圆的周长教案

时间:2024-08-11 08:12:05 教案 我要投稿

关于圆的周长教案模板集合10篇

  作为一位兢兢业业的人民教师,就不得不需要编写教案,教案是教学蓝图,可以有效提高教学效率。教案应该怎么写才好呢?以下是小编帮大家整理的圆的周长教案10篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

关于圆的周长教案模板集合10篇

圆的周长教案 篇1

  教学目标:

  1.使学生进一步掌握圆的周长计算公式,能应用公式求圆的直径或半径,正确解决求圆的直径或半径的简单实际问题。

  2.使学生通过圆的周长公式的实际应用,进一步掌握圆的半径、直径和周长间的关系,感受利用公式列方程解决简单实际问题的过程,提高分析和解决问题的能力。

  3.使学生感受平面图形的学习价值,提高数学学习的兴趣和学好数学的信心。

  教学重点:

  探索已知圆的周长,求这个圆的直径或半径的方法

  教学难点:

  运用圆的周长公式解决实际问题

  教学过程:

  一、复习引入

  1.什么是圆的周长?圆的周长计算公式是什么?

  2.把圆规两脚尖分开4厘米画一个圆,这个圆的半径是多少?直径呢?周长呢?

  指名回答,明确计算方法。

  3.知道圆的直径和半径,我们能很快算出圆的周长。如果只知道圆的周长,我们能算出它的直径和半径吗?今天这节课我们来继续研究圆周长的知识。

  二、自主先学

  出示例6和导学单

  1.题中的已知条件和所求问题是什么?。

  2.如何准确地测算出这个花坛的直径?

  3.还有别的方法吗?

  三、小组讨论

  四、交流展示

  方法一:列方程解答。 解:设花坛的直径是x米。

  3. 14x=251.2

  x=251. 23. 14

  x=80

  答:花坛的直径是80米。

  方法二:算术方法解答。 251. 23. 14 =80(米)

  答:花坛的直径是80米。

  五、质疑拓展

  问:两种方法有什么相同点和不同点?你喜欢什么方法?为什么?

  小结:这两种方法都是根据圆周长的计算公式,列方程是顺着题意思考,用除法计算是直接利用周长公式中各部分之间的'关系计算。

  问:已知圆的周长,如何求圆的半径或直径?

  学生回答,教师板书

  ①列方程解答。②d=C r=C 2

  六、检测反馈

  1.完成练一练。

  (1)学生独立完成。

  (2)集体交流。

  提醒学生估算时,可将圆周率看作3,并使学生意识到3比圆周率实际值小了一些,所以周长也应该适当估小一点。

  2.完成练习十上第6题

  各自填表,说说半径、直径和周长的关系

  3.完成练习十四第8题。

  (1)借助圆柱形教具演示,帮助学生理解什么是 树干横截面

  (2)学生独立思考并计算。

  (3)集体交流。

  4.完成练习十四第9题。

  (1)理解拱门的高度的含义。

  (2)学生独立计算。

  (3)集体订正。

  5.完成练习十四第10题。

  (1)学生独立思考。

  (2)集体交流,明确:先求出花圃的周长,再求出种的棵数。

  6.作业:练习十四第8、10题。

  七、课堂小结

  通过这节课的学习,你有什么收获?

圆的周长教案 篇2

  教学设想:

  利用正方形的周长与边长的知识,引导学生进行猜想和讨论,使学生对后续的实际探究过程有明确的目的性。课件中两只小兔子进行赛跑比赛是生活问题,却是比较圆的周长和正方形周长的数学问题,创设教学情境,激发学生参与的兴趣,为后继学习和深入探究埋下了伏笔。利用动画的演示过程,很好的展示了圆周长的概念,并通过结合实际动手操作和利用正方形周长概念进行迁移,使学生较为牢固地掌握了圆周长的概念,也充分体现了学生在课堂学习过程中的主体地位。

  教学内容:

  小学数学义务教育教材十一册第137~138页“圆的周长”

  教学目标:

  1. 使学生理解圆周率的意义,推导出圆周长的计算公式,并能正确地进行简单计算;

  2. 培养学生的观察、比较、分析、综合及动手操作能力;

  3.通过学习圆周率的历史发展,对学生进行爱国主义教育。

  教学重点:

  推导总结出圆周长的计算公式。

  教学难点:

  深入理解圆周率的意义。

  教学准备:

  电脑课件,圆形实物以及直尺、绸带,测量结果记录表。

  教学过程:

  一、创设情境,引起猜想

  (一)教师播放课件 激发学生兴趣

  黑兔和白兔比赛跑步,黑兔沿着正方形路线跑,白兔沿着圆形路线跑,结果白兔获胜。黑兔看到白兔得了第一名,心里很不服气,它说这样的比赛不公平。同学们,你认为这样的比赛公平吗?

  (二)认识圆的周

  1.回忆正方形周长:黑兔跑的路程实际上就是正方形的什么?什么是正方形的周长?

  2.认识圆的周长:那白兔所跑的路程呢?圆的周长又指的是什么意思?

  师:围成圆的一周的曲线长度叫做圆的周长。(出示课题 圆的周长)

  3.小组合作,测出自己准备的三个圆形纸片的周长,并记录。

  4.反馈:你是用什么方法测出来的?

  生1:“滚动”——把实物圆沿直尺滚动一周;

  生2:“缠绕”——用绸带缠绕实物圆一周并打开;

  5.小结各种测量方法:(板书)化曲为直

  6.创设冲突,体会测量的局限性

  教师甩小球:你能用刚才的方法测出这个圆吗?刚才大屏幕上白兔跑的路线也是一个圆,这个圆的周长还能进行实际测量吗?(生:不行)看来,刚才的`方法有局限性,今天我们来探讨一种能很快知道所有圆的周长方

  (三)合理猜想,强化主体

  1.请一生用绳子拴粉笔在黑板上画出两个大小不同的圆,四人小组讨论,猜猜圆的周长跟什么有关?

