鸡兔同笼教案合集8篇
作为一名优秀的教育工作者,就有可能用到教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编帮大家整理的鸡兔同笼教案8篇,欢迎阅读与收藏。
鸡兔同笼教案 篇1
时间:20xx年12月3日
地点:大会议室
主备人:崔xx
参加人员:六年级全体数学教师
教研内容:“鸡兔同笼”问题
教学目标:
1.初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题。
2.结合图解法理解假设的方法解决鸡兔同笼问题。
3.在现实情景中,让学生初步体会画图、列表、假设等多种解题策略,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,进而让学生体会数学的价值。
教学重点:能用列表法和画图法解决相关的实际问题。
教学难点:结合图解法理解假设的方法解决鸡兔同笼问题。
重难点突破:借助已有数据利用列表尝试(枚举法)解决问题从中体会数据之间的变化特点,有意识的为下面的方法做好铺垫,通过适当地 引导和学生小组合作探究相结合,让学生在尝试、探索、交流中农动“鸡兔同笼”问题的基本结构,经历不同的方法结局问题的过程形成此类问题的一般性策略。
模式方法:提出问题——列举尝试——观察发现——讨论交流——寻找解法。
作业设计:有浅入深“鸡兔同笼”的基本题型多练。
组内教师讨论要点:
1、引导学生理解提议,找出隐藏条件,帮助学生初步理解“鸡兔同笼”问题的结构特点。
2、列表虽然繁琐,但是一种重要的解决问题的策略的方法,是解法的.基础,是重要教学内容之一,从中体会数量的变化规律。
3、假设法是学生应该掌握的一种方法,要让学生准确的说明算理,体会为什么假设的与所求的结果不是一致的道理。
4、列方程解时要借助实例,体会设X的技巧,因为学生学习内容的局限性,让学生体会设其中只数多的兔为X的道理,方法是设出一部分,根据总数列出方程(易列难解)
活动总结:
全体教师针对研究主题进行研讨,各抒己见,畅所欲言,结合自己以往的教学经验,探讨重点难点的突破方法,以教学中要注意的问题,让全体教师对刺客的教学内容有明确的思路。
鸡兔同笼教案 篇2
学情分析:
鸡兔同笼问题是我国民间流传下来的一类数学妙题,它集题型的趣味性、解法的多样性、应用的广泛性于一体,具有训练智能的教育功能和价值,是实施开放式教学的好题材。教材呈现三种解题思路:列表尝试法、假设法和方程法。列表尝试法能直观反映数据的变化,学生容易接受,但数据较大时比较繁琐不宜采用;假设法是一种算术方法,计算比较简便,但理解算理有一定难度;方程法容易建立数量关系,有利于培养学生的分析能力,但求解过程对多数小学生而言较难。因此,本课设计的重点放在理解假设法的算理上。列表尝试法虽然有局限性,但它是假设法和方程法的基础,因此在引导学生用列表尝试法解决问题时,就要有意识地作好铺垫,为下面的教学埋下伏笔。在掌握解决问题的方法后,引导学生反思提升,通过鸡兔同笼问题与生活中类似问题的比较,帮助学生建立“鸡兔同笼”结构特点和解决模型。
教学目标:
1.知识与技能:使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法、假设法、方程法解决问题,初步形成解决此类问题的.一般性策略。
2、过程与方法:通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性。渗透化繁为简的思想。
3、情感态度与价值观:使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:
尝试用不同的方法解决“鸡兔同笼”问题,体会用列表法和假设法解决问题的优越性。
教学难点:
理解用假设法解决“鸡兔同笼”问题的算理。
教学过程:
一、以史激趣,导入新课:
同学们,你们知道吗?数学是思维的体操,它可以让我们的头脑越来越聪明。我们中国人自古以来就喜欢数学并且研究数学,早在1500年前就有一部数学著作《孙子算经》,那里面记载了许多有趣的数学名题,今天我们就一起研究其中的鸡兔同笼问题。(板书:鸡兔同笼)
二、独立探索,构建新知:
(课件出示例题,指名读)鸡兔同笼,有20个头,54条腿,鸡兔各有多少只?
