可能性教案

时间:2024-07-16 11:30:22 教案 我要投稿

有关可能性教案汇编5篇

  作为一位无私奉献的人民教师,时常会需要准备好教案,教案是教学活动的依据,有着重要的地位。怎样写教案才更能起到其作用呢?以下是小编为大家整理的可能性教案5篇,希望对大家有所帮助。

有关可能性教案汇编5篇

可能性教案 篇1

  学生在前几册教材中初步学习了收集、记录、分类整理信息以及用简单的表格或涂颜色的方块表示统计的结果,还在摸彩球、玩转盘、抛圆片等活动中初步体会了有些事情的发生是确定的,有些是不确定的,并能用可能不可能一定等词语描述生活中一些事件发生的可能性。本单元继续教学可能性,让学生体会事件中各种情况发生的可能性有时是相等的、有时是不相等的,学会用经常偶尔机会是相等的等词语来描述生活中一些事情发生的可能性。在教学可能性的时候,教材充分利用学生已有的统计知识,进一步提高统计能力。把可能性的教学与统计方法密切结合是本单元教材编写的一大亮点。

  1、第90~91页教学等可能性,即事件发生的过程中各种情况出现的机会是相等的。

  例题让学生玩摸球游戏,口袋里装了红球和黄球,这两种颜色球的个数相等,让学生在摸球活动中体验摸到红球的机会与摸到黄球的机会是相等的。例题首先明确游戏方法每次摸1个球,摸出以后把球放回口袋,一共摸40次。然后明确记录方法把每次摸到的颜色用画正字的方法记录在《摸球结果记录表》里,摸了40次以后,分别统计摸到红球、黄球的次数,填入《摸球结果统计表》里。例题还通过四个问题引导学生进行数学思考:任意摸1个球,可能是什么颜色估计一下,摸的40次里红球和黄球可能各摸到多少次统计的结果和你的估计差不多吗你发现了什么

  为了保证游戏结果的客观性,教学时要注意六点。

  (1) 每次任意摸1个球。学生应该在看不到球的颜色的情境中随意摸;把摸出的球放回口袋后,要用力把口袋抖动几次,使不同颜色的球在口袋里随意分布。

  (2) 摸的次数要多。因为摸的次数越多,摸到两种颜色的次数越可能接近。如果摸的次数太少,就不容易显示出可能性是相等的。例题要求摸40次,教学时只能多于40次,不能少。

  (3) 估计红球和黄球可能各摸到多少次时,要让学生在口袋里的红球和黄球个数相同的现实情境下,联系经验思考,不但要估计两种颜色的球可能各摸到的次数,而且说说为什么作出这样的估计。

  (4) 要指导学生记录。每次摸得什么颜色的.球要随时记录,游戏结束后才能统计。学生以前用画的方法记录,现在用画正的方法记录,应该对学生讲讲画正字的方法,并让他们体会这种记录的好处。

  (5) 要组织学生交流。每组学生摸的40次里,一般不会两种颜色的球各20次,会一种颜色的次数稍多一些,另一种颜色的次数稍少一些,个案不容易反映出可能性相等。只有在各组的交流中,在对众多个案的观察分析中,学生才能从两种颜色的次数差不多,体会机会是相等的。

  (6) 要组织学生反思。让学生想一想、说一说,为什么摸到的红球和黄球的次数差不多,并找到原因口袋里装的红球与黄球的个数是相等的。

  2、第92~93页教学事件发生的过程中,有些情况出现的机会多,有些情况出现的机会少,即可能性有大、有小。

  例题仍然让学生玩摸球游戏。口袋里装了3个黄球和1个红球,两种颜色球的个数不等。每次任意摸1个球,及时记录球的颜色,摸了10次以后统计哪种颜色的球摸到的次数多一些。游戏方法和数学思考与等可能性的例题基本相同,数学思考的线索仍然是现实情境猜想实验验证猜想分析原因。记录信息采用统计图,教材提供了两种统计图,左边一种是前几册中用过的方块图,右边一种把方格连成了条形,学生可以任选一种记录。通过这里两种记录的图,引导学生从认识的方块图过渡到认识条形图。