  生:我猜圆的周长跟直径有关。

  2.师课件演示:直径越大,周长越长;直径越小,周长越小。

  3.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长×4。正方形的周长总是边长的4倍,再看这幅图,猜猜看,圆的周长应该是直径的几倍?

  (生1:我猜3倍。 生2:我猜3.5倍 生3 :…… )

  4.我们能不能像求正方形周长那样找到求圆周长的一般方法呢?

  二、实际动手,发现规律

  (一)分组合作

  1.明确要求:将前面测量的结果填入表格,并计算圆周长除以直径的结果,填入表格里。

  2.反馈数据

  生1:我们小组算出圆的周长大约是直径的3.4倍。

  生2:我们小组算出圆的周长大约是直径的3.2倍。

  生3:我们小组算出圆的周长大约是直径的4倍。

  师:课件演示:圆的周长总是直径的三倍多一些。

  (二)介绍祖冲之

  这个倍数通常被人们叫做圆周率,用希腊字母π表示。

  板书 :圆周率=圆的周长÷直径

  早在1500多年前,我国古代就有一位伟大的数学家,曾对这个倍数进行过精密的测算,他最早发现这个倍数确实是固定不变的,知道他是谁吗?

  这个倍数究竟是多少呢?我们来看一段资料。

  (投影出示:祖冲之是我国南北朝时期,河北省涞源县人.祖冲之在前人成就的基础上,用圆内接正多边形的方法,把圆的周长分成若干份。分的份数越多,正方形的周长就越接近圆的周长。最终通过计算正多边形的周长来计算圆周率。经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,精确到小数点后第七位.不但在当时是最精密的圆周率,而且保持世界记录九百多年……)

  4.理解误差

  看完这段资料,同学们都在为我们国家有这样一位伟大的数学家而感到骄傲,可不知同学们想过没有,为什么我们的测算结果都不够精确呢?

  (三)总结圆周长的计算公式

  1. 如果知道圆的直径,你能计算圆的周长吗

  板书:圆的周长 = 直径× 圆周率

  C = πd

  2. 如果知道圆的半径,又该怎样计算圆的周长呢?

  板书: C = 2πr

  3.应用

  (1)甩动小圆球,告知绳长3分米请学生选用公式计算此圆的周长。

  生:我选 C = 2πr,2×3.14×3=18.84分米,此圆的周长是18.84分米。

  (2)课题外的圆的直径是20厘米,用哪个公式计算?

  生:我用 C = πd计算,3.14×20=62.8厘米,此圆的周长是62.8厘米

  (3)解答开始的问题:现在你能准确的判断出黑兔和白兔谁跑的路程长了吗?

  三、巩固练习,形成能力

  1.判断

  (1)圆的周长是直径的π倍。 ( )

  (2)大圆的圆周率大于小圆的圆周率。( )

  (3)π=3.14 ( )

  2.出示例1,学生自己计算。

  3.如果黑兔沿着大圆跑,白兔沿着两个小圆绕8字跑,谁跑的路程近?

  四、课内小结,扎实掌握

  通过今天的学习,你有什么收获?

  五、课外引申,拓展思维

  一个茶杯口的直径你有什么方法知道?

圆的周长教案 篇3

  教学内容:

  义教六年制小学数学第十一册第110-112页例1。

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的'两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

圆的周长教案 篇4

  教材分析:

  这部分内容是在学生认识了圆周长的概念和圆的基本特征的基础上,引导学生从已有的生活经验出发,以小组合作的方式,通过实验探究圆的周长与直径的关系,自学自知圆周率,从而总结探究出求圆的周长的公式。另一方面提高学生运用公式解决实际问题的能力,体会数学与现实生活的密切联系。

  教学目标:

  1.让学生经历圆周率的探索过程,理解圆周率的意义,掌握圆周长的公式,能运用圆周长公式解决一些简单的实际问题。

  2.培养学生的观察、比较、分析、综合及动手操作能力,发展学生的空间观念。

  3.让学生理解圆周率的含义,熟记圆周率的近似值,结合圆周率的教学,感受数学文化,激发爱国热情。

  教学重点:

  通过多种数学活动推导圆的周长公式,能正确计算圆的周长。

  教学难点:

  圆的周长与直径关系的探讨。

  教学准备:

  多媒体课件、线、尺、塑胶板上剪下的直径大小不一的圆、实验报告单、计算器等。

  教学过程:

  一、把准认知冲突,激发学习愿望。

  1.谈话:同学们,知道大家都喜欢看《喜羊羊和灰太狼》的动画片,今天,老师把它俩带到了我们的课堂。听:(课件播放故事:在一个天气晴朗的日子里,喜羊羊和灰太狼举行跑步比赛,喜羊羊沿正方形路线跑,灰太狼沿圆形路线跑,一圈过后,它们又同时回到了起点。此时,它俩正为谁走的路程长而争论不休。同学们,你们认为呢?)(学生进行猜测)

  2.要想确定它俩究竟谁跑的路程长,可怎么做?(生:先求出正方形和圆形的周长,再进行比较。)

  3.指名一生说说正方形的周长计算方法:(生:边长×4=周长)今天这节课,我们一起来研究圆的周长。(揭示课题:圆的周长)

  二、经历探究全程,验证猜想发现。

  (一)认识圆周长的含义并初步感知圆周长与直径之间的关系。

  1.谈话:那什么是圆的周长呢?(课件出示3个车轮)

  2.师:上面的3个数据是表示什么的?(生:圆的直径)“英寸”是什么意思?(学生看书回答)

  3.将3个车轮各滚动一圈,猜一猜,谁滚动的路程最长?从中你们有什么发现?(生:车轮滚动一周的长度是车轮的周长;直径越长,周长越长,直径越短,周长越短)