你从这道题中,找到了什么数学信息?
(鸡的只数+兔的只数=20只,一只鸡2条腿,一只兔4条腿,鸡的腿数+兔的腿数=54条……)
这样一道1000多年前的数学名题要大家短时间内找到答案,确实不容易,就让我们先来猜测猜测。(板书:猜测)
谁先来猜一猜,鸡可能多少只?兔可能多少只?(鸡8只,兔12只)
能说说你猜测的依据吗?(鸡的只数+兔的只数=20只)
有了猜测的依据,还有谁想继续猜?(……)
给老师一个机会,我猜鸡是1只,那兔有几只?(19只)
怎么知道我猜得对不对?(通过计算来验证)
(板书并验证)计算的腿的条数是78条和实际的腿的条数不相符,说明我的猜测怎么样?(失败了)
虽然我的猜测失败了,但如果继续猜测下去,我的这次失败的猜测和验证对以后的猜测有什么启示和帮助吗?(因为78条腿比54条腿多,这就说明兔的只数多了,再猜测应该减少兔的只数,增加鸡的只数。)
现在,就请同学们在你的练习本上,继续老师黑板上的猜测,如果你有更简单的猜测方法,也可以重新列举一个猜测。
鸡兔同笼教案 篇3
复习目标:
通过复习进一步用假设法或列表法解决鸡兔同笼问题的解题思路。并能用不同的方法解决与鸡兔同笼有关的问题。
复习重点:尝试用不同的方法解决鸡兔同笼问题,在尝试中培养学生的思维能力。
复习难点:在解决问题的过程中,培养学生的逻辑思维能力。
教法:分析、引导
学法:自主探究
课前准备:多媒体。
教学过程:
一、定向导学:2分钟
1、板书课题
2、复习目标:
掌握用列表法、假设法或列方程的方法解决鸡兔同笼问题的解题思路。并能用不同的'方法解决与鸡兔同笼有关的问题。
二、方法归类:8分
1、填空:
一只公鸡( )条腿,两只公鸡( )条腿,五只公鸡( )条腿。
一只兔子( )条腿,两只兔子( )条腿,五只兔子( )条腿。
鸡兔共五只,腿有( )条。
2、谁记得解决这类问题的方法呢?
学生回答
3、了解抬脚法
笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,
有94只脚。鸡和兔各有几只?
古人的算法可以用下图表示:
头… 35 脚减半 35 下减上 35 上减下 23 …鸡
脚… 94 47 12 12 …兔
三、解决问题:10分
(1)、鸡兔同笼,有20个头,56条腿, 鸡、兔各有多少只?
(2)、停车场里停了三轮车和小汽车共11辆,总共有40个轮子,问三轮车和小汽车各有几辆?
(3)比赛答题,对一题加10分,错一题扣6分,一道对题比一道错题多( )
分。
(4)数学竞赛,答对一题得10分,答错一题扣6分。小明抢答了16道题,最后得分16分,他答对了几道题?
四、小结检测:20分钟
1、小结:通过今天的复习,你有什么收获?还有什么疑问吗?
2、检测:
a、问答:
(1)解答鸡兔同笼问题要弄清( )多少只,还要弄清( )多少只。
b、解决问题
(1)、全班一共有38人,共租了8条船,每条大船乘6人,每条小船乘4人,每条船都坐满了。问大船和小船各多少条?
(2)大和尚一人吃3个馒头,小和尚3人吃一个馒头,100个和尚吃100个馒头。求大、小和尚各有多少个人?
(3)篮球比赛,张鹏共得21分,张鹏在这场比赛中投进了几个3分球?几个2分球?(张鹏没有罚球)
(4)有龟和鹤共40只,龟的腿和鹤的腿共112条,龟和鹤各有多少只?
