分数比教案

时间:2024-10-05 15:03:59 教案 我要投稿

分数比教案15篇

  作为一名专为他人授业解惑的人民教师,时常需要编写教案,教案有助于顺利而有效地开展教学活动。那么教案应该怎么写才合适呢?以下是小编收集整理的分数比教案,仅供参考,欢迎大家阅读。

分数比教案15篇

分数比教案1

  教学目标

  1.通过例2的学习,学生能够理解整数除以分数计算法则的推导过程,引导学生正确地总结出计算法则。

  2.能运用法则正确地进行计算。

  3.培养学生观察、比较、分析的能力和语言表达能力,培养学生善于抓住事物本质的能力和思维方式。

  教学重点

  整数除以分数计算法则的推导过程。

  教学难点

  如何区别、统一分数除以整数、整数除以分数两个计算法则。

  教学过程设计

  (一)复习旧知

  1.说出下面各题的倒数。(投影出示)

  2.把算式补充完整。(投影出示)

  问:分数除以整数的法则是什么?谁不变?谁变?

  生:被除数不变,除号变乘号,除数变成它的倒数。(法则的本质)

  问:分数除以整数是把谁变成它的倒数了?为什么?

  生:把整数变成它的倒数了,因为整数处在除数的位置。

  师:我们上节课学习了分数除以整数的计算法则。这节课我们来学习整数除以分数的计算法则。看谁最善于思考、分析,能正确的'总结出计算法则。(板书:整数除以分数)

  (二)新授教学

  1.一辆汽车2小时行驶90千米。1小时行驶多少千米?

  问:①谁会列式计算?

  板书: 02=45(千米)

  ②根据什么这样列式?

  生:根据路程时间=速度。

  问:要求1小时行驶多少千米就是求什么?

  生:求汽车的速度。

  问:怎样列式?为什么这样列式?

  怎样进行计算呢?我们认真分析一下题意。画出线段图帮助我们寻找解题的方法。

  师:根据你们说的老师画图。用一条线段的长表示1小时,把它平

  问:怎么求?为什么这样求?

  (2)要求1小时行多少千米,怎么求?

  算式变化形式:

  根据上面的推导过程可得出:

  这两个算式相等吗?

  我们把这道题完成。

  答:汽车1小时行驶45千米。

  (3)观察算式:谁没变?谁变了?怎么变的?

  讨论:整数除以分数的计算法则是什么?

  谁能说一说?

  板书:整数除以分数等于整数乘以这个分数的倒数。

  同桌互相说一说。

  谁愿意给大家说一说?

  (4)根据我们总结出的法则,同学们试做下面两道题,看谁做得又对又快。

  订正,错的说错在哪里,并改正过程。

  (三)巩固练习

  1.投影出示。

  (1)分数除以整数(0除外)等于分数乘以整数的倒数。

  (2)整数除以分数,等于整数乘以分数的倒数。

  问:第一个法则整数后面为什么要加上0除外而第二个整数后面就不加了呢?

  生:第一个法则整数是处在除数的位置,除数不能为0,所以必须加上0除外;第二个法则中整数处在被除数的位置,可以是0,因此不必加上0除外了。

  问:你看这两个法则一会儿变成乘以这个整数的倒数,一会儿变成乘以这个分数的倒数,把我们都弄糊涂了。你有什么办法记清这两个计算法则吗?请把你的好方法讲给你周围的同学听。看谁的方法最好。

  问:这两个法则的共同之处在哪儿?谁愿意把你的方法讲给全班同学听?

  生:这两个计算法则虽然叙述的不一样,但它们都是被除数不变,除号变乘号,除数变成它的倒数。这样记就不会记错了。

  2.把下面各题补充完整。

  3.计算。在本上写过程,得数填在书上。

  订正,指名把过程写在投影片上。

  错的同学说明错因。

  4.判断。对的举,错的举,并说明理由。

  师:同学们的思维非常敏捷,语言表达能力也很强。同学们对每一道题都是认真观察、思考,这样我们就能避免出现很多不该出的错误。

  (四)课堂总结

  这节课我们学习了什么内容?整数除以分数的计算法则是什么?还有什么问题?

  (五)作业

  课本第36页第1,3,4题。

  课堂教学设计说明

  本节课的内容是整数除以分数的计算法则。这节课有两个难点:

  第一是理解整数除以分数的计算法则的推导过程。为了突破这一难点,采用了把例2的条件和问题分别解剖加以分析的方法,引导学生根助学生理解算理,效果很好。

  第二是分数除以整数,整数除以分数的计算法则的应用。这一部分内容学生容易产生混乱。为了突破这一难点,教师要调动学生的思维,激发他们的兴趣,使学生抓住了一不变二变这一本质。在练习中教师设计了一组对比练习。加深学生对法则的理解。

分数比教案2

  教学内容:人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

  教学目标:

  1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

  2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

  3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

  教学重点:掌握分数乘整数的计算方法。

  教学难点:理解分数乘整数和一个数乘分数的意义。

  教学准备:课件。

  教学过程:

  一、情境创设,探求新知

  (一)探索分数乘整数的意义

  1.教学例1(课件出示情景图)

  师:仔细观察,从图中能得到哪些数学信息?这里的“

  个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

  师:想一想,你还能找出不一样的方法验证你的计算结果吗?

  2.小组交流,汇报结果

  3.比较分析

  师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设:

  生1:每个人吃个,3个人就是3个相加。

  生2:3个个相加也可以用乘法表示为

  提出质疑:3个

  相加的和可以用乘法计算吗?为什么?