  游戏后组织学生交流要抓住三点。

  (1) 从结果想原因,体会可能性有大、有小。各组摸球的结果都是摸到黄球的次数多,摸到红球的次数少。要让学生想想、说说为什么。

  (2) 把两种统计图进行比较。围绕右边的统计图是怎样画的、表示什么意思,两种统计图有什么相同、有什么不同等问题让学生讨论,实现从方块图到条形图的过渡。

  (3) 把可能性相等与可能性不相等作比较。两道例题都是摸球,为什么前一道例题摸到黄球的次数与红球差不多,后一道例题摸到黄球的次数比红球多得多,让学生自己找到原因。

  3、两道例题的后面各有一次想想做做,都是两道题,两道题的思维方向虽然不同,但都能帮助学生加强对可能性的体验。

  其中第1题通过抛小正方体继续体会例题教学的可能性相等与可能性有大有小。第2题运用对可能性的认识先按照预设的结果在布袋里放铅笔,再通过摸铅笔活动验证有没有达到预期的要求,从而进一步理解可能性相等和可能性有大有小。

  练习九第1~3题分别联系天气情况、玩转盘以及生活中的事情引导学生用经常偶尔 可能性相等等词语形象地描述可能性的大小。

  4、第96~97页实践活动让学生在摸牌和下棋游戏中继续体会可能性相等与可能性有大有小。

  摸牌游戏,从四种花色的牌摸到的次数差不多,到红桃花色的牌摸得的次数比其他花色的牌明显多,能使学生感受由于条件变化会引起可能性的变化。

  下棋游戏的规则比较复杂。正方体上涂红色的面比涂黑色的面的个数多,红色面朝上在棋盘上走的格子比黑色面朝上走的格子少,最后结果是拿红棋的人经常获胜。分析原因,学生能从中获得很多感受,对可能性的大小有更多体会。

可能性教案 篇2

  第1课时

  [教学内容]摸球游戏(第87页)

  [教学目的]通过“摸球游戏”的活动,让学生了解数据表示的方式。又通过学生的讨论与交流,逐步使他们体会到数据表示的简洁性与客观性。

  [教学过程]

  1、交流中复习旧知

  师:同学们,我们已经认识了可能性的大小,请看下面一道题。教师呈现题目并配图,然后问:

  (1)你认为小青摸出的球可能是什么颜色?

  (2)哪一种颜色的球摸出的可能性大,为什么?与同学进行交流。

  2、在分析中理解数的表示方法

  师:现在盒子里只有2个红球,能否摸到白球呢?

  生:不能。因为盒子里没有白球。

  师:那么可以用一个数来表示从这个盒子里摸到的白球的可能性呢?

  生:用0,因为0代表没有。那么摸出红球的情况呢?

  生:一定能摸到红球,因为盒子里都是红球。

  师:从盒子里一定能摸到红球,我们说此时摸到红球的可能性是1。谁能说一说生活中哪些事情发生的可能性是0,那些事情发生的可能性为1?(生举例说明)

  3、在观察、讨论中理解数的表示方法

  师出示一个只有1个红球与一个白球的盒子。

  师:从这个盒子中摸到红球的'可能性是多少呢?

  生:摸到红球的可能性是一半。

  师:如果用数来表示摸到红球的可能性,可以怎样表示?

  生:12。

  师:这个同学说的很好,如果在盒子里在放入一个黄球,那么摸出红球的可能性怎样表示呢?让学生开展分组讨论。(也可以让学生自己想办法,如给每个球标上字母,再观察等)

  4、课堂练习:

  87页1题、2题。(生小组讨论)

  5、归纳小节:用数据表示可能性大小的方式。(可让学生自己,也可师生共同归纳)。

  6、布置作业:

  87页下面的实践活动题。

可能性教案 篇3

  教材分析:

  本单元是在学生学习了简单的统计图表知识,初步体验了数据的收集、整理的过程,并能根据统计图表中的数据提出并回答简单的问题的基础上学习的,是进一步学习统计知识的基础。此外,对可能性知识的学习,是学生今后学习概率知识的基础。本单元教学的主要内容包括按不同的标准对事物进行分类统计;初步体验有些事件的发生是确定的.,有些事件的发生是不确定的。教学重点是按不同的标准对事物进行分类统计,教学难点一是在分类统计时找到不同的分类标准,二是对事件发生可能性的理解。

  教学目标:

  1、会用不同的方法进行分类统计,完成相应的统计表,根据统计的结果提出问题、解决问题或提出建议。

  2、初步了解事件发生的确定性和不确定性,形成实事求是的态度和爱思考、爱动脑的习惯。

  3、通过现实情境体验数据的收集、整理和分析的过程,初步了解统计的意义,发展初步的统计观念。

  4、通过学生经历统计的过程,发展学生运用数学知识解决问题的意识。

  教学重难点:

  对分类标准和对事件发生可能性的理解。

  教学准备:

  课件

  教学过程:

  一、导课

  师:同学们看这里美不美?你观察到了什么?