鸡兔同笼教案 篇4
教学目标:
1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。
2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。
3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。
教学重点:
能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。
教学难点:
能用不同的策略解决相关的实际问题。
教学关键:引导学生学会用假设、举例、列表、作图等方法解决问题。
教具:多媒体课件
教学过程:
一、联系现实,激趣导入
1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。
生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;
师:接下来的歌谣不完整,谁能把它填完整呢?
两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共 个头, 条腿...…
师:你是怎么知道的?
生:我把兔子的腿数乘兔子的只数然后加上鸡的'腿数乘鸡的只数。
[设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]
2.这节课,我们就一起来研究有关“鸡兔同笼”的问题。
二、自主探索,尝试解决
1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?
(1)、指名读题
(2)、理解题意:
师:20个头表示什么?
生:20个头表示鸡与兔的总头数。
师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。
(3)、同桌说一说:
(4)、学生汇报,教师填表
生1:我猜鸡有3只,兔子有17只。
生2:我猜鸡有5只,兔子有15只。
生3:我猜鸡有16只,兔子有4只。
……
师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?
生:鸡兔的总只数没有变。
强调鸡兔的总只数不变
[设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]
2、自主探究
出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?
(1)、指名读题
(2)、引导观察:
师:这两道题有什么不同呢?
生:第2个问题多了一个条件“54条腿”
(3)、理解题意:
师:20个头,54条腿是什么意思呢?
生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。
师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:
①、每个小组老师都有一份材料
②、小组长组织小组成员讨论,小组长并做好记录
3、反馈交流,教师适当引导
(1)、逐一列表法:
生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。
师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?
(2)、跳跃列表法
生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。
师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?
(3)、折中列表法
生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。
师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)
像同学们刚才的这几种解法,我们把它称为列表法。
[设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]
4、画图法(板书:画图法)
师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。
5、归纳算法
解决“鸡兔同笼”有多种方法,你喜欢哪种方法?
三、巩固练习
生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?
(1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?
(2)、学生独立解决,全班交流。
[设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]
四、全课
通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)
五、拓展延伸
书P81“你知道吗?”
师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。
[设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的一门学科。]
教学反思:
反思本次教学活动,我发现了成功与遗憾共存。
成功之处在于:
1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。
2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。
3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。
遗憾之处在于:
1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。
2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。
鸡兔同笼教案 篇5
教学目标:
(一)知识技能
1、使学生初步认识“鸡兔同笼”的数学趣题,了解与此有关的数学史,感受我国传统的数学文化。
2、使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,并能选择适当方法解决一些与“鸡兔同笼”相似的数学问题。
(二)过程与方法:在学生探究方法的过程中,使学生理解并运用假设的思想解决数学问题,形成有序思考的意识,体验数学的思想方法。
(三) 情感态度价值观:过数学文化的熏陶感染培养学生的民族自信心和研究问题的科学素养。
教学重点:
使学生理解并运用假设的思想,通过画图法、列表法来解答“鸡兔同笼”及其类似的数学问题。
教学难点:
使学生发现并掌握用列表法解决鸡兔同笼及类似的数学问题。
教学过程:
一、激趣导入 渗透方法
1、 出示绕口令
1只小鸡2条腿, 1只兔子4条腿;
2只小鸡( )条腿, 2只兔子( )条腿;
3只小鸡( )条腿, 3只兔子( )条腿。……
【设计意图:在激发学生兴趣,缓解学生紧张情绪的同时,使学生明确鸡和兔的腿数】
2、 教师出示一幅简单得不能再简单的图, 说明○代表头,线段代表腿,让学生说是鸡还是兔子?紧接着再出示两条线段。 让学生说是鸡还是兔子?观察图,比较鸡和兔子的异同
【设计意图:使学生通过观察抓住鸡兔背后的数学本质:相同之处:鸡和兔都有一个头,不同之处:鸡有2条腿,兔有4条腿。从课的一开始,就向学生渗透画图的方法】
3、笼子里有鸡和兔子共4只,鸡和兔子可能有几只?