  预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

  引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

  师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

  引导说出:这两个式子都可以表示“求3个

  相加是多少”。

  师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

  4.归纳小结

  通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

  【设计意图】呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。

  (二)分数乘整数的计算方法

  1.不同方法呈现和比较

  师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,

  的计算过程用式子该如何表示?预设:

  生1:按照加法计算

  师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个

  2.归纳算法

  师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

  引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

  3.先约分再计算的教学

  师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

  预设:一种算法是先计算再约分,另一种是先约分再计算。

  师:比较一下,你认为哪一种方法更简单?为什么?

  小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

  【设计意图】通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,最大程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。

  二、巩固练习,强化新知

  1.例1“做一做”第1题

  师:说出你的思考过程。

  2.例1“做一做”第2题

  师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

  三、探索一个数乘分数的意义

  教学例2(课件出示情景图)

  (1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

  预设1:求3桶共有多少升?就是求3个12 L的'和是多少。

  预设2:还可以说成求12 L的3倍是多少。

  预设3:单位量×数量=总量,所以12×3=36(L)。

  (2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

  交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的

  是多少。”

  (3)出示第2小题学生自练。引导说出:“12×

  表示求12 L的

  是多少。”在这里都是把12 L看作单位“1”。

  (4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

  归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

  四、课堂练习,深化理解

  1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的

  ,吃了多少千克?

  师:你能说说这个算式表示的意义吗?“求3千克的

  是多少。”

  2.比较两种意义

  出示:一袋面包重

  千克,3袋重多少千克?

  师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

  预设1:一个是分数乘整数,另一个是整数乘分数。

  预设2:它们表示的意义相同但有所区别。

  引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

  师:那么,它们有什么是相同的呢?(计算方法和结果)

  【设计意图】对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。

  五、联系实际,灵活运用

  1.算式

  可以列成 × ,表示 ;或者表示 ;

  也可以列成 × ,表示 。

  师:选择一个算式进行计算,想一想,计算时要注意什么?

  2.比较练习

  (1)一堆煤有5吨,用去了

  ,用去了多少吨?

  (2)一堆煤有

  吨,5堆这样的煤有多少吨?

  你能编写出类似的问题并加以解决吗?

  3.拓展练习

  1只树袋熊一天大约吃

  kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

  【设计意图】练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。

  六、课堂小结,拓展延伸

  1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

  2.谁会用含有字母的式子表示分数乘整数的计算方法?

  【设计意图】通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。

分数比教案3

  教学目标和要求

  1.理解百分数的意义,正确地读写百分数能运用百分数表示事物。

  2.会解决有关百分数的简单实问题

  教学重点

  解决有关百分数的简单实问题

  教学难点

  体会百分数与现实生活的密切联系

  教学准备

  组织学生收集生活中的分数、百分数

  教学时数

  1课时

  教学过程

  备注栏

  一、复习旧知

  让学生说说百分数的含义

  二、指导练习

  1.教科书第73页第3题

  要求学生自己独立完成,最后全班讲评

  2.教科书第75页第8题

  先让学生理解题意,明白“成活率”指的是成活的.棵数与所有植树总棵树的百分几。

  独立完成后,全班讲评

  3.教科书第75页第10题

  先让学生明白“优秀率”的含义,鼓励学生找出等量关系,列方程解答。

  4.教科书第75页第11题

  先看表,弄清题意,然后独立完成。

  学生汇报全班讲评

  5.教学“实践活动”

  先组织学生在课堂上交流,体会百分数、分数之间的联系。

  然后鼓励学生分别总结生活中使用百分数和分数的例子,结合具体事例谈谈自己的体会。

分数比教案4

  教学目标

  1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。

  2.进一步提高学生的分析概括能力及解题能力。

  教学重点

  找准单位1,巩固分数除法应用题的解答方法。

  教学难点

  掌握分数连除应用题的结构及数量关系。

  教学过程

  (一)复习

  (投影)

  1.找准单位1,并列式解答。

  2.出示准备题。

  (1)读题,请学生找出已知条件和未知条件。

  (3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)

  提问:美术组,生物组,航模组三个数量之间有什么关系。

  (4)请一名同学列式解答,然后订正。

  (二)讲授新课

  老师把准备题进行改编。

  指名读题,找出已知条件和未知条件。

  1.指导学生画图。

  提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)

  提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)

  老师按学生的回答,把准备题的图示进行修改。

  2.找出含有分率的句子,进行分析。

  (3)这道题中有几个单位1?美术组、生物组、航模组三量之间有什么关系?

  (4)根据三量之间的关系,列出等量关系式。

  (5)这个式子的等号两边相等吗?为什么?人。)

  学生回答,老师板书:

  3.根据等量关系列方程解答。

  提问:根据上面的分析,应设谁为x?(设美术组人数为x。)

  老师板书:

  解 设美术组有x人。

  答:美术组有30人。

  看方程提问:

  (3)为什么要设美术组人数为x?

  (因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)

  师小结:对于含有两个已知一个数的几分之几是多少,求这个数这样条件的复合应用题,首先要找准单位1,在两个单位1都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。

  (三)巩固练习

  (投影)

  先讨论以下问题,再动笔做:找出单位1,画图并分析数量关系。

  2.看图,找出数量间相等的关系,并列方程解答:

  (1)说出这个图所反映的等量关系式。

  (2)师小结:这道题出现了小汽车是大汽车的.4倍,而不是几分之几,但它们的数量关系不变,解题思路也一样。

  师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)

  三好生4人。

  学生动笔做,老师带领学生订正。

  的高是多少厘米?