  (二)交流测量圆周长的方法

  1.学生拿出课前剪的圆,互相指一指它们的周长。

  2.用什么办法测量它们的周长?(同桌交流方法)

  3.指名到前面投影上展示测量周长的方法

  ①滚动法。明确注意点:做好记号,从零刻度开始滚,滚动到这个记号再次指向这里,圆滚动一周的长就是这个圆的周长。

  ②绕圈法。明确:线贴紧圆周,把多余的部分剪掉,把线拉直,这两点之间线的长就是这个圆的周长。

  ③用软尺测量。明确:用软尺上有厘米刻度的一面测量。从零刻度开始量,绕圆周一圈,然后看看对齐哪个刻度。

  4.小结:这些方法有一个共同的特点:(生:将一条弯曲的线变成一条直的线)这就是数学上所讲的`“化曲为直”的方法。

  5.(课件出示摩天轮图片)问:它的周长能用刚才的方法测量吗?(生:不能,很不方便)问:那怎么办?引发学生探究圆的周长与直径之间的关系。

  (三)认识圆周率。

  1.谈话:接下来同学们分4人小组,选择自己喜欢的方法,测量出身边这些圆的周长与直径,完成表格。(学生分组活动,完成书上表格)(课件出示表格)

  2.各小组组长汇报测量结果。(学生说结果,教师在课件上完善)

  3.让学生观察表格中的数据,说说又发现了什么?(学生小组交流后汇报:一个圆的周长总是直径的3倍多一些)

  4.(课件出示)介绍《周髀算经》这本书及“周三径一”的意思。(圆的周长大约是直径的3倍)

  5.介绍祖冲之在求圆周率中做出的贡献,让学生想象祖冲之探索圆周率的过程,体验科学发现的艰辛、不易。(课件播放资料,学生自学)

  6.学生说说从资料的介绍中知道了什么?(学生交流自己的学习所得)

  7.师小结:祖冲之是我们民族的骄傲与自豪,正因为他杰出

  的成就,月球上有一座环形山就被命名为祖冲之山,宇宙中第1888号小行星也是以他的名字命名的。希望同学们以后也能像他那样刻苦钻研,将来也做一个不平凡的人。

  (四)推导公式

  1.当学生弄清了圆周长与直径之间的关系后,让学生说说圆的周长怎么计算?(生:圆的周长=圆周率×直径)

  2.谈话:如果圆的周长用大写字母C表示,那么这个公式用字母怎么表示?

  3.谈话:还可已知什么条件求周长?(生:半径)为什么?(生:在同一个圆中,圆的直径是半径的两倍)那这个公式还可怎么变换?

  4.齐读公式,加深印象。

  三、刷新应用能力,总结巩固新知。

  1.(课件出示第1题)学生口答两个圆的周长。

  2.计算例4中三个自行车车轮的周长大约各是多少英寸?(课件出示3个车轮)通过计算,比一比谁的周长最长?这再一次说明了什么?(生:圆的周长与它的直径有关)

  3.(课件出示一个喷水池)一个圆形喷水池的周长是12米,它的周长是多少米?(学生独立完成在作业本上,投影仪展示答案)

  4.(课件出示摩天轮图)它的半径是10米,坐着它转动一周,大约在空中转过多少米?(学生独立完成在作业本上,后在全班交流)

  四、交流学习收获,课后拓展延伸

  1.通过这节课研究圆的周长,你有什么收获?(学生全班交流)

  2.谈话:现在如果老师问喜羊羊和灰太狼谁走的路程长一些?同学们可怎么做?(学生独立完成,后全班交流)有没有其它方法?(学生可通过计算解决,也可直接观察两个图比较)

  3.师:种种方法都可以帮助我们来确定谁走的路程长,所以当喜羊羊得知这一结果后,直喊比赛不公平,于是老村长为它们又重新设计了一种新的赛跑路线:问:如果喜羊羊和灰太狼沿这样的路线赛跑,谁走的路程长一些呢?(学生课后思考,下节课交流。)

  教学反思:

  一、“情境”与“知识”两条主线相互交融。

  结合本节课的教学内容和学生的年龄特点,教师抓住“情境”与“知识”这两条主线。在教学情境上,教师努力为学生创设一个生动、活泼、和谐的学习氛围。我们知道,《喜羊羊与灰太狼》是学生喜闻乐见的动画片,学生对此非常感兴趣,也有一定的了解,以此为学习的背景,作为学习圆周长的切入点,使“情境主线”与本节课的“知识主线”有机的融合在一起,形成一个完整的统一体,激发了学生的学习兴趣,时学生积极主动地投入到学习活动中。

  二、动手操作让学生亲身经历知识的形成过程。

  动手操作是学生获得知识的一条重要途径。本节课从学生的生活经验和已有的知识背景出发,为他们提供了丰富的操作材料和开放的操作空间,使学生在操作活动中亲身经历了圆的周长计算公式的推导过程,在此过程中,教师以一个组织者、引导者和合作者的身份参与到学生的学习活动中,使学生的操作活动有目的、有思考、有选择、有创造,使学生在做一做、看一看、想一想的过程中增长智力,提高动手实践能力,获得积极的情感体验。

  三、数学阅读让学生感受数学的厚实的文化。

  在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。

圆的周长教案 篇5

  【本课内容在教材中的地位和作用】

  学生以前已经学过直线图形,上节课又学习了“圆的认识”,这些知识为本课教学打下了扎实的基础。教材通过一系列问题情境、实践操作,让学生在观察、分析、归纳中理解圆的周长的含义以及圆周长与直径的关系。通过圆周率的形成过程,圆周长公式的推导、应用,让学生掌握圆周长的计算。从而为下节课学习利用圆的周长公式,反求圆的直径或半径,作好了理论上的准备。应该说,这堂课起承前启后作用。

