圆的面积教案

时间:2024-11-08 00:21:58 教案 我要投稿

关于圆的面积教案锦集7篇

  作为一名教师,往往需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们该怎么去写教案呢?下面是小编为大家整理的圆的面积教案7篇,希望对大家有所帮助。

关于圆的面积教案锦集7篇

圆的面积教案 篇1

  教学目标

  1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

  2.培养学生动手操作的能力,启发思维,开阔思路;

  3.渗透初步的辩证唯物主义思想。

  教学重点和难点

  圆面积公式的推导方法。

  教学过程设计

  (一)复习准备

  我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

  已知半径,圆周长的一半怎么求?

  (出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

  这节课我们一起来学习圆的面积怎么计算。

  (板书课题:圆的面积)

  (二)学习新课

  1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

  决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

  展示曲变直的变化图。

  2.动手操作学具,推导圆面积公式。

  为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其

  用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

  思考:

  (1)你摆的是什么图形?

  (2)所摆的图形面积与圆面积有什么关系?

  (3)图形的各部分相当于圆的什么?

  (4)你如何推导出圆的面积?

  (学生开始动手摆,小组讨论。)

  指名发言。(在幻灯前边说边摆。)

  ①拼出长方形,学生叙述,老师板书:

  ②还能不能拼出其它图形?

  学生可以拼出:

  等等

  刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

  例1 一个圆的半径是4厘米,它的.面积是多少平方厘米?

  S=r2=3.1442=3.1416=50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

  (三)巩固反馈

  1.求下面各圆的面积。

  r=2(单位:分米) d=6(单位:分米)

  2.选择题。

  用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?

  (1)3.1422=12.56(米)

  (2)3.1422=12.56(平方米)

  (3)3.1432=28.26(平方米)

  3.思考题:

  已知正方形的面积是18平方米,求圆的面积。(如图)

  课堂教学设计说明

  1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。

  2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。

  3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

圆的面积教案 篇2

  教学内容:教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:进一步掌握圆的面积公式,能正确计算圆的面积

  教学难点:能正确计算圆的面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1.计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的'面积和周长是怎样算的?分别指的是什么:

  意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

圆的面积教案 篇3

  教学目标

  1.通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2.激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括能力,发展学生的空间观念。

  3.渗透转化的数学思想和极限思想。

  教学重、难点:圆面积公式的推导与运用。

  学具:16等份和32等份的圆形、剪刀、刻度尺、一张圆形纸片。边长等于r正方形透明塑料片

  教学过程

  一、设疑导入,激发动机

  1.请同学们拿出准备好的圆,用手摸一摸,引导说说关于圆,都知道了什么,为学新知做好铺垫。

  2.引导确定新的学习目标:还想知道圆的什么知识,适时揭示课题,(板书课题:圆的`面积)

  3.引导简单回忆平行四边形、三角形、梯形面积公式的推导方法,鼓励学生自己动手,运用转化法探索圆面积的计算方法。

  二、动手操作,探索新知

  1.猜想、引导,确定方法

  师:我们曾运用转化法探索出了平行四边形、三角形、梯形面积的计算公式,相信同学们也一定能把圆转化为学过的图形,从而探索出圆面积的计算方法。同学们猜想一下,圆可能转化为哪些平面图形呢?

  (学生可能会想到长方形、平行四边形、三角形、梯形等。)

  师:请同学们看手中的学具,想一想把圆怎样剪?剪成什么样的图形?

  (根据学生猜想,指导学生试着把圆平均分成8、16、32个相等的扇形,然后拼一拼,看能拼成什么图形。)

  2.动手操作,尝试探究

  师请同学们动手剪拼一下,看到底能拼成什么图形。

  (学生动手操作,小组合作探究)

  师谁能向大家汇报一下,你把圆拼成了什么图形?请你把拼好的图形放在实物投影上展示给大家看。(各小组汇报,共享思维成果)

  3.课件演示,突破难点

  师课件演示,再现将圆16等份转化成近似的长方形的过程;再将圆32等份转化成近似的长方形的过程。引导思考:

  (1)圆与有近似的长方形有什么关系?