  根据题意填空:

  是( )厘米。设( )为x。

  果树有多棵?

  (四)课堂总结

  今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)

  这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)

  (五)布置作业

  (略)

  课堂教学设计说明

  本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。

分数比教案5

  教材分析

  分数的大小是在学生已经初步理解了分母相同的分数和分子是1的分数的大小比较方法及学习了分数的基本性质的基础上比较分母不同的分数,在比较过程中,引出“通分”的概念。教材提供了3种思路:第一种是数形结合,根据分数的意义通过画图来比较分数的大小;第二种是根据分数的基本性质把两个分数化成分母相同的分数来比较大小,在此基础上引出通分的概念,即把分母不相同的分数化成和原来分数相等、并且分母相同的分数,再比较大小;第三种是把两个分数化成分子相同的分数,再比较大小。

  本节课主要学会比较两个分母不相同的分数的大小,并能理解通分的含义,掌握通分的.方法。这部分知识在今后的学习和生活中得到广泛的应用,所以掌握这部分内容为学生以后学习及解决简单问题具有十分重要的意义。

  学情分析

  学生已经初步理解了分母相同的分数和分子是1的分数的大小比较方法及学习了分数的意义和分数的基本性质,在此基础上比较分母不同的分数大小。因此,可以通过学生自主探究、亲身实践、合作交流的活动,引导学生来学习这一内容。学会多种比较分数大小的方法,并选择最简便的方法,理解通分的含义,掌握通分的方法。让学生在参与教学活动中灵活掌握本节课的教学重点,突破教学难点。

  教学目标

  1.探索比较分数大小的方法,会正确比较两个分母不相同的分数的大小。

  2.结合具体情境,引导学生用分数描述有关现象。

  3.结合具体情境,理解通分的含义,探索并掌握通分的方法。

  4.进一步渗透等量变换的数学思想和方法,培养学生发散思维的能力。

  5.在解决实际问题的过程中进一步体会教学和现实生活的密切联系,增强自主探索意识。

  教学重点和难点

  教学重点:会比较两个分母不相同的分数的大小;理解通分的含义;掌握通分的方法。

  教学难点:能应用分数大小比较的知识解决生活中的实际问题。

分数比教案6

  教学目标:

  能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

  知识目标:学习分数乘以分数的计算方法,学生能够熟练准确的计算出一个分数乘以另一个分数的结果。

  情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

  教学重难点:

  学生能够熟练的计算出分数乘以分数的结果。

  教学方法:

  师生共同归纳和推理

  教学准备:

  教学参考书、教科书

  教学过程:

  一、复习导入

  教师出示教学板书,请学生计算下列分数乘法运算题。

  1/33/72/54/97/105/14

  教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

  学生寻找完毕,纷纷举手准备回答问题。

  教师提问学生回答问题。(分数乘以分数,分子相乘,分母相乘,能约分的要约分。)

  二、课堂练习:

  学生做第一题折一折,涂一涂。让学生用折纸的方式再次验证分数乘以分数的运算法则,注意让学生体会分数的几分之几是多少?

  学生做第2题,注意让学生体验分数相乘的积于每一个乘数的关系。

  学生做第3题,让学生理解分数的几分之几与占整体1之间的.关系。

  学生做第4题,让学生能够学会比较1/2的3/4和4/5占整体1的大小。

  学生做第5题,教师注意让学生整体的几分之几是多少?

  学生做第6题,让学生注意区分不同标准的几分之几是多少;占整体的几分之几。

  学生做第7题,教师注意让学生利用分数乘法学会解决生活中实际问题。

  第8题,学生根据学过的分数乘法知识,分辨一下唐僧分西瓜是否公平。

  三、课堂小结

  同学们,这一节课你学到了哪些知识?(提问学生回答)

  板书设计:

  分数乘法(三)

  1/23/43/8 ,2/44/54/10=2/5

  是整个操场1的3/8,2/

  5是整个操场1的2/5。

  分数乘以分数的运算法则:分子相乘,分母相乘,能约分的要约分。

分数比教案7

  一、教学目标:

  1、知识与技能:

  (1)会在分数乘除法应用题中找出单位“1”,会判断单位“1”是已知的还是未知的。

  (2)会列式解答分数乘除法应用题。

  2、过程与方法:

  通过整理、交流、合作、探究,体验探究的乐趣,感受数学的价值,培养学生“学数学,用数学”的意识。

  3.情感与态度:激发学生对找单位“1”的情感体验,有意培养学生的解答应用题意识,并最终养成正确解答应用题的良好习惯。

  二、教学重点:

  会在分数乘除法应用题中找出单位“1”,会判断单位“1”是已知的还是未知的。

  三、教学难点:

  会列式解答分数乘除法应用题,用所学知识解决实际问题。

  四、教学过程:

  一、预学

  课前学生诵读“数学经典”

  师生谈话:

  师:同学们都看过西游记吗?最喜欢里面哪个人物?为什么?

  生:看过,最喜欢孙悟空的勇敢机智,不怕困难的精神。

  师:今天老师就带大家一起重温西游戏故事,体验成功的乐趣,大家喜欢吗?

  (一)四基训练

  根据已知条件先找出“1”的量,再找出数量关系。

  1、花果山有45只小猴子,老猴子的只数是小猴子的4/5

  ()×4/5=()

  2、水帘洞里有12只大石碗,相当于小石碗数量的1/3

  ()×1/3=()

  3、孙悟空体重40千克,占猪八戒体重的1/5

  ()×1/5=()

  (二)自主探究

  1、镇元大仙的人参果树上结了80个人参果,孙悟空一棒子打落了3/8,打落了多少个人参果?