  【教学目标】

  1.学生通过动手绕一绕、滚一滚,找出圆的周长与直径的倍数关系。知道什么是圆的周长、什么是圆周率。掌握圆的周长公式,并会运用公式进行简单的计算。

  2. 通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神及数学的概括能力和逻辑思维能力,增强学生的动手操作能力。

  3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  【教学重点】

  理解和掌握圆的周长的计算公式。

  【教学难点】

  对圆周率的认识。

  【教学准备】

  1、学生准备直径为5厘米、10厘米、15厘米的圆片各一个,有圆面的物体各一个,线,直尺,每组准备一只计算器。

  2、教师准备课件、带绳小球,圆规,尺子,保温杯。

  【教学过程】

  (一)复习旧知、创设情境、引出新知

  1、复习:圆心、半径、直径、直径与半径的关系(略去)

  2、课件出示问题情境:龟兔赛跑

  师评价:你们对圆的认识很到位,下面我要问同学们一个问题,你听说过龟兔赛跑的故事吗?哪个同学愿意说说故事的大概意思?(学生说)

  师:兔子因骄傲自大输了比赛,过后很不服气,于是想出一个办法,进行第二次比赛(课件出示),你们猜,这次谁会输?

  提问引导:

  (1).沿着正方形路线跑实际就是求正方形的什么?(正方形的周长)

  (2).正方形的周长怎么求?用字母怎样表示?

  (3).正方形的周长与谁有关?有什么关系?

  生:正方形的周长与边长有关。周长是边长的4倍。

  (4).兔子沿着圆形的路线跑实际上就是求圆的什么?(圆的周长)

  3引出课题:

  那到底什么是圆的周长,怎样求圆的周长?圆的周长和正方形的周长到底哪个长?这节课我们就一起来研究圆的周长。上完这节课后,我相信同学们都会解答这个问题了。(板书:圆的周长)

  [设计意图:设置问题情景,引发求知欲望,引出新课,同时为后面圆的周长与直径的关系教学做好铺垫。]

  (二)教学新课

  1.认识圆的周长。

  (1)请同学们拿出学具中最大的圆用手摸一摸哪个是圆的周长?指一名到前面摸一摸。注意起点、终点。

  (2)同桌互相说一说:什么是圆的周长?

  生:围成圆的曲线的长叫做圆的周长。

  (3)电脑出示圆的周长概念 ,读一遍。

  [设计意图:让学生动手摸,动画看,动嘴说,引出圆周长概念。]

  2.化曲为直,引发求知欲。

  (1)我们想知道你课桌的周长怎么办?

  生:用直尺量出课桌的长和宽。

  (2) 实物演示:老师这有一个杯子,用它喝水有时烫手,我想编一个隔热套, 用直尺测量它的周长方便吗?

  生:不方便,因为直尺是直的,而圆的周长是曲线围成的。

  (3)用什么办法化曲为直测量出圆的周长呢?(学生讨论)。谁来说一说?

  ①用围的方法。指名演示。(板书:围)

  问:要注意什么?

  生:先拉直后,只能量围的一周的长度。

  ②用滚的方法。指名演示。(板书:滚)

  问:要注意什么?

  生:在圆上先作了记号,沿直尺滚动一周。

  师:你们棒极了。用围和滚的办法可以把圆的周长转化为直线来测量。是不是所有圆的周长都可以用这两种方法测量呢?

  (4)谁能用围的方法量一量黑板上圆的周长?

  两名学生量。说一说自己的感觉。

  (5)老师拿一条绳子,在绳的一端拴上一个小球,甩动绳子使小球转动起来。

  问:小球转动时走过的路线成什么图形?这个圆的周长能用围、滚的办法测量吗?这说明不是什么样的圆都可以用围、滚的办法测量。因此我们需要探讨出一种计算圆的周长的方法。(比如像正方形)

  [设计意图:通过一系列操作,如:量桌面周长,测量保温杯隔热带,如何测量黑板圆的.周长,如何测量带绳小球绕成的圆等,将问题一步步引向深入,在教给学生围、滚的方法同时,引起学生思维冲突吗,激发求知欲。]

  3寻找关系,创设情景,测量圆的周长

  (1)出示探究:a:正方形的周长和谁有关?有什么关系?

  (板书:c=4a)

  b、那圆的周长与谁有关呢?有怎样的关系?(课件出示验证)

  c、根据学生回答,教师板书:圆的周长 直径

  (2) 问题情景:是不是圆的周长与直径之间也像正方形的周长与边长之间那样存在着固定不变的倍数关系呢?同学们今天也当一次数学家,看看我们能不能发现什么规律,下面我们进行一组实验,看看圆的周长与直径之间到底又怎样的关系。

  (3)小组合作,测量数据。

  ①拿出你们的学具圆,汇报一下,直径分别是几厘米?(5cm、10cm、15cm)

  ②下面以小组为单位用围或滚的方法量一量圆的周长,并算一算,周长与直径有怎样的关系?请小组长负责分工,看哪一组量得准,算得快。结果填在表格中。

  (4)比较验证,揭示规律:

  ①汇报交流:通过测量和计算,你发现什么规律?

  生:直径不同,周长也不同,但周长总是直径的三倍多一些。

  ②问:是不是所有圆的周长都是直径的3倍多一些呢?

  电脑演示围、滚的过程和结果,让学生看看圆的周长是直径的几倍。

  [设计意图:通过学生探究圆的周长与直径的关系、小组实验操作与计算、电脑演示验证等,让学生发现圆周长与直径的关系。]

  4.介绍圆周率,推导公式,探求新知(重点和难点)。

  (1)引导得出圆周率概念:

  师:看来圆不论大小,圆的周长总是它直径的3倍多一些。这是个固定不变的倍数关系。(师质疑:为什么我们测量和计算的结果会不一样?解释:测量误差)。数学上我们把圆的周长和直径这个固定不变的比值叫做圆周率,用字母π表示。用式子表示是:

  补充板书:圆的周长÷直径=圆周率π(固定)

  教师讲解:π=3.141592653 ‥‥(无限不循环小数)

  π≈3.14

  (2)引导自学圆周率小资料:其实,很早以前,人们就开始研究圆周率这个问题了,关于这方面知识,我们可以在课后自学书上p63表后相关介绍。

  师:现在,我们根据这个规律能否探究出圆的周长公式呢?

