- 六年级数学下册认识负数教案 推荐度:
- 相关推荐
人教版六年级下册《负数》教案
作为一名默默奉献的教育工作者,时常要开展教案准备工作,编写教案助于积累教学经验,不断提高教学质量。怎样写教案才更能起到其作用呢?以下是小编收集整理的人教版六年级下册《负数》教案,仅供参考,大家一起来看看吧。
人教版六年级下册《负数》教案1
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的`最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
人教版六年级下册《负数》教案2
教学目标
1.使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2. 会初步应用正负数表示具有相反意义的量;
3.使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4.培养学生逐步树立分类讨论的思想;
5. 通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0 ℃低5摄氏度,记作-5℃;比海平面高8848米,记作8848米,比海平面低155米记作-155米。由这两个实例很自然地,把大于0的数叫做正数,把加-号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的基准。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现具有相反意义的量的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、知识结构
1.正数、负数和零的概念
正数
负数
零
象1、2.5、 、48等大于零的数叫正数
象-1、-2.5, ,-48等小于零的数叫负数
0叫做零,0既不是正数也不是负数
2.有理数的分类
三、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的从内容上讲,负数比非负数要抽象、难理解.因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数).这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了.
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的.标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
四、正数与负数概念的理解
1、对于正数和负数的概念,不能简单的理解为:带+号的数是正数,带-号的数是负数。例如: 一定是负数吗?答案是不一定。因为字母 可以表示任意的数,若 表示正数时, 是负数;当 表示0时, 就在0的前面加一个负号,仍是0,0不分正负;当 表示负数时, 就不是负数了,它是一个正数,这些下节将进一步研究。
2、引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如-6,-4,-2,0,2,4,6,不能被2整除的数是奇数,如-5,-4,-2,1,3,5
3、到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4、通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
五、有理数的分类
整数和分数统称为有理数。
1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。这样有理数按整数、分数的关系分类为:
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。因此,有理数按正数、负数、0的关系还可分类为:
3)注意概念中所用统称二字,它与说整数和分数是有理数的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说统称还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。如圆周率就不能表示成分数。
5)到目前为止,所学过的数(除外)都是有理数。
人教版六年级下册《负数》教案3
教材分析:
本节课教材注意结合学生熟悉的生活情景,选取学生感兴趣的素材,唤起学生已有的生活经验,使他们在具体的情景中认识负数。通过明细中存入和支出的对比,进一步体会生活中用正负数表示两种相反意义的量。另外,在练习中还安排了用正负数表示相对于海平面的海拔高度、相对于北京时间的其它地区的时间等。
设计理念:
世界是由许多相互矛盾的事物组成的。要想认识这个世界,改造这个世界,就要从这些矛盾的事物入手。数学教学与研究亦是如此。奇与偶,正与负,左与右,直与曲,动与静等,是一组组对立的概念,其中蕴含了对立统一、联系发展这些最朴素的哲学思想,要通过我们的数学课堂向学生渗透这些思想,这才是数学教学的出发点、落脚点和精髓。
学情分析:
本节课是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情景初步认识负数,为此学生很容易理解正数、负数和0之间的关系。
教学重点:
知道正数、负数和0之间的关系。
教学难点:
在现实情境中了解负数的产生与应用。
教学准备:
多媒体课件,温度计。
教学目标:
1、使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法。知道0既不是正数,也不是负数,负数都小于0。
2、使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。
教学过程:
一、创设情境,初步认识负数。
1、情境引入:中央电视台天气预报节目片头。
出示例1:宜昌、哈尔滨的温度。
提问:你能知道些什么信息?
学生回答:宜昌是零上16度,哈尔滨是零下16度
引导:宜昌和哈尔滨的气温一样吗?有什么不同?(正好相反)在数学上怎样表示这两个不同的温度?
请会的学生介绍写法、读法。同时在图片下方出示:16℃(+16℃)-16℃
师问:你们怎么知道的?
小结并板书:“+16”这个数读作正十六,书写这个数时,只要在以前学过的数16的前面加一个正号,“+16”也可以写成“16”;“-16”这个数读作负十六,书写时,可以写成“-16”。
【通过“零上16摄氏度”和“零下16摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题的提出,让学生感受到过去所学的数在表达相反意义的量时的`局限性,产生学习新数的需求。同时,学生已有的生活经验,使他们能很快联想到在“16”这个数前添加不同的符号表达相反意义的量的方法,借此培养学生的符号感。】
二、进一步体验负数,了解正、负数与0的关系
1、课件出示例2直观图,银行取款与存款。
师::你从图中能知道些什么?你能用今天所学的知识表示取款预存款吗?
