解决有关利率问题与百分数问题之间的练习,发展迁移类推的学习能力。

  3、会解决生活中的储蓄问题,养成勤俭节约的好习惯及理财意识,感受数学与生活之间的密切联系。

  (四)学习重点

  会准确计算利息。

  (五)学习难点

  将“利率”相关问题与百分数应用题建立联系,正确解决实际问题。

  (六)配套资源

  实施资源:《利率》名师教学课件。

  二、学习设计

  (一)课前设计

  1.预习任务

  (1)预习课本第11页,并完成以下题目。

  ①存入银行的钱叫做( ),取款时银行多支付的钱叫做( )。

  ②( )与( )的比率叫做利率。

  ③利息的计算公式是( )。

  (2)以小组为单位,向家长或银行工作人员了解课本上的相关内容。如:储蓄的种类、银行存款的年利率、存款凭条如何填写等。

  设计意图:数学知识来源于生活,应用于生活。通过实际调查及课前预习,培养学生的搜集、提取、整理、归纳信息的能力。(考查目标1)

  (二)课堂设计

  1、谈话导入

  师:在调查储蓄的`过程中,你搜集到哪些相关的知识?遇到了哪些困难?有什么感受?

  设计意图:学生通过课前的调查,充分感知了储蓄的益处。全班交流时,不仅充分调动了学生的积极性,而且进一步解决调查时出现的问题,体会到数学与生活的密切联系。(考查目标1)

  2、问题探究

  (1)认识本金、利息、利率。

  师:这是一张存款单,你能从这张存单上得到哪些信息?你是如何理解这些信息的?

  学生思考后独立发言交流。

  师重点引导下面问题:

  ①什么是整存存款?你还知道其他的存款方式吗?

  ②存了10000元人民币。通过课前自学,你知道这10000元叫什么吗?

  ③利率是1.95%。你能解释一下什么是利率吗?(利息/本金=利率)

  师:你能解释一下这里的1.95%表示什么意思吗?(利息占本金的1.95%;把本金平均分成100份利息占1.95份。)

  师:这是20xx年7月中国人民银行公布的存款利率,你发现了什么?

  学生自由发言。

  引导小结:定期利率比活期利率高。存期不同,年利率也不同,银行的利率是国家根据经济发展的需要确定的。

  设计意图:虽然对于储蓄这件事学生并不陌生,但是他们真正接触的并不多,在初步了解本金、利息、利率的基础上结合实例进行理解很有必要。(考查目标1)

  (2)利息的计算方法。

  师:同学们了解的还真不少,现在老师有10000元存到了中国银行,一年后,我取回的钱变多了还是变少了?你们能帮我算算一年后可以得到多少利息吗?

  ①分析问题,理解题意

  师:想想利息的多少跟哪些因素相关?该如何计算?

  生自由发言。讨论得出如下关系式:利息=本金×利率×存期

  ②独立解答,交流汇报

  10000×1.75%×1=175(元)

  小结:存期不同,利率也不相同,我们在计算时要注意存期和年利率的对应。年利率是指一年的,在算利息时需要考虑存款时间。

  ③拓展练习,总结提升

  师:如果老师存三年,你们能帮我算算到期后可以取回多少钱吗?

  独立完成→集体讲解

  汇报时,重点分析以下问题:到期后老师能取回的钱应该包括哪几部分?我们可以先算出什么?

  预设一:10000×2.75%×3=825(元)10000+825=10825(元)

  追问:10000×2.75%表示什么?乘3又表示什么?

  预设二:10000×(1+2.75%×3)=10000×1.0825=10825(元)

  引导小结:可以先求出利息,再加上本金;也可以直接用“求比一个数多百分之几的数是多少”来解决。由于存的是三年,需要找到与之相对应的年利率,并注意存期是3年。

  师:回想刚才解决问题的过程,我们是如何计算有关利息的问题?在计算时要注意什么?

  设计意图:让学生通过尝试自行计算利息,探讨利息的计算方法,在反馈中进行辨析答疑,从而建立解决有关利率的实际问题与百分数问题之间的联系,发展学生的迁移类推能力。考查目标2、3

  3、巩固练习

  (1)小雨前年10月1日把1000元存入银行,定期2年。如果年利率按2.25%计算,到今年10月1日取出时,她可以取出本金和利息共多少元?下面列式正确的是( )

  A.1000×2.25%

  B.1000×2.25%×2

  C.1000×(1+2.25%)

  D.1000×(1+2.25%×2)

  (2)李经理把年终奖金5000元存入银行,定期五年,年利率是4.75%,到期时他打算用本金和利息购买一台价值7500元的空气净化器,够吗?如果不够,还差多少元?

  (3)李林准备把自己积攒的1000元零花钱存入银行,等两年后上中学用。下面是两位同学为他提供的两种储蓄方式,你认为谁提供的储蓄方式获得的利息多?结合下面利率表算一算。

  4、课堂总结

  师:今天这节课,我们运用百分数的知识解决了储蓄中的数学问题,知道了运用利息=本金×利率×存期的方法来计算利息!对于今天所学的知识,大家还有没有疑问?

  (三)课时作业

  1.小兰两年前将一笔压岁钱存入银行,存期为两年,年利率为2.25%,今年到期时小兰共取出了1045元,你知道小兰两年前存入了多少钱吗?

  答案:方法一:

  解:设小兰两年前存入了x元。

  x+x×2.25%×2=1045

  1.045x=1045

  x=1000

  方法二:1045÷(1+2.25%×2)

  =1045÷1.045

  =1000(元)

  答:小兰两年前存入了1000元。

  解析:本题需要求本金,是例题的逆应用,注意引导学生在找准数量关系的基础上正确列式或列出方程,不断提高解决百分数问题的能力。(考查目标1、2、3)

  2.王阿姨三年前把50000万元存入银行,到期后共取出54125元,问两年定期存款的利率是多少?

  答案:

  (54125-50000)÷3÷50000×100%

  =4125÷3÷50000×100%

  =1375÷50000×100%

  =2.75%

  答:两年定期存款的利率是2.75%。

  解析:本题考查利率的计算方法,需学生正确分析题意,体会百分数在生活中的广泛应用,进一步把握用百分数解决实际问题的方法。(考查目标2、3)

【数学的六年级教案】相关文章:

小学教案数学六年级05-21

六年级数学下册教案02-02

数学六年级下册教学教案01-06

六年级上册数学教案09-03

六年级下册数学教案02-13

六年级数学上册教案02-23

六年级数学苏教版教案文案01-03

六年级数学教案:化简比04-04

人教版六年级数学教案12-08