  2、师徒四人在翻越"狮驼岭"大战时,猪八戒消灭了150个妖怪,是沙僧消灭妖怪数量的5/7,沙僧消灭了多少个妖怪?

  3、孙悟空在车迟国与虎力大王斗法比求雨.孙悟空施法时,大雨整整下了48小时。虎力大王求雨的时间比孙悟空少5/8,虎力大王求雨时大雨下了多少小时?

  4、孙悟空在狮驼岭与大鹏妖怪斗法,大鹏每秒可飞行48千米,要比孙悟空的速度快1/5,孙悟空施展法力时每秒可飞行多少千米?

  问题:

  (1)找出各题里的“1”,说说它是已知还是未知,用方程解答还是用算术方法解答呢?

  (2)找出数量关系。

  A:()×3/8=()

  B:()×5/7=()

  C:虎力大王求雨的时间=()Ο()×5/8

  D:()Ο()×1/5=大鹏的速度

  (3)列式或列方程

  学生首先自主学习十分钟,当有质疑时可互学或小组内组学,从而进入互学环节。

  二、互学

  (一)小组交流,展示点评:

  先在小组内交流

  小组长组织,组内成员依次交流

  小组内讨论导学目标中的每个问题,组长并记录好。

  (二)由小组在班内展示,学生点评

  提示:台上交流的小组交流时,其他小组要与台上小组做好互动,如果有同学说错了(及时指正)或不完整要做好补充。

  中心发言组发言结束后,由主持人或组长总结本组学习的内容或本组在发言时的表现。然后由各位学生对这个小组做出评价,老师可以进行总评,适当的发言。

  预设:

  虎力大王求雨的时间=()+()×5/8

  有少数学生不会判断加还是减,关键在于不知道哪个量多哪个量少。

  1、找数量关系。

  A:树上结的果子数×3/8=打落的果子数

  B:沙僧消灭妖怪的数量×5/7=猪八戒消灭妖怪的数量

  C:虎力大王求雨的时间=孙悟空求雨的时间-孙悟空求雨的时间×5/8

  D:孙悟空的速度+孙悟空的速度×1/5=大鹏的速度

  (3)列式或列方程

  A:80×3/8

  师点拨板书:

  以a为单位1,a已知,求b(另一个量)b=a×()/()

  B:解:设沙僧消灭妖怪的数量为X个5/7X=150

  师点拨板书:

  以a为单位1,a未知,求a,设a为XX×()/()=b(是已知的另一个量)

  C:48-48×5/8

  师点拨板书:稍复杂的

  以a为单位1,a已知,求b(另一个量)b=a+(-)a×()/()

  D:解:设沙僧的速度为XX+1/5X=48

  师点拨板书:稍复杂的

  以a为单位1,a未知,求a,设a为XX+(-)X×()/()=b(另一个量)

  三、评学:

  (一)巩固反馈

  1、孙悟空在王母娘娘的蟠桃园里捣乱,打落了120个红色的`桃子,打落的青色的桃子比红色的桃子还要多1/3,孙悟空打落了

  多少个青色的桃子?

  2、唐僧的体重为60千克,比孙悟空体重多1/5,孙悟空的体重是多少千克?

  3、花果山的猴子真多,老猴子和小猴子共有81只,其中老猴子的只数是小猴子只数的4/5。花果山里老猴子和小猴子各有多少只?

  (1)找出各题中的“1”,是已知还是未知?你确定可以用什么方法解决问题更合适?

  (2)你能准确的找出题里的数量关系吗?请根据数量关系列式或列方程。

  (二)拓展提升

  孙悟空和猪八戒比法力,在一座高大的山中间要开出一条平整的大路。孙悟空单独做用8分钟就可以完工,猪八戒单独做得用12分钟才可以完工。如果孙悟空先开凿3分钟后,猪八戒再加入合作,他们师兄二人还需要几分钟就可以完工?

  属于哪类型的分数应用题?

  解决此类应用题要注意哪些问题?

  (三)随堂检测

  1、松树有80棵,是柳树的棵数的5/8,柳树有多少棵?

  2、美术小组有25人,手工小组的人数比美术小组少1/5,手工小组多少人?

  3、松树有80棵,比柳树的棵数多5/8,柳树有多少棵?

分数比教案8

  教学内容:

  义务教育课程标准试验教科书青岛版小学数学六年级上册第73—78页。

  教材简析:

  教材在学生已经掌握了求一个数的几分之几是多少的一步和两步计算的分数应用题的基础上,呈现了中国的世界遗产这一情景。通过介绍中国的世界遗产情况,引导学生提出问题,引入对乘加应用题的探索。知识点是让学生在具体情景中,借助一、二单元的知识基础,运用已有的知识经验,自己探索出分数四则混合运算的计算规律,并能灵活的运用这个规律解决问题。重点是将四则混合运算规律正确地迁移到分数中。

  教学目标:

  1.知识目标:在具体情景中,能正确描述数量关系,画线段图,并根据数量关系和线段图列出算式并正确解答乘加、乘减分数应用题,在不断探索中领悟分数四则混合运算的规律。

  2.能力目标:通过让学生说一说、画一画,培养学生的分析能力、概括能力、综合能力,培养学生的探究意识。

  3.情感目标:创设平等和谐、积极向上的学习氛围,培养学生的合作意识,感受数学与生活的密切联系,提高学习数学的'兴趣。

  教学过程:

  一、创设情境,谈话导入。

  谈话:同学们,2008年的奥运会相信大家一定记忆犹新,世界人民走进奥运,走进了北京。作为一名中国人,你能说说北京有哪些历史文化遗产吗?