学生尝试表达,并说含义。
小结:存入20xx元用+20xx表示取出500元用-500表示,两个量正好相反,正数表示存入,负数表示取出。
2、归纳正数和负数。
【通过银行取款与存款,存入20xx元用+20xx表示,取出500元用-500表示则为负数。这对于学生更好地理解正数、负数与0三者间的关系很有益处。】
师引导:观察这些数,你能把它们分类吗?
请学生移动贴纸独立分类,汇报。
师问:你为什么这样分?
小结:像+16、19、+20xx、、6.3这样的数都是正数,像-16、-、-7、-500这样的数都是负数。正数都大于0,负数都小于0。0既不是正数也不是负数。(完成板书)
三、反馈练习:
(1)完成第4页第1题。
(2)完成第4页第2题
提问:读一读下面的海拔高度,你知道些什么?(都是负数,低于海平面或比0小)
(3)完成第8页“练习一”第1题。
先读一读,指出下列各数中的正数、负数,并把它们填入相应的圈内。
提问:
①0为什么不写?(0既不是正数,也不是负数)
②观察这些正数,你发现了什么?(正数可以是整数、小数或分数。我们以前学过的除0以外的数都是正数)
③你是怎样理解负数的?(负数要小于0,可以是整数、小数或分数)
【本节课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,教师在习题中增加了小数和分数,通过练习让学生体会过去已学过的数(除0外)都是正数,沟通新旧知识的内在联系。】
四、课堂小结:
通过本节课的学习,你有什么收获?
五、课堂作业;
完成第8页“练习一”第2、3题。
六、教学反思:通过本节课的教学,使学生初步认识到负数的客观存在,初步具有了负数的数学思想和学习了表示负数的数学方法,认识到了负数在生活中的实际应用是客观存在和非常广泛的。
人教版六年级下册《负数》教案4
第一课时
授课时间:
教学内容:认识负数
教科书第2~4页例
1、例2教参P19-22学情分析:
负数是在学生认识了自然数、分数和小数的基础上结合学生熟悉的生活情境初步认识负数以往负数的教学安排在中学阶段
现在安排在本单元主要是考虑到负数在生活中有着广泛的应用学生在日常生活中已经接触了一些负数有了初步认识负数的基础在此基础上初步认识负数能进一步丰富学生对数概念的认识有利于中小学数学的衔接
为第三学段进一步理解有理数的意义和运算打下良好的基础教学目标:
1、使学生在现实情境中初步认识负数了解负数的作用感受运用负数的需要和方便
2、使学生知道正数和负数的读法和写法知道0既不是正数又不是负数正数都大于0负数都小于0 3、使学生体验数学和生活的密切联系激发学生学习数学的兴趣培养学生应用数学的能力
教学重点:初步认识正数和负数以及读法和写法教学难点:理解0既不是正数也不是负数
教学具准备:多媒体课件、温度计、练习纸、卡片等教学时间:教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下游戏叫做《我反我反我反反反》游戏规则:老师说一句话请你说出与它相反意思的话
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)
2、下面我们来难度大些的看谁反应最快
①我在银行存入了500元(取出了500元)
②知识竞赛中
五(1)班得了20分(扣了20分)
③10月份
学校小卖部赚了500元(亏了500元)
④零上10摄式度(零下10摄式度)
3、谈话:陈老师的一位朋友喜欢旅游4月下旬
他又打算去几个旅游城市走一走我呢
特意帮他留意了一下这几个地方在未来某天的最低气温以便做好出门前衣物的准备
下面就请大家一起和我走进天气预报(天气预报片头)
二、教学例1
1、认识温度计
理解用正负数来表示零上和零下的温度
课件出示地图:点击南京出示温度计和南京的图片首先来看一下南京的气温这里有个温度计我们先来认识温度计
请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?B、现在你能看出南京是多少摄式度吗?(是0℃)你是怎么知道的?(那里有个0表示0摄式度)
(2)上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)指出:上海的气温比0℃要高是零上4摄式度(教师结合课件
突出上海的气温在零刻度线以上)
(3)了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来
又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对北京的气温比0度低
是零下4摄式度)你能在温度计上拨出来吗?