  河边有鸭,还有鹅!有大的、有小的;有花的、黑的,还有白的!

  河里还有好多人游泳呢!有男的、有女的;有大人、有小孩,好多人呀!

  游泳的有多少人呢?大约有30多个呢!

  二、教学统计

  师:到底有多少人呢?怎样才能知道呢?

  (1)一个一个地数,数数就知道了。

  (2)一个个地数不容易数清楚,咱们统计一下吧!

  师:好!那怎样进行统计呢?

  1、我们可以先分类再数一数进行统计。

  2、我先数男的,再数女的。

  3、按戴泳帽和不戴泳帽的进行统计。

  师:那大家就开始行动吧!

  学生自己动手活动。

  师:这就是我们今天要学习的分类统计。

  三、自主练习

  1、分类统计。

  仔细观察图片,你看到了什么?你想怎样分类?(按种类或是颜色)

  2、一共有多少块积木?

  除了按颜色进行分类还可以怎样分类?(形状)

  3、统计本班学生的情况。

  思考:我们的同学可以按什么标准分类?(年龄、性别)

  四、总结

  作业:回家统计你们书橱的种类。

  板书设计:

  统计

  (按种类或是颜色) (年龄、性别)

可能性教案 篇4

  [教学目标]

  1、在摸球活动中经历收集、整理、分析数据的过程,会选用合适的方法记录实验结果,认识条形图,初步感受条形图在表达数据中的作用。

  2、通过实验,从中体会某些事件发生的可能性有大有小,能对某些事件发生的可能性的大小做出简单判断,并做出适当的解释。

  3、培养学生积极参与数学活动的意识,初步感受动手实验是获得科学结论的一种有效方法,发展与他人合作交流的意识与能力。

  [教学准备]

  教师:红球、黄球若干个,透明和不透明口袋,课件。

  学生:质地一样的红球、黄球各3个,四个面上写有“1”、一个面上写有“2”、一个面上写有“3”的小正方体一个,4枝红铅笔和4枝蓝铅笔(也可用小棒替代)。

  [教学过程]

  一、创设情境,提出活动要求

  师:同学们,在很多游戏之中也会藏着许多的数学奥妙,谁来介绍一下?

  (设计意图:谈游戏引入课题,激发学生学习数学的兴趣,使学生感受到数学与生活的紧密联系,引导学生用数学的眼光关注生活,并引导学生回忆上节课的游戏活动中体验到的等可能性。)

  师:今天我们继续来玩摸球游戏好吗?请同学们再袋子里装1个红球,3个黄球。如果我们闭上眼睛,任意摸一个球,可能是什么颜色的球?

  生:可能摸出红球,有可能摸出黄球,一共有这两种可能。

  二、实验操作,初步感受可能性有大有小

  1、预测

  师:在摸球之前,我们先估计一下,在这种袋子里每次任意摸一个球,摸出后把球再放回口袋里,一共摸10次。摸到哪种球的次数可能多一些呢?

  学生猜测,并与同桌交流

  2、实验

  师:你估计的有没有道理呢,我们一起把这个实验做完。

  ⑴提出实验要求:袋子里放3个黄球和1个红球,坐在左边的同学负责摸球,先搅动一下再闭上眼睛摸1个;坐右边的同学从书上第92页选一种方法作好实验记录,一共摸10次。完成后,再依照刚才的实验,同桌互换角色,选择另一种记录方法作好记录。

  ⑵学生操作,并用不同的记录方法作记录。

  ⑶四人一小组交流摸球情况。

  3、分析

  在四人一小组里讨论以下问题:

  ⑴统计的结果和你的猜测差不多吗?

  ⑵你发现了什么?