  [设计意图]这一单元是围绕“中国的世界遗产”这个大的情境串进行的,而本课是分数四则混合运算的第1个信息窗,情境内容将中国放入世界这一大环境中,因此由奥运会的话题引出了本课情境,这样设计让学生自然而然地进入了本课,激发了学习兴趣。

  二、自主探究,获取新知。

  1.课件出示教科书73页情境

  谈话:这里有一些我国世界遗产的文字信息,谁能读一读?根据文字信息你能提出什么数学问题?

  (1)北京故宫的占地面积大约是多少公顷?

  (2)我国的世界文化遗产和自然遗产一共有多少处?

  (3)我国的世界文化遗产比自然遗产多多少处?………

  (4)同学们提出了这么多问题,我们先来解决“北京故宫的占地面积大约是多少公顷?”好吗?

  2.根据以往的解题经验,我们可以用什么方法帮助你解决这一问题?

  [设计意图]让学生在自己提出问题的基础上,动脑思考解决问题的办法,梳理已有的数学思想方法,为新问题的解决做好铺垫。

  3.选择你喜欢的方法试着独立解决这一问题好吗?

  4.学生汇报交流。

  让学生到前面展示不同的方法,分别说说自己的解题思路。

  (1)272×1/4=68(公顷) 68+4=72(公顷)

  (2)272×1/4+4

  =68+4

  =72(公顷)

  学生在多次交流解题步骤中,教师板书数量关系

  天坛公园的面积×1/4+比天坛公园多的面积=故宫的面积

  并展示学生画的线段图。让学生分析线段图。

  [设计意图]学生是探究主体,教师是引导者。在这里把让学生说解题思路放在首位,突出重点,突破难点。

  5.刚才同学们有的用分步,有的列综合算式解决了第一个问题,现在你能试着用先画线段图再列综合算式的方法自己解决你们提出的“我国的世界文化遗产和自然遗产一共有多少处?”吗?

  学生独立解决。(根据学生情况,如果画图有困难,可让学生小组内讨论一下,在这里把谁看作单位“1”?)

  全班交流,展示做题方法。

  (1)30×7/10+30×2/15 (2)30×(7/10+2/15)

  =21+4 =30×25/30

  =25(处) =25(处)

  6.让学生展示线段图的画法,说清解题思路。

  7.点题并板书:分数应用题。

  8.单看这两个算式的计算,你能想到什么运算律?有什么启发?

  9.小结:乘法的分配律在分数中同样适用。

  [设计意图]让学生借助两种解题方法,将分数与整数的运算率沟通,为后面的练习搭建了平台。

  三、巩固练习,加深理解。

  独立完成(第75页第2、3题。)

  指生回答,并说出解题思路。

  (重点说出数量关系。)

  [设计意图]这两道题是针对性练习,旨在巩固所学知识。数量关系要让学生反复说,目的是让学生从理论上加以理解。

  四、回归实践,拓展运用。

  课件再次出示本课信息窗情境图。

  谈话:现在你能自己解决“我国的世界文化遗产比自然遗产多多少处?”吗?

  现在让我们走进民族文化遗产——青藏高原,检验一下这节课你的学习情况。

  课本76页第9题。学生读题,指生列式。

  [设计意图]引导学生回归课题情景,联系生活实际,学以致用,灵活掌握解题方法。

  五、谈收获。

  这节课你有什么收获?

分数比教案9

  教材分析:

  教材是在学生认识整数和小数的基础上,第一次接触分数,对分数的意义不易理解。根据三年级学生思维发展特点,教材从学生熟悉的简单问题出发:一个蛋糕平均分给两个人,每人分得多少?怎样表示呢?让学生讨论用什么方式来表示“一半”,这个讨论的过程,一方面可以使学生意识到原本学过的数不够用了,感到学习新知识的必要性;另一方面可以鼓励学生发挥想象,大胆创造表示“一半”的方法。在此基础上,逐步引出分数。教材为学生提供了大量自主学习的素材,如:“分一分”、“折一折”、“涂一涂”、“练一练”等,不仅是为了激发兴趣,更重要的目的是学生需要在自主的数学活动中理解数学,体验数学,让学生在自主参与的活动过程中,完成对知识的构建。学好本节课知识对后续学习有关分数的知识奠定坚实的基础。

  学情分析:

  由于三年级学生还是以形象思维为主要方式,同时第一次接触分数,所以教学时要充分利用直观图进行教学,帮助学生理解分数的意义,把分数与具体的图形建立联系,建立分数的表象,使学生真正理解分数的意义:

  一、建立分食品使学生感知在平均分时不能得到整数结果,要表示这样的结果就要改造一种新的`数表示,于是就产生了分数,使学生了解分数的产生过程。

  二、通过对半个蛋糕表示方法的研究,通过用不同方法表示半个蛋糕,使学生体验解决问题的多样性,并对各种表示方法进行优化,渗透优化是数学研究。

  三、通过折纸表示一张纸的1/2的实践活动,使学生感知折的方法不同、一半的形状不同,但是才可以用1/2表示,再通过为什么都可以用1/2表示的研究,使学生进一步明确1/2的意义,建立起准确的分数的意义。