(4)比较:现在我们已经知道了这三个地方的最低气温仔细观察上海和北京的最低气温它们一样吗?(不一样一个在0℃以上一个在0℃以下)
①上海的气温比0℃高是零上4摄式度我们可以记作+4℃读作正四摄式度
写的时候先写一个正号(指出是正号不是加号意义和读法都不同了)再写一个4(板书)大家跟我一起来比划一下+4也可以直接写成4把正号省略了
所以同学们所说的4℃也就是+4℃(板书)
②北京的气温比0℃低是零下4摄式度
我们可以用-4℃来表示零下4摄式度(板书-4)跟老师一起来读一下
写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了同桌互相比划一下
(5)小结:通过刚才对三个城市的温度的了解我们知道记录温度时以0℃为界线
用象+4或4这些数可以来表示零上温度用-4这样的数可以表示零下温度
2、试一试:学生看温度计写出各地的温度并读一读
(写在卡片上)
3、听一段中央台的天气预报将你听到城市的最低和最高温度记录下来
4、小结:通过刚才的学习我们得出:以零摄式度为界线零上温度用正几或直接用几来表示零下温度用负几来表示
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰--珠穆朗玛峰从山脚到山顶气温相差很大这是和它的海拔高度有关的
最近经国家测绘局公布了珠峰的最新海拔高度老师把有关网页带来了(课件出现网页上面有简单的文字介绍)谁来读一读这段介绍
2、今天老师还带来一张珠穆朗玛峰的海拔图请看
(课件动态地演示珠穆朗玛峰的海拔图)从图上
你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图(动态演示吐鲁番盆地的海拔情况)你又能从图上看懂些什么呢?(引导学生交流
回答珠穆朗玛峰比海平面高米;吐鲁番盆地比海平面低155米)
4、珠穆朗玛峰比海平面高吐鲁番盆地比海平面低
大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+米或米吐鲁番盆地的海拔可以记作:-155米(板书)
(2)小结:以海平面为界线
+米或米这样的数可以表示海平面以上的高度-155米这样的数可以表示海平面以下的高度
四、小组讨论归纳正数和负数
1、通过刚才的学习
我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度还可以表示海平面以上的高度和海平面以下的高度那么你们观察一下这些数
它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论
3、指出:因为+也可以写成米所以有正号和没正号都可以归于一类
提出疑问:0到底归于哪一类?(引导学生争论各自发表意见)
①如果都同意分三类的
老师可以出难题:我觉得0可以分在4它们一类啊你们怎么来说服我?
②如果有学生发表分三类的有的分两类的
可以引导他们互相争论
4、小结:(结合图)我们从温度计上观察以0℃为界限线
0℃以上的温度用正几表示0℃以下的温度用负几表示同样
以海平面为界线
高于海平面的高度我们用正几来表示低于海平面我们用负几表示0就象一条分界线把正数和负数分开了它谁都不属于
但对于正数和负数来说它却必不可少
我们把象+4、4、+等这样的数叫做正数;象-
4、-155等这样的数我们叫做负数;而0既不是正数也不是负数
(板书)正数都大于0负数都小于0这节课我们就和大家一起来认识正数和负数(板书:认识正数和负数)
五、联系生活巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____水结冰时的温度是____地球表面的最低温度是
3、讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准取出了800元记作-800;存入了1200元记作1200元还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线地平面以上一层我们用1或+1来表示-1就表示地下一层)
老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数在我们的生活中
零摄式度以上和零摄式度以下海平面以上和海平面以下
得分与失分等都具有相反的意义我们都可以用正数和负数来表示
认识负数第二课时
授课时间:教学内容:比较正数和负数的大小教科书P5-7例3和例4教参P22-27学情分析:教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小
2、初步体会数轴上数的顺序完成对数的结构的初步构建
教学重、难点:负数与负数的比较教学具准备:教学时间:教学过程:
一、复习:
1、读数
指出哪些是正数哪些是负数?
-8 ++ 0-82
2、如果+20%表示增加20%那么-6%表示
3、某日傍晚
黄山的气温由上午的零上2摄氏度下降了7摄氏度这天傍晚黄山的`气温是摄氏度
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度学生画完交流
(3)教师在黑板上话好直线
在相应的点上用小图片代表大树和学生
在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来
(4)学生回答
教师在相应点的下方标出对应的数
再让学生说说直线上其他几个点代表的数
让学生对数轴上的点表示的正负数形成相对完整的认识
(5)总结:我们可以像这样在直线上表示出正数、0和负数像这样的直线我们叫数轴
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到和-对应的点如果从起点分别到.5和-处应如何运动?