  (3)公式推导:

  师指圆周率公式:刚才我们通过自学知道圆周率是圆的周长与直径的比值,用字母表示是:

  板书:C÷d=π

  师:已知圆的直径怎样求圆的周长呢?同桌互相说一说。

  板书:C=πd

  师:已知半径怎么求圆的周长呢?

  板书:C=2πr

  问:知道什么条件就可以计算圆的周长?(强调:d、r)

  师:这样,今后我们要知道圆的周长不但可以用围或滚的测量,现在我们还可以用公式计算了,下面我们就应用这两个公式解决一些实际问题。

  5、应用公式解决实际问题。

  (1)解决龟兔赛跑问题:

  问:学了周长公式,现在你们会解决龟兔赛跑问题了吗?

  ? 学生尝试解答

  ? 指名板演,

  ? 集体订正,问:这位同学是利用什么公式做的?需要什么条件?

  ? 教师课件演示规范步骤。

  (2)实际应用:汽车车轴距离地面0.4米,车轮滚动一周是多少米?如果车轮滚动了1000周,那么汽车行了多少路程?

  [学习知识的目的是为了应用,在应用环节设计了两个例题,一是解决课前的问题,是已知d求c。二是小车轮胎问题,是已知r求c。这是两个学生经常接触的数学问题,具有代表性。]

  (三)课堂小结

  这堂课你有什么收获?(出示填空)

  1、基础练习:(略)

  2、知识延伸:(略)

  3、课后思考:(略)

  [巩固练习设计三个层次:基础题是解决当堂重要知识和易错点;提高题是让学生能综合利用;课后思考是为下节课承前启后.]

  (五)作业:

  1、花瓶最大处的半径是15厘米,求这一周的长度是多少厘米?花瓶瓶口的直径是16厘米,求花瓶瓶口的周长是多少厘米?花瓶瓶底的直径是20厘米,求花瓶瓶底的周长是多少厘米?

  2、钟面分针长10厘米,求针尖一天走过多少厘米?

  3、喷水池的直径是10米,要在喷水池周围围上不锈钢栏杆2圈,求两圈不锈钢总长多少米?

  (六)板书设计(略)

圆的周长教案 篇6

  教学目标:

  用“直接尝试法”探究“已知圆的周长求圆的直径”的方法,培养学生解决问题的能力。

  教学过程:

  一、探究解决问题的方法。

  ⑴出示情境图。

  ⑵介绍解决方法。

  1:251.2÷3.14=80(米),因为c=πd,所以只要用周长除以3.14,就可以算出直径了。

  2:解:设花坛的直径是x米。X×3.14=251.2,然后解方程。

  ⑶沟通两种方法间的'联系。

  师生一起解方程:x=251.2÷3.14,x=80。

  观察解方程的第二步“x=251.2÷3.14”和算式“251.2÷3.14”比较,感悟算术方法解答和列方程解答相通的地方。

  ⑷联想。

  想:算出圆的直径有什么价值。

  可以算出半径,80÷2=40米;还可以算圆的面积;根据圆的直径找出圆心;画出圆。

  二、多种练习,内化知识。

  ⑴独立完成试一试和练一练。

  ⑵解答练习十八第6题。

  独立解答,班级交流。注重解答方法的思路交流和作业格式的指导。

  ⑶解答练习十八第8题。

  学生解答中出现两种答案:一是21棵,二是22棵。引导学生画图验证,理解确认正确答案是22棵。

  三、作业,练习十八第7题。

圆的周长教案 篇7

  教学目的:

  1.让学生知道什么是圆的周长.

  2.理解圆周率的意义.

  3.理解和掌握圆的周长计算公式,并能初步运用公式解决一些简单的实际问题.

  教学重点:

  推导圆的周长计算公式.

  教学难点:

  理解圆周率的意义.

  教具学具:

  1.学生准备直径为4厘米、2厘米、3厘米圆片各一个,线,直尺.

  2.电脑软件及演示教具.

  教学过程:

  一、复习:

  上节课我们认识了圆,谁能说说什么是圆心?圆的半径?圆的直径?在同圆或等圆中圆的半径和直径有什么关系?用字母怎样表示?

  二、导入:

  这节课我们继续研究圆的周长(板书课题).

  1.指实物图片(长方形)问:这是什么图形?谁能指出它的周长?

  2.指实物图片(圆)问:这是什么图形?谁能指出它的周长?

  问:什么是圆的周长?

  板书:围成圆的曲线的长是圆的周长.

  3.你能测量出这个圆的周长吗?(能)

  4.指实物(用铁丝围成的圆)问:你能测量出这个圆的周长吗?

  5.用拴线的小球在空中旋转画圆.问:你能测量它的周长吗?

  回答:不能.

  想一想圆的周长都可以用测量的方法得到吗?(不能)这样做也会不方便、不准确.有没有更好的方法计算圆的周长呢?今天我们就来研究这个问题.

  三、请同学们用圆规在练习本上画几个大小不同的圆,想一想圆的周长可能和什么条件有关?(半径或直径)再看电脑演示(半径不同周长不同)圆的周长和它的直径或半径究竟有什么样的关系?请同学们测量手中圆片的周长(用线或滚动测量),再和直径比一比,看谁能发现其中的秘密?

  四、学生动手测量、教师巡视指导.

  五、统计测量结果.

  观察表中数据,想一想发现什么?圆的周长总是直径的三倍多一些!任何圆的周长都是直径的3倍多吗?