  四、通过让学生研究:还可以表示一张纸的几分之几,使学生明白通过折纸不但可以表示一张纸的1/2,还可以表示1/4、1/8、1/3……拓展分数的范围,使学生进一步理解分数的意义。

  教学目标:

  1、初步理解分数的意义,体会学习分数的必要性。

  2、会正确读、写分数,知道分数各部分的名称。

  3、会用折纸、涂色等方法表示简单的分数。

  教学重点和难点:

  重点:充分理解1/2的意义。

  难点:理解几分之一的含义。

分数比教案10

  教学目标

  (1)使学生认识到整数加减法中的运算定律和性质在分数加减法中同样适用。

  (2)使学生能应用运算定律和性质进行一些简便计算。

  (3)通过练习培养学生认真细致的审题意识和良好的学习习惯。

  教学重点、难点

  重点、难点:

  教具、学具准备

  教学过程

  一、基本训练

  1、口算。(指名回答)

  5+8又3/43又1/2+92又4/15+84又4/11―411又1/5―2

  1又19/20+410+6又1/711-2又1/53又1/2+4又1/53又1/3-2又1/2

  2、说说分数加减法的计算方法。

  3、谈话比较。

  (1)在上面的口算题中,你们感到哪些算式计算起来比较容易,为什么?

  (2)在实际的运算中,只要我们认真观察,注意数据特征,然后再应用一些运算定律,就可以使计算简便。

  (3)揭题:分数加减法的简便计算。

  二、尝试计算,引导探究

  1、谈话出示例题,学生探究。

  3又3/8+2又4/15+4又5/84又4/11-2又8/13-1又5/13

  (1)学生尝试计算,互说算理。

  (2)教师巡视,发现典型算法指名板演。

  (3)反馈说说如此计算的依据是什么?

  (4)比较哪种算法比较简便,并说说理由。

  2、引导学生:整数加法中的交换律、结合律在分数运算中同样适用。

  3、第二次尝试练习。

  1又19/36+2又7/12+1又5/12

  3又1/4+2又3/5+1又2/5+4又3/4

  18又2/17-5又3/8-2又2/17

  (1)学生尝试计算,并把想法与同桌交流。

  (2)反馈比较各种算法。

  4、:能进行简便计算的分数加减法有一些什么特点?

  三、巩固练习

  1、下列各题怎样简便就怎样算。

  30-5又5/6-4又3/1010又1/3-3又8/9-2又5/9

  4又11/12+2又5/9+3又1/125/6+3又7/54+8/9

  (1)学生独立计算,教师巡视补差。

  (2)反馈结果。

  (3)说说能用简便方法计算与不能用简便方法计算的理由。

  2、判断下列计算是否正确,错误的请改正。

  1又1/6+7/15+2又5/6+7又8/158又3/7-(4又3/7+1又2/3)

  =1又1/6+2又5/6+7/15+7又8/15=8又3/7-4又3/7+1又2/3

  =4+8=4+1又2/3

  =12=5又2/3

  (1)学生判断,指名反馈。

  (2)注意对减法性质的应用,进一步理解算理。

  3、选择正确的答案,填在括号里。

  (1)4又1/4-3又1/7+5又3/4=4又1/4+5又3/4-3又1/7,这样算的.依据是()。

  A、加法交换律B、加法结合律

  (2)6又7/8+2又11/18+1又5/18+又1/8的正确结果是()。

  A、11B、10C、11又8/9

  (3)对于算式4又3/11-2又5/9+2又8/11-1又4/9,下列算法中正确的是()。

  A、(4又3/11+2又8/11)-(2又5/9-1又4/9)

  B、(4又3/11+2又8/11)-(2又5/9+1又4/9)

  四、课堂

  师生谈话:通过这节课的学习你们学会了什么本领?

  (强调方法与计算习惯的培养)

  五、课堂作业1、看谁算得既对又快。

  4/9+3又5/7+2又5/914/15+13/24+1/15+11/24

  5又3/16+2又13/32+1又7/168又2/13-2又1/9-3又8/9

  1又2/3+7/10+1/3+3/205又5/12+4又3/7-2又5/12

  2、应用题。

  一只货船第一小时航行7又3/10千米,第二小时比第一小时多行1又7/8千米,第三小时又比第二小时多行7/10千米。这只货船第三小时航行多少千米?

  学生认识到了整数加减法中的运算定律和性质在分数加减法中同样适用。大部分学生能应用运算定律和性质进行一些简便计算。但是学生的审题能力还是很差,错误较多。

分数比教案11

  教学内容:教科书第53页第10~13题

  教学目的:

  1、用分数的有关知识,熟练地解决求一个数是另一个数的几分之几的实际问题,

  2、能沟通知识之间的相互联系,提高解决问题的能力。

  教学过程:

  一、练习与应用

  1、第52页第10题

  先做第一题:五一班一共有学生40人,其中女生有21人。女生占全班人数的几分之几?

  (1)先让学生联系分数的意义口头分析:把全班人数看作单位”1“,平均分成40份,女生人数占了其中的21份,所以女生人数占全班人数的21/40。

  (2)再让学生根据分数与除法的关系列出算式,并写出得数。

  (3)独立做下面两题

  (4)交流

  2、做第11题

  (1)学生先独立练习

  (2)引导比较A三道题目计算方法有什么相同?

  B算式中选择的.除数有什么不同?

  C从中还能想到些什么?

  (3)沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。

  3、做第12题练习后加强对比

  (1)计算方法有什么相同的地方?