  (2)把圆16等份和32等份后,拼成的图形有什么区别?

  (3)如果等分份数仅需增加,结果会怎样?

  师:课件进一步演示把一个圆等分成64份、128份…拼成长方形,是学生之观感知:将圆等分的份数越多,拼成的图形越接近于长方形。

  4.观察比较,导出公式

  师:请各小组仔细观察思考:拼成的长方形与圆有什么联系?能从中推导出圆的面积计算公式吗?

  学生汇报讨论结果。使学生明确:拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于圆的半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径,也就是S=πr×r=πr2

  (可能有的同学会把圆剪开后拼成了平行四边形、三角形或梯形。教师要给予肯定,并引导推出同样的计算公式。)

  5.尝试运用

  出示例3,读题列式,学生尝试练习,反馈评价。

  提问:如果这道题告诉的不是圆的半径,而是直径,该怎样解答?不计算,谁知道结果是多少吗?

  2.完成第116页做一做的第1题。

  3.看书质疑。

  三、运用新知,解决问题

  1.求下面各圆的面积,只列式不计算。

  直径50分米

  2.一块圆形铁板的半径是3分米,它的面积是多少平方分米?

  3.小明家购买一种麦田的自动旋转喷灌装置的射程是15米。请你帮忙算一算,它能喷灌的面积有多少平方米?

  四、全课小结

  这节课你自己运用了什么方法,学到了哪些知识?

  五、课堂作业

  第118页的第3题和第4题。

圆的面积教案 篇4

  【教学内容】

  北师大版小学数学第十一册第一单元P16--18圆的面积

  【教学目标】

  1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。

  2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  3、在估一估和探究圆面积公式的活动中,体会化曲为直的思想,初步感受极限思想。

  【教学重点】

  能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。

  【教具准备】

  投影仪,CAI课件,等分好的圆形纸片。

  【学具准备】

  等分好的圆形纸片。

  【教学设计】

  【教学过程】

  【教学过程说明】

  一、 创设情境。提出问题

  (投影出示P16中草坪喷水插图)

  师:请同学们观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察并讨论,然后指名回答。

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:对,这个圆形的半径就是喷头喷水的距离,也就是5米;周长也就是喷水所走过的路线;

  生3:我补充一点,这个圆形的中心就是喷头所在的地方。

  师:同学们说得很好。晴大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:说得很好,今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、探究思考。解决问题

  1、估计圆面积大小

  师:请大家估计半径为5米的圆面积大约是多大?

  (让同学们充分发挥自己感官,估计草坪面积大小)

  2、用数方格的方法求圆面积大小

  ①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。

  ②指明反馈估算结果,并说明估算方法及依据。

  生1、我是根据圆里面的正方形来估计的,外面

  方格图面积为1010=100平方米,圆里面的正方形面积大约为50平方米,那么这个圆形的面积大约在50--100平方米之间;

  生2:我是用数方格的方法来估计的。我把这个圆形平均分成4份,其中一份大约为20平方米,那么这个圆形的面积约有80平方米;

  生3:还可以通过计算来得到圆的面积。圆形外面的正方形可以看作边长为2r的正方形,面积就是2r2r=4r2

  而圆形里面的正方形可以看作由4个小三角形拼成的正方形,三角形的直角边长为r,则一个三角形的面积是rr2=1/2r2,;那么四个三角形的`面积即是41/2r2=2r2,那么圆形面积大约为3r2,

  师:同学们的估计很有道理,但是在实际生活中往往要有一个精确的结果,我们接下来就来讨论一个能计算圆面积的方法。

  三、探索规律

  1、由旧知引入新知

  师:大家还记得我们以前学习的平行四边形、三角形、

  梯形面积分别是由哪些图形的面积来的吗?