  六、电脑演示

  (几个大小不同的圆,它们的周长都是直径的3倍多一些)这是一个了不起的发现!谁知道我国历史上最早发现这个规律的人是谁?圆的周长到底是直径的3倍多多少?请同学们带着这个问题认真读书93页,默读“通过实验”到“π≈3.14”.

  七、看书后回答问题:

  1.是谁把圆周率的值精确计算到6位小数?

  2.什么叫圆周率?

  3.知道了圆周率,还需知道什么条件就可以计算圆的周长?

  4.如果用字母c表示圆的周长,d表示直径,r表示半径,π表示圆周率,圆的周长的计算公式应该怎样表示?

  现在你们已经掌握了圆的周长的计算方法,谁能很快说出你手中圆片的周长约是多少?(π取3.14)

  八、出示例1:

  一种矿山用的大卡车车轮直径是1.95米,车轮滚动一周约前进多少米?

  (得数保留两位小数)

  请同学们想一想:车轮滚动一周的距离实际指的是什么?

  解:d=1.95 单位:米

  c=πd

  =3.14×1.95

  =6.123

  ≈6.12(米)

  答:车轮滚动一周约前进6.12米.

  九、课堂练习:

  1.投影:计算下面图形的周长.

  2.判断下面各题(正确的'出示“√”,错误的出示“×”)

  (1)圆周率就是圆的周长除以它的直径所得的商. ( )

  (2)圆的直径越大,圆周率越大. ( )

  (3)圆的半径是3厘米,周长是9.42厘米. ( )

  3.小明和爷爷分别沿小圆(A→B→C→D→E→A)和大圆两条路线散步.(如图)

  如果速度相同,两人同时出发,谁先回到出发地点?为什么?

  小明的路线长:20×3.14+20×3.14

  =62.8+62.8

  =125.6(米)

  爷爷的路线长:3.14×(20+20)

  =3.14×40

  =125.6(米)

  两条路线一样长,两人应同时回到出发点.

  4.一棵大树(投影)又粗又壮,不用锯倒大树,你能知道大树的直径是多少吗?讨论.

  结论:先测量大树一周的长度,再用周长除以圆周率,就得到了直径.

  小结:今天我们共同努力研究出了圆的周长的计算方法,谁能说说圆的周长应当怎样计算?计算时要注意什么问题?今后我们在学习探索新的知识时一定要积极动手动脑,扎扎实实地学好科学知识.

圆的周长教案 篇8

  教学目标

  1.使学生认识圆的周长,初步理解圆周率的意义。

  2.通过对圆周率值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。

  3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。

  教学重点和难点

  推导圆周长的计算公式。理解圆周率的意义。

  教学过程设计

  (一)复习准备

  上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?

  (二)学习新课

  我们这节课就来研究圆的周长。(板书:圆的周长)

  我想问问同学,你们都带了哪些圆形实物?

  两人互相指指圆的周长在哪儿?

  谁愿意到前面来指一指老师手里这个圆的周长。

  谁跟他指得不一佯?为什么这样指不行?

  老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?

  老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?

  哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。

  请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。

  (学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)

  请小组代表汇报本组的实验过程和实验结果。

  同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)

  (师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。

  看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。

  想一想,以前我们学过哪些几何图形的周长?

  长方形的周长和谁有关系?有什么关系?

  正方形的周长和谁有关系?有什么关系?

  圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。

  (用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的'轨迹越短。)

  我们得出了圆的周长和直径有关系。

  (板书:圆的周长 直径)

  这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?

  (学生分小组讨论。)

  通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)

  是不是这样呢?我们来验证一下。

  (电脑演示:圆的周长是直径的3倍多一些。)

  这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)

  谁能说说圆周率是怎么得来的?

  请同学们看书上是怎么说的?

  早在20xx年前,我国古代数学经典《周髀算经》就指出:圆经一而周三,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。

  (出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)

  约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。

  我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母代表圆周率。(板书:)

  圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将取两位小数。(板书:3.14)

  既然是个固定的值了,只要知道什么就能求圆的周长?(直径。)

  现在我们能不能计算黑板上这个圆的周长?

  什么条件不知道?(直径。)

  谁来测直径,用分米作单位。(板书:分米)

  如果直径是2分米,半径就是几分米?

  用半径能不能求圆周长?

  现在我们试着用直径或半径来求黑板上圆的周长。

  谁用直径求出圆的周长?

  (板书:3.142=6.28(分米))

  为什么这样列式?

  (板书:圆的周长=直径圆周率)

  如果用C表示圆的周长,d表示直径,表示圆周率,字母公式怎么表示?

  (板书:C=d)

  谁能用半径求圆的周长?为什么这样做?

  如果用字母r表示半径,字母公式怎么表示?

  (板书:C=2r)

  (三)巩固反馈

  1.求出下面各圆的周长。(单位:厘米)

  2.判断,你认为正确画,错误画。

  (1)一个圆的周长总是它的直径的倍。( )

  (2)圆的周长是6.28厘米,它的半径是2厘米。 ( )

  (3)圆周长的一半与半个圆的周长相等。( )

  3.选择:你认为哪个答案正确就举几号卡片。

  (1)车轮滚动一周,所行路程是求车轮的[ ]

  ①半径

  ②直径

  ③周长

  (2)圆形水池的直径是4米,绕池一周长 [ ]

  ①25.12米

  ②12.56米

  ③12.56平方米

  (3)A圆的直径是6厘米,B圆的直径是2分米,圆周率 [ ]

  ①A圆大

  ②B圆大

  ③一样大

  4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?