(7)练习:做一做的第1、2题
(二)教学例4:
1、出示未来一周的天气情况
让学生把未来一周每天的最低气温在数轴上表示出来并比较他们的大小
2、学生交流比较的方法
3、通过小精灵的话
引出利用数轴比较数的大小规定:在数轴上从左到右的顺序就是数从小到大的顺序
4、再让学生进行比较
利用学生的具体比较来说明“-8在-6的左边所以-8〈-6”
5、再通过让另一学生比较“8〉6但是-8〈-6”使学生初步体会两负数比较大小时绝对值大的负数反而小
6、总结:负数比0小正数比0大负数比正数小
7、练习:做一做第3题
三、巩固练习
1、练习一第4、5题
2、练习一第6题
3、实践题记录小组同学的身高和体重以平均身高体重为标准记为0m或(0kg)超过的记为正数不足的记为负数然后按从大到小的顺序排列
四、全课总结
(1)在数轴上从左到右的顺序就是数从小到大的顺序
(2)负数比0小正数比0大负数比正数小
第三课时负数练习课
授课时间:教学内容:负数练习课补充整理练习目标:
1、引导学生对个单元的知识加以梳理归纳在同学们交流与反思中使知识得以整理内化
2、在完成了作业本习题后的重点题讲评突出重点突破难点练习
重、难点:引导学生对个单元的知识加以梳理归纳使知识得以整理内化
教具学具准备:
教学时间:
教学过程:
一、知识整理
二、讲解学生困惑和疑难问题
选择:
1、一月份哈尔滨温度达到()度左右A-22 B22 C10
2、一月份南昌温度达到()度左右A35 B-20 C4判断:
1、不带正号的数都是负数()
2、整数都是正数()
3、因为7大于6所以-7大于-6()
4、最小的负数是-1()
三、作业超市(学生可以选择性地做或者小组讨论)
1、读一读
(1)开启后的盒装牛奶应贮藏于0℃-4℃并在48小时内喝完
(2)水沸腾的温度是100℃水结冰的温度是0℃
(3)地球表面的最低气温在南极是-℃
(4)月球表面的最高气温是127℃最低气温是-183℃
(5)我国发射的神舟六号飞船在太空中向阳面的温度为100℃以上而背阳面却低于-100℃但通过隔热和控制
太空舱内的温度始终保持在21℃非常适宜宇航员工作
2、填一填(1)如果张军向东走30米记作+30米
那么李刚向西走50米记作()米
如果张军向北走40米记作+40米
那么李刚走“-40米”表示他向()走了()米(2)+读作()“-”读作()
(3)海平面的海拔高度记作0m海拔高度为+450米表示()
海拔高度为-102米表示()
(4)如果把平均成绩80分做原点()记为0分90分表示()分-18分表示()分
3、比一比
-7()-5 ()0()--()-
4、判一判
在、-4、0、6、-27中正数有3个()
5、选一选
(1)以明明家为起点向东走为正向西走为负
如果明明从家走了+30米又走了-30米
这时明明离家的距离是()米
A、30
B、-30
C、60
D、0
(2)数轴上-2在-1的()边
A、左
B、右
C、北
D、无法确定
(3)规定10吨记为0吨11吨记为+1吨
则下列说法错误的是()
A、8吨记为-8吨
B、15吨记为+5吨
C、6吨记为-4吨
D、+3吨表示重量为13吨
(4)一种饼干包装袋上标着:净重(150±5克)表示这种饼干标准的质量是150克实际每袋最少不少于()克
A、155
B、150
C、145
D、160
四、拓展练习:在数轴上
从表示0的点出发
向右移动3个单位长度到A点
A点表示的数是();
从表示0的点出发向左移动6个单位长度到B点B点表示的数是()
五、引导学生全课总结
人教版六年级下册《负数》教案5
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 摄氏度。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的`直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。 2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。(2)负数比0小,正数比0大,负数比正数小。
人教版六年级下册《负数》教案6
教学目标:
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:多媒体课件、温度计、练习纸、卡片等。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。
游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)
②向前走200米(向后走200米)
③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。
②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。
④零上10摄式度(零下10摄式度)。
3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄式度吗? (是0℃。)你是怎么知道的.?(那里有个0,表示0摄式度)。
(2)上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?
(4)比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
② 北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1.练习一第2、3题
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示
【六年级下册《负数》教案】相关文章:
六年级数学下册认识负数教案10-02
《认识负数》教案02-16
负数的初步认识教案11-16
《负数》教学反思06-27
认识负数教学反思09-26
《认识负数》教学设计02-23
《负数的认识》教学反思06-29
《认识负数》教学反思07-24
正数与负数说课稿05-24