  (学生回答,教师订正。

  那么圆形的面积可由什么图形面积得来呢。

  2、探索圆面积公式

  师:拿出我们剪好的图形拼一拼,看看能成为一个什

  么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)

  生:我拼成的图形接近一个平行四边形,平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。

  师:说得很好,大家看看自己拼成的图形与刚才这个同学说的是否一样呢?

  生:我拼成的图形更接近于长方形,这个长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。

  (学生在说的同时教师注意板书)

  师:现在请大家来观察一下刚才两个同学拼成的图形,哪个更接近长方形呢?

  生:等分为32份的更接近长方形。

  师:大家想象一下,如果把一个圆等分的份数越多,拼成的图形越接近什么图形呢?

  生:等分的份数越多,就越接近长方形。

  师:下面请大家观察黑板上的板书,你能否由平行四边形或者长方形的面积公式得到圆形面积公式呢?并说出你的理由。(生说,教师板书)

  生1:因为拼成的平行四边形的底也就是圆形周长的一半;平行四边形的高就是圆形的半径。而平行四边形面积=底高,那么圆形面积公式=圆周长的1/2半径即可。

  生2:因为拼成的长方形的长也就是圆形周长的一半,长方形的宽就是圆形的半径。而长方形面积=长宽,那么那么圆形面积=圆周长的1/2半径即可。

  师:用字母怎么表示圆面积公式呢?

  生:S=RR

  生:还可以写作S=R2

  师:这说明求圆的面积只需要知道半径即可,那我只告诉你们圆的直径又如何求出圆的面积呢,请大家自己把这个公式写出来。教师板书。

  3、应用圆面积公式

  师:现在请大家用圆面积公式计算喷水头转动一周可

  以浇灌多大面积的农田。

  (学生独立解答,知名回答)

  四、应用圆面积公式解决实际问题

  1、P18,NO1

  学生独立解答,集体订正的时候要求学生说出每一步

  计算过程和依据。

  2、P18,NO2

  让学生理解题意后,鼓励学生在头脑中想象,猜一猜

  结果,然后在地上画一个半径是1米的圆,让学生看看,并试着站一站。在估计半径是10米的圆大约有几个教室大的时候,可以让学生先估计再算一算。

  五、小结

  师:谁能用自己的话说说圆面积的推导过程。

圆的面积教案 篇5

  教学内容:课本例3,第115页练习二十七的第1~5题。

  教学目的通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。

  点:圆面积计算公式。

  难点:圆面积计算公式的推导。

  教具、学具:圆的面积演示教具及平行四边形拼割教具;厚纸做的圆及剪刀与胶布。

  教学过程():

  一、复习。

  1.口算:

  2.已知圆的半径是2.5分米,它的周长是多少?

  3.一个长方形的长是6.2米,宽是4米,它的面积是多少?

  4.说出平行四边形的面积公式是怎样推导出来的?

  我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。(板书课题:圆的面积)

  二、新授。

  1.圆的面积的含义。

  问:面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)

  以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)

  2.圆的面积公式的推导。

  怎样求圆的面积呢?如果用面积单位直接去度量显然是行不通的。但我们可以仿照求平行四边形面积的`方法——也就是割补法,把圆的图形转化为已学过的图形——长方形。怎样分割呢?教师拿出圆的面积教具进行演示:

  先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)

  再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。

  向学生说明:如果分的等份越多所拼的图形就越接近长方形。

  教师边提问边完成圆面积公式的推导:

  拼成的图形近似于什么图形?

  原来圆的面积与这个长方形的面积是否相等?

  长方形的长相当于圆的哪部分的长?

  长方形的宽是圆的哪部分?

  长方形的面积=长×宽

  圆的面积 = ×

  = ×

  = ×

  =

  用S表示圆的面积,那么圆的面积可以写成:

  3.圆面积公式的应用。

  出示例1:一个圆的半径是4厘米。它的面积是多少平方厘米?