  (四)总结全课

  这节课你学会了什么?(引导学生总结本课所学的知识。)

  课堂教学设计说明

  本节课通过引导学生对圆周率的探求,推导出圆周长的计算公式。第一步先通过测量实物中圆的周长,研究测量圆周长的方法是通过绕、滚的方法来测量。接着出现画在小黑板上的圆,当学生发现测这个圆的周长不能用绕、滚的方法来测量,必须研究一种求圆周长的方法。第二步,推导计算圆周长的公式。先带领学生回忆:我们以前学过哪些几何图形周长的计算?长方形和正方形的周长和谁有关系?引导学生发现圆周长和谁有关系。第三步,研究圆的周长和直径有什么关系,理解圆周率的意义,推导出圆周长的计算公式。通过对圆周率值的探求,培养学生科学的、实事求是的探索精神和概括能力及逻辑思维能力。

圆的周长教案 篇9

  教学内容:教材第62-64页圆的周长。

  教学目标:

  1、通过自主实践探索,理解圆的周长和圆周率的意义,掌握圆的周长计算公式,并能根据公式正确地进行计算。

  2、经历观察、试验、猜想、证明等数学活动过程,培养学生初步的演绎推理能力,形成解决问题的一些基本策略。体会“由曲变直”的转化思想。

  3、了解我国古代数学家对圆周率七窍的史实,进行爱国主义教育。

  教学重难点:引导学生探究圆的周长与直径、半径的倍数关系和圆周率的含义。

  教具学具准备:直尺、直径分别为5、6、7、8、9、10厘米的圆纸片、绳子、表格。

  教学设计:

  创设情境,揭示课题

  创设情境,认识圆的周长。

  师:李奶奶决定让小明和小刚进行一次跑步比赛。方案是这样的:让小明沿着一个边长为d米的正方形跑道跑,让小刚沿着一个直径为d米的圆形跑道跑(假设他俩跑的速度一样);方案一公布,小明就说不公平,同学们,你认为这个方案公平吗?要想判断这个方案是否公平,必须要知道他们所经过的路程是否相等,就必须要算出各自跑道的什么?(周长)

  师:对,要知道他们所经过的路程是否相等,就必须要算出各自跑道的周长,这节课我们就一起来探讨圆的周长的知识。(板书课题:圆的周长)

  设计意图:创设生动的教学情境,故事的引入给下面将要学习的内容做了一个情境铺垫,激发了学生的学习兴趣和学习热情,自然而然地引出新知。

  引导探究,展开新课

  1.情境导入,借助教具直观感知,认识圆的周长。

  (1)出示教材62页情境图,想一想,要想计算分别需要多长的铁皮,实际上是求什么?(圆的周长)

  (2)你知道圆的周长指的是什么吗?

  让学生拿出课前准备好的圆片,指出哪一部分是圆的`周长?

  (3)围成圆周长的是一条什么线?

  明确圆的周长的概念:围成圆的封闭曲线的长叫做圆的周长。

  2.测量圆的周长。

  (1)滚动法。

  拿出一元硬币,提问:用什么办法才能知道一个圆的周长呢?(鼓励学生各抒己见,引导学生从多角度考虑)学生把圆放在直尺边上滚动一周,用滚动的方法测量出圆的周长。

  滚动法:把圆放在直尺上滚动一周,直接量出圆的周长。教师强调:用滚动法进行测量时,要注意以下三点:①要做好标记;②不能滑动,要滚动;③要滚动一周,不能多,也不能少。

  小结:对于较短的圆形物体的周长,我们可以用滚动法测出圆的周长。

  (2)绕绳法。

  课件出示:一个圆形水池,提问:要测量这个水池的周长用滚动法可以吗?那你们想出了什么好办法呢?(学生提出可以用绕绳法测量)

  绕绳法:用一根绳子绕圆形水池一周,剪去多余的部分,再拉直量出绳子的长度,即可得出圆形水池的周长。提醒学生用绕绳法测量时,要注意以下两点:①一定要将绳子拉直再测量;②绳子是无弹性的。

  (3)是不是所有的圆的周长都可以用滚动法和绕绳法测量呢?

  教师甩动一端系着线的小球问:你们看到了一个什么图形?这个圆的周长能用上面提出的方法测量吗?

  经过对比,感受滚动法和绕绳法两种测量方法的局限性。

  3.操作实验,探究圆的周长和直径的关系。

  (1)观察猜想:圆的周长与它的什么有关呢?

  学生猜想:可能与它的直径或半径有关。

  课件演示:圆的周长随着直径或者半径的变化而变化。

  (2)动手操作,找出规律。

  四人一组,合理地分配任务,分别量出圆片的直径和周长,并用计算器计算出周长和直径的比值,逐项填入表中。例如:

  周长c(cm)直径d(cm)的比值(保留两位小数)

  3.14213.14

  9.533.17

  12.643.15

  15.853.16

  31.4103.14

  (3)观察表中记录的测量数据和计算结果。

  ①你发现周长与直径的比值有什么特点?(比值都是三点几)

  ②你认为每个圆的周长和直径是什么关系?(周长是直径的3倍多一些。板书:圆的周长总是直径的3倍多一些)

  (4)进一步验证圆的周长总是直径的3倍多一些。

  下面我们共同来验证一下之前得出的结论是否正确。(课件出示:圆的周长随直径的变化而变化,而周长和直径之间的比值却是一个定值)

  (5)认识圆周率。

  ①圆的周长与直径的比值是一个固定的数,有谁知道它叫什么?(圆周率)

  ②圆周率的概念是什么?(一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率)

  ③关于圆周率,你们还知道什么?(圆周率用希腊字母π表示,圆周率是一个无限不循环小数。它的值是3.1415926535……在实际的应用中,一般取它的近似值,即π≈3.14)

  ④感受文明,激发情感。

  结合教材63页的资料介绍《周髀算经》中“周三径一”的说法,介绍祖冲之在求圆周率中做出的贡献。

  (6)总结圆的周长的计算公式。

  ①根据刚才的探索,你能总结出圆的周长的计算公式吗?(结合学生回答,板书:圆的周长=圆的直径×圆周率=圆的半径×2×圆周率)

  ②如果把圆的周长用字母c表示,你们能总结出求圆的周长的字母公式吗?(c=πd或c=2πr)

  ③小结:圆的周长总是它直径的π倍。

  (7)进一步明确复习题答案。

  结合圆的周长的计算公式和正方形的周长计算公式,说一说小明和小刚谁先跑完?小明跑完一圈的路程是4d,小刚跑完一圈的路程是πd,4比π大,所以小刚先跑完。

  4.学以致用。

  课件出示例1,这辆自行车轮子的半径大约是33cm,这辆自行车轮子转1圈,大约可以走多远?(结果保留整米数。)小明家离学校1km,轮子大约转了多少圈?