  ⑶你喜欢用哪种方法记录?并说说理由。

  讨论得出:

  ⑴涂一个方块作记录后数一数,而涂成条形图不用数,只要看旁边的数就好了,因此涂成条形图的记录方法比较好。

  ⑵因为袋中黄球有3个,红球只有1个,所以每次摸到黄球的可能性大,而摸到红球的可能性小。所以摸到黄球的次数多一些,摸到红球的次数少一些。说明在这种情况下,事件发生的可能性有大有小。

  (设计意图:让学生经历“猜测——实验——记录数据——分析数据——作出判断” 的过程,给学生提供自主探索、合作交流的空间,使学生在活动中学习,在游戏中获得愉快的数学体验,促进学生学习能力的发展。)

  三、再次实践,加深理解

  1、做“想想做做”第1题

  ⑴认真读题,明确题目要求。

  ⑵进行抛小正方体的实验,同桌作好记录,然后角色互换。

  ⑶讨论交流:在条形图里你发现了什么?你能解释一下为什么会出现这种情况吗?

  (设计意图:在多样的游戏活动中使学生再次体验可能性的大小。)

  2、做“想想做做”第2题。

  ⑴认真读题,明确题目要求。

  ⑵同桌讨论;根据题目中两个不同的要求,各应该怎样装铅笔。

  ⑶在班内交流先后不同的装法,并说说为什么这样装。

  四、返回生活,内化提高

  1、师:苏果超市,发了1000张奖券,其中设:

  一等奖:1名

  二等奖:10名

  三等奖:50名

  如果我们班的同学去抽奖,大家预测一下得奖的可能性大不大?如果得奖,得到哪种奖项的'可能性大?哪种奖项的可能性小?为什么?

  2、问:联系身边的生活想一想,哪些地方要用到可能性大小的预测?

  (设计意图:联系现实生活交流,进一步培养学生用数学的思想方法看生活的意识和能力,同时深化对可能性的认识。)

  五、全课总结

  师:回家后把今天所学的知识讲给爸爸妈妈听,看看生活中还有哪些事情发生的可能性大一些,哪些事情发生的可能性小一些,下节课我们继续交流,比比谁讲得多,讲得好!

  (设计意图:让学生把今天学习的知识说给爸爸妈妈听,不仅给学生提供表现自我的机会,也较好地巩固新知识。让学生调查预测可能性大小的运用,能使学生再一次体会数学源于生活,生活中处处有数学,让学生真正做到学以致用。)

  六、布置作业

  1、把今天所学的知识讲给爸爸妈妈听。

  2、找一找,生活中还有哪些事情发生的可能性大一些,哪些事情发生的可能性小一些。

可能性教案 篇5

  教材说明

  本单元的学习内容主要有两个方面:一是事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的概率;二是理解中位数的意义,会求数据的中位数,在统计分析中能根据实际情况合理选择适当的统计量来描述数据的特征。

  1.事件发生的可能性以及游戏规则的公平性。

  关于“可能性”这一内容,本套教材分两次进行了集中编排。第一次是在三年级上册,主要是让学生初步体验有些事件的发生是确定的,有些则是不确定的。第二次就在本单元,本单元内容是在三年级上册的基础上的深化,使学生对“可能性”的认识和理解逐渐从定性向定量过渡,不但能用恰当的词语(如“一定”“不可能”“可能”“经常”“偶尔”等)来表述事件发生的可能性大小,还要学会通过量化的方式,用分数描述事件发生的概率。

  根据学生的年龄特点和认知水平,本单元安排的是简单的等可能性事件,等可能性事件是概率论中研究得最早,在社会生活中又广泛存在的一种随机现象,它满足以下两个条件:(1)试验的全部可能结果只有有限个,比如说为n个。(2)每个试验结果发生的可能性是相等的,都是1/n。等可能性事件在概率论发展初期即被人们所关注和研究,故这类随机现象通常又被称为古典概型,本单元的例1、例2和例3及相关练习都属于古典概型问题。

  等可能性事件与游戏规则的公平性是紧密相联的,因为一个公平的游戏规则本质上就是参与游戏的各方获胜的机会均等,用数学语言描述即是他们获胜的可能性相等。因此,教科书在编排上就围绕等可能性这个知识的主轴,以学生熟悉的游戏活动展开教学内容,使学生在积极的参与中直观感受到游戏规则的公平性,并逐步丰富对等可能性的体验,学会用概率的思维去观察和分析社会生活中的事物。此外,通过探究游戏的公平性,还可在潜移默化中培养学生的公平、公正意识,促进学生正直人格的形成。