  (2)算式中选择的被除数为什么不同?除数为什么相同?

  (3)商的表示方法有什么不同?

  4、做第13题练习后加强对比

  要引导学生区别清楚:一:第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位”1“,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二:第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称”米“。

  5、思考题

  方法一:可以根据每个分数中分子与分母的大小关系来判断。

  方法二:通过画图帮助思考

  二、课堂

  三、完成补充习题上的练习。

分数比教案12

  教学目标:

  1、知道带分数是假分数,是整数与真分数合成的数

  2、会把假分数化成整数或带分数,会进行分数与小数的互化

  3、使学生经历假分数化成整数或带分数,分数与小数互化的探索过程,进一步发展数感。

  4、培养良好的学习习惯,树立学好数学的信心。

  教学重、难点:会把假分数化成整数或带分数,会进行分数与小数的互化。

  教学过程:

  一、谈话导入

  同学们还记得假分数吗?举几个例子,教师随机补充

  1、有意识地把假分数分成2类(一类是能化成整数,另一类是不能化成整数的)

  二、教学例7

  1、根据学生实际举例进行教学(设计的时候就用书上的例子进行)

  2、出示假分数

  =()=()=()

  ①同学们想想,把这些假分数化成整数分别是多少?

  ②把自己的想法在小组里交流交流

  ③交流方法:

  ④:在刚才的交流中,能够化成整数的假分数的分子分母有什么特点?

  ⑤归纳特点:能化成整数的假分数,它的分子一定是分母的倍数,是几倍化成整数就是几?

  ⑥小练习:A

  B你能举几个能化成整数的.假分数

  3、教学带分数

  ①同学们在刚才距离的过程当中,还有这一部分的假分数能化成整数吗?(指着黑板上剩下的另一部分假分数)例如

  ②交流:不能化成整数的假分数,可以化成一个整数和一个分数合起来的分数,例如:可以分成和,写成1,想这样的分数叫带分数,读作:一又三分之一

  ③教学=1,让学生在数轴上看一看,进一步理解假分数,带分数的联系。

  ④老师随机板书,写几个带分数让学生读一读

  4、教学例8

  ①怎样把化成带分数

  ②学生尝试计算,教师巡视

  ③交流方法:A可能是画图的

  B可能是计算的,可分成8个和3个,8个等于2,在加上就是2。

  ④读一读这个带分数

  ⑤教师介绍用除法计算来转化:=11÷4=2

  ⑥方法:请同学们想想怎样用除法直接把假分数化成整数或带分数。

  ⑦完成书上47页练一练

  三、练习

  1、完成练习九第1、3题

  学生尝试练习,教师讲评有错误的题目,找出原因进行修正。

  2、完成练习九的第2题

  ①先审题

  ②尝试练习

  ③说说为什么想到用这个分数来分析

  ④改写成带分数

  ⑤交流

  3、完成练习九的第4题

  ①先让学生看懂题意:0-1之间平均分成3份,每一份是,3个就是1,往后一格就是4个==1

  ②学生尝试填写其他空格

  ③交流

  4、布置课堂作业

  完成练习九的第5题

  四、

  今天学习了什么,有哪些收获?

分数比教案13

  教学目标:

  1、让学生进一步掌握百分数解决问题的解题方法;

  2、学解决稍复杂的百分数应用题;

  3、培养学生的应用意识,分析问题和解决问题的能力。

  教学重点:

  会分析百分数应用题的数量关系,解决稍复杂的百分数应用题。 教学难点:让学生利用百分数应用题的数量关系,掌握解决复杂百分数应用题的方法。

  教学准备:

  课件和练习题单。

  教学过程:

  一、复习解决一般应用题的.解题方法。

  1、单位“1”×百分之几 关键是找单位“1”

  2、完成两道复习题。

  (1)杨老师在“五一”期间在天天手机店花1600元买了一部品牌手机,比原价便宜了20%。这部手机的原价是多少元?

  (2)李强六月份的生活费为255元,比计划节省了15%,节省了多少钱?

  二、根据算式填条件。

  果园里有苹果树200棵,__________,梨树有多少棵?

  (1)200÷20%

  (2)200×20%

  (3)200÷(1+20%)

  (4)200÷(1-20%)

  (5)200×(1-20%)

  三、巩固练习。

  3、某件商品2500元,商店先提价10%,后又降价10%,现价是多少元?

  4、一堆小麦共重1800千克,小麦的处粉率是75%,则这堆小麦能磨出多少千克面粉?

  5、工地有一堆水泥,第一天用去40%,第二天用去10.8吨,两天共用去这堆水泥的62.5%,这堆水泥原来有多少吨?

  6.一辆汽车从甲城开往乙城,第一小时行驶了全程的25%,第二小时行驶了90千米,这距乙城还有全程的9。甲,乙两城相距多少千米? 20

  7.一条水渠,甲已经挖了全长的40%,还有36米。乙再挖全长的35%,还能剩多少米?

  8、某品牌的衬衫已经连续降价两次,每次都降价10%,现在只有32.4元。衬衫的原价是多少元?

  9. 一捆电线用去20米,剩下的比原来的75%少5米,这捆电线原来有多少米?

  10.一批粮食,第一次取出25吨,第二次取出余下的40%,还剩下一半。这批粮食原来有多少吨?

  11.一捆电线,用去全长的1,再接上60米,结果比原来长40%,电线原来长多少米 5

  12、某工程队三天修完一条水渠,第一天修了全长的25%,第二天与第三天修的比是7:8,第一天修的比第三天修的少21米,这条水渠全长多少米?