  学生读题后自己完成。让学生板演。

  c=2πr

  2×3.14×33=207.24(cm)≈2(m)

  1km=1000m

  1000÷2=500(圈)

  答:这辆自行车轮子转1圈,大约可以走2m。小明从家到学校,轮子大约转了500圈。

  设计意图:让学生尝试做例1,解决生活中的实际问题,这样的设计把课堂交给学生,让学生成为学习的主人,在尝试的过程中,教师适时给予点拨引导,做学生学习的引路人。

  巩固练习,提升能力

  1.完成教材64页1题。

  2.判断。

  (1)圆的周长是直径的3.14倍。( )

  (2)圆的周长等于圆周率与直径的乘积。( )

  (3)当半径为3cm时,圆的周长为18.84cm。( )

  (4)半圆的周长是圆周长的一半。( )

  3.爸爸用卷尺量得圆桌面的周长是4.71m,这个圆桌的直径是多少?

  4.完成教材66页7、8题。

  课堂总结,评价拓展

  本节课你有什么收获?

  布置作业,巩固新知

  教材66页9、10题。

  板书设计:

  圆的周长

  圆周率:圆的周长和它直径的比值。π是一个无限不循环小数,通常取3.14。

  圆的周长总是直径的3倍多一些。

  圆的周长=圆的直径×圆周率=圆的半径×2×圆周率。

圆的周长教案 篇10

  教学目标:

  1、通过教学使学生理解并掌握圆的周长和面积计算方法。

  2、培养学生分析问题和解决问题的能力,发展学生的空间观念。

  3、灵活解答几何图形问题。

  教学重点:认真审题,分辨求周长或求面积。

  教学过程:

  一、复习。

  1、求出下面圆的周长和面积并用彩笔描出周长,用阴影表示出面积。

  C=r2

  3.1473.1432

  =21.98(厘米)=3.149

  =28.26(平方厘米)

  2、分辨面积与周长有什么不同?

  (1)概念

  圆的周长是指圆一周的长度

  圆的面积是指圆所围成的平面部分的大小。

  (2)计算公式

  求圆的周长公式:C=d或C=2r

  求圆的面积公式:S=r2

  (3)使用单位

  计算圆的周长用长度单位

  计算圆的面积用面积单位

  二、练习。

  1、判断下面各题是否正确,对的打,错的打3。

  (1)计算直径为10毫米的圆的面积的列式是3.14(102)?。()

  (2)半径为2厘米的圆的`周长和面积相等。()

  (3)把一头牛栓在木桩上,木桩到牛之间的绳长3米,牛能吃到地上草的最大面积是28.26平方米。(栓绳处不计算在内)()

  (4)面积:3.1462=3.1412=37.68()

  2、量出求半圆面积所需的数据,测量时保留整厘米数。再计算出它的周长和面积。

  ⑴半圆的周长是多少厘米?(2)半圆的面积:

  3.14223.142+22

  r=2cm=3.144=6.28+4

  =12.56(平方厘米)=10.28(cm)

  3、一个圆的周长是25.12米,它的面积是多少:

  已知:C=25.12米求:S=?

  r=25.12(23.14)S=r2

  =4(米)=3.1442

  =50.24(平方米)

  4、一个环形的铁片,外圆半径是7厘米,内圆半径是0.5分米,这个环形的面积是多少平方分米?

  已知:R=7厘米=0.7分米r=0.5分米求:S=?

  S环=(R2-r2)

  3.14(0.72-0.52)

  =3.140.24

  =0.7536(平方分米)

  三、巩固发展.

  1、思考题p71(8)

  一条绳子长31.4米,用它围成长方形或正方形的面积大,还是围成圆的面积大?(分组讨论,探讨面积的大小)

  (1)围成长方形:31.42=15.7(m)(长和宽的和)

  长宽=面积

  当长和宽越接近面积也就越大,长和宽相等时,此时正方形面积最大.

  (2)围成圆形

  直径:31.43.14=10(m)

  半径:102=5(m)

  面积:3.1452=78.5(m2)

  (3)比较:长方形面积:61.6m2正方形面积:61.6225m2圆面积:78.5m2

  围成圆的面积最大。

  2、思考题p71(9)、(10)

  四、作业。

  课本P71第6、7题。

  教学追记:

  学生在学完圆的面积后,往往容易把圆的面积与周长混淆。因此我特意设计了本堂对比课。对比我,我引导学生分清以下几点:(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。(2)求圆面积公式是S=r2,求圆周长的公式是C=d或C=2r。(3)计算圆的面积用面积单位,计算圆的周长用长度单位。根据以上三方面,帮助学生理清了圆的面积和周长的不同之处,练习中反映出来的情况也较好。

【圆的周长教案】相关文章:

《圆的周长》教案08-09

圆的周长教案精选15篇06-20

圆的周长教案汇编15篇07-31

圆的周长教学反思[精选]07-08

[精选]《圆的周长》教学反思07-08

圆的周长的教学反思07-23

圆的周长教学设计05-19

【精选】圆的周长教学反思05-26

圆的周长教学反思05-22

圆的周长教学设计[经典]05-29