  学生读题,问:要求圆的面积的条件是否具备?怎样列式?学生回答,教师板书:

  =3.14×

  =3.14×16

  =50.24(平方厘米)

  答:它的面积是50.24平方厘米。

  三、巩固练习。

  1.根据下面所给的条件,求圆的面积。

  半径2分米。

  直径10厘米。(先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)

  2.练习二十七的第1~4题。

  强调书写格式,运算顺序与单位名称。

  总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式 计算。

  四、作业。

  练习二十七第5、6题。

圆的面积教案 篇6

  教学内容分析:

  圆的面积是学生认识了圆的特征、学会计算圆的周长以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。由于以前所学图形的面积计算都是直线图形面积的计算,而像圆这样的曲边图形的面积计算,学生还是第一次接触到,所以具有一定的难度和挑战性。教学关键之处在于学生通过观察猜想、动手操作、计算验证,自主探索、推导出圆的面积公式并能灵活应用圆的面积公式解决实际问题。因此本课的教学应紧紧围绕“转化”思想,引导学生联系已学知识把新知识纳入已有知识中分析、研究、归纳,从而完成对新知的建构过程,建立数学模型,培养解决问题的综合能力。

  学生情况分析:

  小学对几何图形的认识很大程度属于直观几何的学习阶段,而几何本身比较抽象的。本节内容学生从认识直线图形发展到认识曲线图形,又是一次飞跃,但从学生思维角度看,五年级学生具有一定的抽象和逻辑思维能力。这一学段中的学生已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比和推理的数学活动经验,并具有了转化的数学思想。所以在教学应注意联系现实生活,组织学生利用学具开展探索性的数学活动,注重知识发现和探索过程,使学生感悟转化、极限等数学思想,从中获得数学学习的积极情感,体验和感受数学的力量。同时在学习活动中,要使学生学会自主学习和小组合作,培养学生解决数学问题的能力。

  教学目标:

  1、让学生经历操作、观察、填表、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题,构建数学模型。

  2、让学生进一步体会“转化”的数学思想方法,感悟极限思想的价值,培养运用已有知识解决新问题的能力,增强空间观念,发展数学思考。

  3、让学生进一步体验数学与生活的联系,感受用数学的方式解决实际问题的过程,提高学习数学的兴趣。

  教学重难点

  重点:圆的面积计算公式的推导和应用。

  难点:圆的面积推导过程中,极限思想(化曲为直)的理解。

  教学准备:

  教具:多媒体课件、面积转化教具。

  学具:书、计算器、16等份教具、作业纸。

  教学过程:

  一、创设情境、揭示课题

  1、师:大家看,一匹马被拴在木桩上,它吃草的时候绷紧绳子绕了一圈。从图中,你知道了哪些信息?

  (复习圆的相关特征)

  师:那马最多能吃多大面积的草呢?

  师:圆所围成的平面的大小就叫做圆的面积。

  师:今天我们继续来研究圆的面积。(揭示课题)

  2、师:你想研究它的哪些问题呢?(引导学生提出疑问)

  【设计意图:在教学过程的伊始就用这个生活中的数学问题来导入新课的学习,既可以激起学生学习的兴趣,又可以为后面圆面积的学习奠定基础,更可以让学生从课堂上涉猎生活中的数学问题,让学生体验到数学来源于生活。】

  二、猜想验证、初步感知

  1、实验验证

  (1)师:猜一猜,圆的面积可能会和它的什么有关系?

  师:你觉得圆的面积大约是正方形的几倍?

  (2)师:对我们的估计需要进行?

  生:验证。

  师:用什么方法验证呢?

  师:下面请大家先数数圆的面积是多少。

  师:数起来感觉怎么样?有没有更简洁一点的方法?

  (引导学生发现可以先数出 个圆的方格数,再乘4就是圆的面积)

  (让学生在图1中数一数,用计算器算一算,填写表格里的第1行。)

  圆的半径

  (cm)

  圆的面积

  (cm2)

  圆的面积

  (cm2)

  正方形的面积

  (cm2)

  圆的面积大约是正方形面积的几倍

  (精确到十分位)

  (3)师:只用一个圆,还不足以验证猜想,作业纸上老师还准备了两个圆,同桌合作,分别用同样的方法把研究成果填写在表格中。(课件出示图2和图3)

  (学生完成后交流汇报。)

  师:仔细观察表中的数据,你有什么发现?