老师把你们说的这3种情况的画出图来了,很直观。还可以怎样出示展示更清晰?
如果学生说出列表,老师先出示无序列表,再请学生帮忙修改
【设计意图:引导学生思考问题要全面、有序。同时渗透画图、列表的方法,为后面学生独立解题打下一定的基础】
接着让学生从表格中观察:你能从头数和腿数的变化中发现什么?引导学生发现:头数不变时,多一只兔子就多两条腿,多了一只鸡就减少两条腿
【设计意图:一是引导学生从数学现象背后发现数学规律,同时为后面学生出现多种列表法进行了渗透】
二、独立探究 解决问题
刚才我们把鸡和兔放在同一个笼子里,这就是有名的“鸡兔同笼”。
谁知道“鸡兔同笼”研究的是什么问题?(把鸡和兔放在同一个笼子里,给出总头数和总腿数,求鸡兔各几只)
1、出示例题,读儿歌
菜市场里真热闹,鸡兔同笼喔喔叫。
数数头儿有8个,数数腿儿26。可知鸡兔各多少?
2、 指名说说已知条件和问题。
引导学生找出隐藏的条件:每只鸡有2条腿,每只兔有4条腿
3、你们愿意自己尝试解答吗?
每个同学有2个选择
第一:卡片上画了8个圆,代表8个头,请你用线段代表腿,画一画。
第二:用填表的方法,看能否找到答案。
(如果学生提出用计算的方法,也让他们先画图和列表,之后可以再计算)
【设计意图:这节课的重点是使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法来解答“鸡兔同笼”的问题,所以这里强调的是尝试使用直观的画图法、列表法。】
三、小组交流 开阔思路
小组讨论的要求是
1、给组内同学讲一讲你解题的方法和过程。
2、认真倾听组内同学的发言,你又学会了哪种解题方法?如果有疑问,请你提出来,大家共同解决。
【设计意图:提出具体明确的小组合作的要求,这样的要求便于学生进行交流,提高小组合作学习的效率。】
四、全班交流 成果共享
1、画图法
预设1:用八个圆表示鸡的头,所以每个头下面画两条腿,等于16条,比已知条件给得26条少10条。所以在每个头下面再添上2条腿,一直添到26条腿。结果是5只兔子3只鸡)
预设2:用八个圆表示兔的头,一共32条腿,多了6条腿,擦去3个2条腿结果也是5只兔子3只鸡
为什么2条腿2条腿的添上?为什么2条腿2条腿的擦去?
你认为这两种画法哪种简单?
【设计意图:使学生思维更加简单,避免思维定势,真正掌握画图的本质。】
2、列表法
教师让学生在实物投影下讲解列表的方法。
(预设3种列表法)
3、逐一列表法
情况1:鸡的只数 1 2 3 4 5 6 7
兔的只数 7 6 5 4 3 2 1
共有足数 30 28 26 24 22 20 18
情况2
鸡的只数 1 2 3
兔的只数 7 6 5
共有足数 30 28 26
情况1与情况2进行比较
确定只有一个答案时,找到了问题答案,后面的情况可以不再列举
情况3:兔的只数 1 2 3 4 5 6 7
鸡的只数 7 6 5 4 3 2 1
共有足数 18 20 22 24 26 28 30
情况4:兔的只数 1 2 3 4 5
鸡的只数 7 6 5 4 3
共有足数 18 20 22 24 26
情况3与情况4进行比较
确定只有一个答案时,找到了问题答案,后面的情况可以不再列举
情况2与情况4进行比较
哪个列表能快速找到答案,为什么?