  13.某商店同时卖出两件商品,每件各得300元,其中一件盈利20%,另一件亏本20%。这个商店卖出这两件商品的总价上是盈利,还是亏本?盈利或亏本多少元?

  14.希望小学六年级去年有325人,今年男生增加15人,女生减少5%,总人数增加6人,那么今年有男生多少人?

  1,这时乙堆剩下的煤恰4

  好比原来总数的62.5%少13吨。这个厂从甲堆中取走了多少吨煤? 15.有两堆煤共136吨,某厂从甲堆中取走30%,从乙堆中取走

  四、总结。

分数比教案14

  教学目标

  (1)使学生进一步掌握通分和分数大小比较方法,进一步理解分数基本性质。

  (2)培养学生收集信息的能力,并运用所学的饿知识正确地解决一些实际问题。

  教学重点、难点

  重点、难点:通分和分数大小比较方法。

  教具、学具准备

  教 学过程

  一、基本训练

  1、通分。(口答)

  1/2和1/31/5和1/41/6和3/42/3和1/612/7和5/63/8和5/6

  2、比较下列每组中分数的大小。

  6/11和17/335/14和8/212又7/12和2又8/53/10、7/20和11/30

  5又2/3、5又5/6和5又19/20

  根据学生的饿错误进行有针对性的饿讲评。

  二、运用训练

  1、生活中有很多地方也要用到分数大小的比较。你收集了,吗?

  2、学生反馈。(课前老师检查并反馈到黑板上)

  3、老师也收集了一些:出示第103页第4题。

  反馈讲评。

  4、课堂作业:练习第103页第5、6题。

  讲评作业。

  三、深化训练

  1、出示:做同样的`一批零件,王师傅4分钟做7个,张师傅5分钟做8个,李师傅3分钟做5个。哪一位师傅是老师傅?

  反馈:写出具体的比较过程。

  引导学生发表不同的意见:速度快的并不一定是老师傅,因为老师傅已经老了;但速度快的一定是老师,因为老师的技术熟练。

  2、指导思考题:写出比1/3小但比1/4大的分数。

  你是怎样解答的?

  四、课堂

  五、作业

  1、课本第103页第3、4题中剩下的题目。

  2、《作业本》

  应用分数大小的比较方法比较几个具体数量的大小,在比较时,单位名称不能漏掉;重视思考题教学,开拓学生的思路,让学生懂得两个分数之间有无数个分数。

分数比教案15

  教学目标

  1.使学生理解两个整数相除的商可以用分数来表示.

  2.明确分数与除法的关系,加深学生对分数意义的理解.

  教学重点

  理解、归纳分数与除法的关系.

  教学难点

  用除法的意义理解分数的意义.

  教学步骤

  一、铺垫孕伏.

  1.读题说得数.

  3。2+1。68 0。8×0。5 14-7。4 0。3÷1。5 4。8×0。02

  7。8+0。9 1。53-0。7 0。35÷15 0。4×0。8 0。8-0。37

  2.口述 表示的意义.

  3.列式计算.

  (1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管平均分成2段,每段长多少米?

  二、探究新知.

  1.新课导入.

  出示例2:把1米长的钢管平均截成3段,每段长多少米?

  板书: 1÷3

  教师提问:1÷3的.结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了.(板书、分数与除法)

  2.教学例2.

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数 来表示,1米的 就是 米.(板书 米)

  (2)学生完整叙述自己想的过程.

  (3)反馈练习.

  ①把1米长的钢管,平均分成8段,每段长多少?

  ②把1块饼平均分给5个同学,每个同学得到多少块?

  3.教学例3.

  出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

  (1)读题列式: 3÷4

  (2)动手操作:怎样把3块饼平均分给4个同学呢?

  (3)学生交流.

  甲生:先把每个圆剪成4个 块,然后把12个 平均分成4份,再把3个 拼在一起,每份是 块.

  乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个 拼在一起,得到每个分 块.(在3÷4后板书 块)

  (4)看图根据乙生分饼的过程说出 表示的意义.

  ①乙生把3块饼平均分成了4份,这样的一份是3块饼的 ,即

  ②甲生把1块饼平均分成了4份,表示这样的3份的数是 .

  (5)都是 ,意义有何不同?(结合算式说出 的两种意义)

  明确: 表示把3平均分成4份,取其中的1份;

  还表示把单位“1”平均分成4份,取这样的3份.

  (6)反馈练习:说说下面分数的两种意义

  4.归纳分数与除法的关系.

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子.也就是说分数既表示分数的意义,又表示整数除法的商.

  (板书: )

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数.

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习.

  三、全课小结.

  通过今天的学习,你明白了什么?

  四、随堂练习.

  1.填空.

  分数可以用来表示除法算式的( ).其中分数的分子相当于( ),分母相当于( ).

  2.用分数表示下列各式的商.

  4÷5 11÷13 27÷35

  9÷9 13÷16 33÷29

  3.列式计算.

  (1)把5米长的绳子,平均分成12段,每段长多少米?

  (2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,平均每分走几分之几千米?

  五、布置作业.

  用分数表示下面各式的商.

  3÷4 7÷12 16÷49 25÷24 9÷9

【分数比教案】相关文章:

分数的教案12-30

分数比教案12-12

真分数和假分数教案02-08

分数乘法教案11-16

分数与除法教案01-19

分数的认识教案03-06

分数的意义教案01-02

分数的乘法教案01-20

《分数的意义》教案12-18

分数的意义教案12-22