  生:这三个圆的半径虽然不同,但是圆的面积都是它对应正方形面积的3倍多一些。

  3、师:正方形面积可以用r2表示,那圆的面积和它半径平方之间有什么关系呢?

  生:圆的面积是它半径平方的3倍多一些。

  小结:我们经过猜测——数方格——验证,最终发现圆的面积是正方形面积也就是它半径平方的3倍多一些。

  【设计意图:从学生熟悉的数方格开始学习圆面积的计算,有利于学生从整体上把握平面图形面积计算的学习,有利于充分激活学生已有的关于平面图形面积计算的知识和经验,从而为进一步探索圆的面积公式作好准备。由数方格获得的初步结论对接下来的转化推导相互印证,使学生充分感受圆面积公式推导过程的合理性。】

  三、实验操作、推导公式

  1、感受转化,渗透方法

  (课件再次出示马吃草图)

  师:知道了3倍多一些,就能准确算出这匹马最多可以吃多大面积的草了吗?

  (引导学生发现,3倍多一些到底多多少还不清楚,需要继续研究能准确计算圆面积的'方法。)

  2、师:大家还记得平行四边形、三角形、梯形的面积计算公式分别是如何推导出来的吗?

  (学生回忆后汇报,教师演示,激活转化思路)

  3、第一轮探究——明确思路,体会转化

  师:想想看,圆能不能转化成学过的图形?是否可以化曲为直呢?

  生:剪圆。

  师:怎么剪呢?沿着什么剪?

  生:沿着直径或半径剪开。

  (分别演示2等份、4等份、8等份,引导学生发现边越来越直,剪拼的图形越来越平行四边形)

  4、第二轮探究——明确方法,体验极限

  师:刚才我们将圆分别剪成4等份、8等份再拼成新的图形是想干什么呀?

  生:想把圆形转化成平行四边形。

  师:那还能更像吗?

  生:可以将圆片平均分成16份。

  (引导学生把16、32等份的圆拼成近似的长方形,上台展示)

  师:从哪儿可以看出这两幅图更接平行四边形了?

  生:边更直了。

  师:是什么方法使得边越来越直了?

  生:平均分的份数越来越多。

  (引导学生体验把圆平均分成64份、128份……剪拼后的图形越来越接近长方形)

  师:如果我们平均分的份数足够多,就化曲为直,最后拼成的图形——就成长方形了。

  【设计意图:通过这一环节,渗透一种重要的数学思想——转化,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧的知识解决新的问题,从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我们可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的知识,为新知识的“再创造”做好知识的准备。学生展开想象的翅膀,从而得出等分的份数愈多,拼成的图形就越接平行四边形。在想象的过程中蕴含了另一个重要数学思想的渗透——极限思想。】

  (2)师:我们把圆转化成了长方形,什么变了,什么没变?

  生:形状变了,面积大小没有变。

  师:这样就把圆的面积转化成了?

  生:长方形的面积。

  师:要求圆的面积,只要求出?

  生:长方形的面积。

  5、第3轮探究——深化思维,推导公式

  师:仔细观察剪拼成的长方形,看看它与原来的圆之间有什么联系?将发现填写在作业纸第2题中,然后小组内交流一下。

  (小组讨论,发现:长方形的宽等于圆的半径,长方形的长等于圆周长的一半。)

  师:长方形的宽和圆的半径相等,这里的宽也可以用r表示。那么,长方形的长又可以怎么表示呢?(重点引导学生理解长:C÷2=2πr÷2=πr)

  (通过长方形面积计算方法,引出圆的面积计算方法)

  师:圆的面积是它半径平方的3倍多一些,准确地说是它半径平方的多少倍?