4、取中列表法
鸡的只数 4 3
兔的只数 4 5
共有足数 24 26
5、跳跃列表法
鸡的.只数 1 3
兔的只数 7 5
共有足数 30 26
(如果后两种没有出现,教师可以进行引导,也可以在第二课时进行引导,具体情况根据课堂学生生成情况和课堂时间而定。
如果三种表格都出现了,那么根据每一种列表的特点,给每种列表方法分别取个名字。并建议学生采用逐一列表法)
【设计意图:培养学生有序思维的能力,同时也体现出不同的学生用不同的方法解决问题,从数据中发现蕴含的规律,培养学生灵活思维的能力。建议学生采用逐一列表法是为以后解答开放性问题做准备】
五、灵活运用 巩固方法
1、今天我们通过画图和列表方法解决了“鸡兔同笼”问题。
我们的祖先早在1500多年前就已经用巧妙的方法解决了这个问题,数学著作《孙子算经》里就有记载。这些著作流传海外,对其他国家也产生了较大影响。其中日本也进行了类似研究,不过日本称之为“龟鹤问题” 。
出示:龟和鹤共6只,龟的腿和鹤的腿共有18条,龟和鹤各有几只?
你认为“龟鹤问题”和 “鸡兔同笼”有联系吗?
用你刚才没有尝试过的方法解决
2、设计意图:
1、使学生感受我国传统的数学文化。
2、 能找到二者之间内在联系,培养学生解决类似“鸡兔同笼”数学问题的能力。
3、 使学生理解并掌握用“图解法”和“ 列表法”这两种基本方法,能够尝试体验不同的解决问题的策略。
【设计意图:这两题一道比一道有难度,让孩子根据自己情况自主选择】
六、总结收获 畅谈体会
通过今天的学习,你有什么收获?
鸡兔同笼教案 篇6
教学目标:
1、知识与技能
让学生学会“列举法”,并运用“列举法”解决问题。
2、过程与方法
让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。
让学生养成“尝试”的数学思维与方法。
3、情感态度与价值观
利用发现的规律,解决生活中的实际问题,体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和信心。
了解中国数学历史,渗透数学文化的思想。
教学重点:
让学生学会“列举法”,并运用“列举法”解决“鸡兔同笼”问题及相类似的数学问题。
教学难点:
让学生在尝试与猜测的过程中,探索出“列举法”,最终发现一些规律性的知识。
教学关键:
让学生经历列表、尝试和不断调整的过程,从中体会出解决问题的一般策略——列表。
教具准备:
三个表格,卡片。
教学过程:
一、导入
1、师:一只鸡有几条腿?一只兔有几条腿?(生齐答)
2、师:(出示卡片:三只鸡两只兔)这个笼子里一共有几个头?(生齐答)一共有多少条腿?(让生独立计算后,再指名说说计算的方法)
3、谈话导入:今天我们就一起来学习“鸡兔同笼”。(师板书课题:鸡兔同笼)
二、授新课
1、师:老师想考考你们,你们看
(师出示:鸡兔同笼,一共有8个头,20条腿,鸡、兔各有多少只?
师:请你赶快猜一猜吧!生:独立思考后全班交流。
(此时,学生很容易猜出,师首先肯定学生的各种想法,再说:我把
这题的数字变大一些,你能猜出鸡、兔各有多少只吗?
2、师(出示题目):鸡兔同笼,共有20个头,54条腿,鸡、兔各有多少只?
(1)a、让生齐读题目
b、师让生独立思考后再与同桌交流。
c、指名汇报(当学生猜不出答案时,师:我给大家带来了一位好朋友,它可以帮助我们解决这个问题,你看)师边说边出示表格)当学生猜出正确答案时,师追问:说说你是怎样想的?根据生的回答完成表格
d、 此时,师明确告诉学生:像这样依次尝试的方法我们就叫它一一列举法。(师板书:一一列举法)
e、 观察这个表格,你发现了什么?(指名生说)
(2) 小结:对于发现的同学及时给予表扬,你真是个善于发现的孩
子。
a、我们再来观察一下这个表格,我们从1开始假设时就有78
条腿和答案的54条腿相比,怎么样?我们能不能让列举的次数更少一些?现在就请你们四个人为一小组开始讨论:(讨论后再请小组汇报)
b、根据生的回答,师板书:
c、 师小结:你真是个爱动脑筋的`孩子,真聪明!那我们也给
这个表格取一个形象的名字,就叫它跳跃式列举法(师板书:跳跃式列举法)
(3) 师:还有别的列举法?