  2.中位数的统计意义及计算方法。

  学生在三年级已经学过平均数(主要是指算术平均数),知道平均数是描述数据集中程度的一个统计量,用它来表示一组数据的情况,具有直观、简明的特点。所以教科书在引入中位数时,就以平均数为参照物,说明当一组数据中有个别数据偏大或偏小时,用中位数来代表该组数据的一般水平就比平均数更合适。这样编排,不但新旧知识过渡自然,便于学生理解和掌握,而且清晰地阐明了中位数的统计意义,即中位数在数值大小上处于一组数据的最中间,主要反映了统计数据的中等水平,并且不受偏大或偏小等极端数据的影响,对人们了解事物发展的中等水平很有帮助。

  在介绍中位数的计算方法时,教科书在编排上采取了由易至难,逐步深入的方式。如例4和例5,列出的一组数据都是7个,即奇数个数据,从而最中间的那个数据就为中位数,可直接在数据组中找出;然后把7个数据变为8个,最中间就有两个数据,引出当数据个数为偶数个时计算中位数的方法。

  教科书在选材上特别注意联系学生的生活实际,如掷沙包、跳远、跳绳等活动,都是学生几乎天天参与的游戏,可使学生在活动过程中完成数据的收集和整理,也便于教师组织教学。

  教学建议

  1.注重学生对等可能性思想的理解,淡化纯概率数值的计算。

  在自然界和人类社会中存在两类不同的现象:确定性现象(即必然事件和不可能事件)和随机现象(即不确定事件)。概率论就是研究随机现象的规律性的数学分支。在小学阶段设置简单的“概率”内容,主要是为了培养学生的随机思维,让其学会用概率的眼光去观察大千世界,而不仅仅是以确定的、一成不变的思维方式去理解事物。因此,在可能性知识的教学中,应注意加强对学生概率素养的培养,增强学生对随机思想的理解,而不要把丰富多彩的可能性内容变成了机械的计算和练习。

  在教学中,教师还应注意结合学生熟悉的游戏、活动(如掷硬币、玩转盘、摸卡片等),让学生亲自动手试验,在试验中直观体验事件发生的可能性,探究游戏规则的公平性与等可能性事件的关系等,使其经历知识的形成过程。

  2.加强学生对中位数在统计学意义上的理解。

  中位数和平均数一样,也是反映一组数据集中趋势的.一个统计量。教学时应注意结合学生已经很熟悉的平均数,对比教学,以帮助学生弄清两者的联系和区别,使他们明白:平均数主要反映一组数据的总体水平,中位数则更好地反映了一组数据的中等水平(或一般水平)。

  在教学中,教师应选择恰当的数据组,以反映中位数在统计学上的意义和价值,在与平均数的对比中体现中位数的特点。如例4、例5的数据组中,因个别数据严重偏大,影响到平均数也偏大,导致平均数不能很好地代表该组数据的总体水平,而中位数的优势正好能够避免一些偏大或偏小数据的影响,因而在这样的场合中,中位数就能很好地反映一组数据的一般水平。

  另外,因中位数在一组数据的数值排序中处于最中间的位置,故其在统计学分析中也常常扮演着“分水岭”的角色。人们由中位数可对事物的大体趋势进行判断和掌控。如某城市一个月的空气污染指数的中位数值是70(空气质量为良),则说明该城市这个月超过一半的时间空气质量都为良。所以在教学中,教师可组织学生开展调查活动,然后再利用中位数的这一特点进行初步的统计分析。如调查全班同学的睡眠时间,如果中位数显示睡眠不足,则表明全班至少有一半的同学睡眠不足,据此就可建议大家少看电视和按时作息等。

【可能性教案】相关文章:

可能性教案08-08

《可能性》教案06-25

可能性教案06-18

关于可能性教案11-25

可能性教案15篇10-25

关于可能性教案模板7篇10-26

关于可能性教案范文9篇10-27

精选可能性教案模板十篇07-01

可能性教案集锦九篇10-13

可能性教案模板集合10篇09-11