  生:π倍。

  师:有了这样的一个公式,知道圆的什么,就可以计算圆的面积了。

  生:半径。

  5、做“练一练”

  完成作业纸第3题,交流反馈。

  6、(课件再次出示牛吃草图)

  师:这匹马最多能吃多大面积的草,现在会求了吗?

  【设计意图:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去探索新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和演算推理能力,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。】

  四、解决问题、拓展应用

  1、师:在日常生活中,经常会遇到与圆面积计算有关的实际问题。

  (课件出示例9)

  分析题意后学生独立完成书本第105页例9。

  (组织交流,评价反馈)

  2、完成作业纸第4题

  师:接着看,默读题目,完成作业纸第3题。

  (学生独立完成,交流反馈)

  五、全课小结、回顾反思

  师:你们对于圆面积的疑问现在解开了吗?又有了哪些新的收获?

  师:同学们,猜想验证、操作发现是我们在数学学习中探索未知领域时经常要用到的方法,用好它相信同学们会有更多的发现!

  【设计意图:全课总结不仅要重视学习结果的回顾再现,也要关注学习经验的反思提升。在这一过程中,学生不仅获得了知识,更重要的是学到了科学探究的方法。】

  板书设计:

  圆的面积

  转化

  新的图形学过的图形

  演示图

  长方形的面积=长×宽

  圆的面积=圆周长的一半 × 半径

  Sπr×r

  πr2

  (1)3.14×22(2)8÷2=4(cm)

  =3.14×43.14×42

  =12.56(cm2)=3.14×16

  =50.24(cm2)

圆的面积教案 篇7

  教学目标:

  1.使学生经历操作、观察、验证和讨论归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2.使学生进一步体会转化方法的价值,培养运用已学知识解决新问题的能力,发展空间观念和初步的推理能力。

  3体会数学来自于生活实际的需要,感受数学与生活的联系,进一步产生对数学的好奇心和兴趣。

  教学重点:

  探索并掌握圆的面积公式,能正确计算圆的面积。

  教学难点:

  理解圆的面积公式的推导过程。

  教学准备:

  圆的面积公式的推导图。

  一、回顾旧知,引入新知

  1.师:四年级时,我们学习了求长方形和正方形的面积的方法,谁来说一说它们的面积的计算方法。

  学生回答,教师予以肯定。

  2.提问:圆的周长怎么计算?已知圆的周长,如何计算它的直径或半径?

  3.引入:我们已经研究了圆的周长和直径、半径的计算方法,今天这节课我们来研究圆的面积是如何计算的。

  (板书:圆的面积)

  设计意图 通过复习,促进学生对周长和已知周长求直径或半径的理解,唤起学生求长方形和正方形面积的经验,为新课的学习做好准备。

  二、合作交流,探究新知

  1.教学例7。

  (l)初步猜想:圆的面积可能与什么有关?说说你猜想的`依据。

  (2)圆的面积和半径或直径究竟有着怎样的关系呢?我们可以做一个实验。

  (3)出示例7第一幅图。思考:图中正方形的边长与圆的半径有什么关系?图中正方形的面积和圆的半径有什么关系?

  (4)学生独立完成填空。

  (5)猜测:圆的面积大约是正方形面积的几倍?

  学生回笞后,明确:圆的面积小于正方形面积的4倍,有可能是3倍多一些。

  (6)出示例7后两幅图,按照同样的方法进行计算并填表。

  正方形的面积

  圆的半径

  圆的面积

  圆面积大约是正方形面积的几倍

  (精确到十分位)

  2.交流归纳:观察上面的表格,你有什么发现?

  通过交流,明确

【圆的面积教案】相关文章:

人教版圆的面积教案06-30

圆的面积教案15篇10-10

圆的面积教案(15篇)10-24

小学数学圆的面积的教案11-24

圆的面积说课稿06-08

《圆的面积》说课稿05-16

圆的面积教学设计06-22

圆的面积的教学设计09-29

《圆的面积》教学设计07-11

《圆的面积》教学反思06-18