a、 学生可能会说出取中列举法,师就问让其说清楚,明白。
学生可能说不出时,师出示(先假设鸡和兔各占一半,再列表),再让生试填表格3,最后集体订正。
b、像这样,从中间开始列举的方法叫取中列举法(师板书:取中列举法)
3、 观察比较这三种列举法,你喜欢哪种?为什么?(指明生说,师再小结)
4、师:在我们的实际生活中,还有很多类似鸡兔同笼的问题,
大家有信心运用所学问题解决实际问题吗?
三、
1、试一试
完成81页练一练第2、3题。(先独立完成再集体订正。)
2、 深化练习:一次数学竞赛,共10道题,每做对一道可得8分,每做错一道扣5分,小英最后得41分,她做对了几道题?(此题有时间就做,没时间就不做。)
四、课堂小结:
通过这节课的学习,你学会了什么?(先请生说,师再总结。)
鸡兔同笼教案 篇7
数也可以求出来。
6、小结:现在你能从新总结一下这些方法的优势和适用范围吗?数目比较小时,用列表法。数目比较大时,列表法计算量大,就有局限性,比较麻烦,最好用假设法比较好。用假设法时要特别注意:如果假设是鸡而先求出的就是兔子,如果假设的是兔子那先求出的是鸡,两者相反。
* 古人是怎样解决“鸡兔同笼”问题的?
1、假如让鸡抬起一只脚,兔子抬起两只脚,还有94÷2=47只脚。
2、这时每只鸡一只脚,每只兔子两只脚。笼子里只要有一只兔子,则脚的总数就比头的总数多1。
3、这时脚的总数与头的总数之差47-35=12,就是兔子的只数。
三、巩固练习
课本105页“做一做”的1、2题。
四、课堂总结:
师:通过今天的学习,你有哪些收获?
板书设计: 鸡兔同笼
化繁为简
列表法
假设法:1)假设都是鸡
2)假设都是兔
教学反思:人教版四年级下册第九单元数学广角中—《鸡兔同笼》
教材分析:
“鸡兔同笼”问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在四年级下册数学广角中安排“鸡兔同笼”的教学内容,其教学方法与常规课不同。数学广角重在向学生渗透一些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。因此,在教学此内容时,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
学情分析:
“鸡兔同笼”问题对于四年级的学生来说是难于理解,四年级的学生已经虽然具备了应用逐一尝试法、列表法解决问题的基本能力。他们已初步接触多种解题策略,会一些基本的解决数学问题的方法。学生已初步具备一定的归纳、猜想能力,但是在数学的应用意识与应用能力方面需要进一步培养。
教学目标:
1、使学生了解“鸡兔同笼”问题,感受古代数学问题的趣味性。
2、能尝试用不同的方法解决“鸡兔同笼”问题,使学生体会假设方法的一般性。
教学重点:会用画图法、列表法和假设法解答“鸡兔同笼”问题。
教学难点:用合理的方法解答生活中的“鸡兔同笼”问题。
教具准备:多媒体课件、表格等。
教学过程:
一、创设情境、揭示课题。
1.播放《奔跑吧,兄弟》主题曲,同学们,你们知道这是什么节目的主题曲吗?
2.播放视频,介绍:20xx年4月24日这期的《奔跑吧,兄弟》中,各位跑男被带到有密码的房间里,陈赫遇到了这样一道题。
这道题被收在《孙子算经》中,《孙子算经》是我国古代一部非常重要的数学名著, 今天,我们就来研究中国历史上著名的数学趣题 “鸡兔同笼问题”。(板书课题)
2、我们先从简单一些的问题入手,来探讨解决这类问题的方法,好吗?大家请看。
出示题目:鸡兔同笼一共有8个头,一共有26条腿。 鸡和兔各有几只?
二、合作探究、学习新知:
活动一:探究用猜测列表法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流
1.师:请大家自由读题,你们都知道了什么信息?
生:鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?
师:还有补充吗?有两个隐藏条件看谁细心发现了?。
生:鸡有2条腿,兔子有4条腿。鸡和兔一共有8个头。鸡兔一共有26条腿。求分别有几只?师评:他还发现了隐藏条件,审题真细心。
2.先猜一猜,鸡兔可能有几只?可能只有一种动物吗,为什么?
学生猜测,汇报。不可能都是鸡,因为如果都是鸡就会有16条腿,而题目中是26条腿。也不可能都是兔,因为如果都是兔就会有32条腿。
(1)师:我们采用列表法得出的`答案,好吗?翻开书104页,按照顺序列表试一试。
(2)说一说你是怎么想的?从尝试举例过程中,你发现了什么规律?和小组的同学说一说。
(汇报交流)
小结讲解:鸡兔的总只数不变,多一只兔子就会少一只鸡,并会增加两只脚;多一只鸡就会少一只兔子,并会少两只脚。
活动二:探究用假设法解决“鸡兔同笼”问题。
学习方式:自学教材,小组合作交流。
小组1:假设全都是鸡:2×8=16(条)26-16=10(条) 10÷2=5(只)??兔子 8-5=3(只)??鸡 谁有不懂得问题要问他?你们看看是不是这样:看演示板书“假设法。”
师:除了可以假设都是鸡,还可以怎样假设呢?
小组2:引导学生说出都是兔,并演示。
师:实际上,你们刚才的这些方法都运用了一种数学思想。你们知道是什么思想么?
师:真好,你们发现了数学中一种重要的数学思想,就是假设思想。如果我们学会了用假设的数学思想啊,那我们能解决生活中的很多很多问题,是不是啊。
小结:同学们,刚才我们用很多方法解决了同一个问题,你觉得这些方法的核心思想是什么?(假设。所以鸡兔同笼问题又叫假设问题。)
3、发散思考、加深理解。
下面我们来帮陈赫找到他房间的密码,解放他吧!
出示:鸡兔同笼,有35个头,94条腿,鸡兔各有几只?
师:我们发现课本上的假设法理解起来比较抽象,现在大家换一种假设法来思考。你们看,这样行不行?
生:是什么样的假设法,让我们先睹为快!
师:是这样的,如果让每只兔子都立起两条腿,这时,鸡和兔的脚数是相等的,接下来会出现什么样的情况呢?
生:每个头有两条腿,35个头是70条腿。(94-70)少了24条腿,正好可以求出兔子的只数,24除以2等于12。
生:鸡的只数为:35-12 = 23(只)。
师:还有别的做法吗?怎样解答?
生:把每只鸡的翅膀看成是两条腿。这样每只头对应的是4条腿。共有140条腿,多出46条腿,多出的是23只鸡的腿,那么,兔的只数
鸡兔同笼教案 篇8
教学目标
1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。
3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。
教学过程
一、故事引入
教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。
出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)
二、探究新知
1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?
让学生以两人为一组讨论。
汇报讨论的结果。
(1)、列表:
鸡876543
兔012345
脚161820222426
(2)、假设法:
假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。
因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的.10只脚就有102=5(只)兔子。
因此,鸡就有:8-5=3(只)
(3)、用方程解:
解:设鸡有x只,那么兔就有(8-x)只。
根据鸡兔共有26只脚来列方程式
2x+(8-x)4=26
2x+84-4x=26
32-26=4x-2x
2x=6
x=3
8-3=5(只)
2、小结解题方法:
教师:以上三种解法,哪一种更方便?
小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。
3、独立解决书中的趣题。
(1)、方程解:
解:设鸡有x只,那么兔就有(35-x)只。
根据鸡兔共有94只脚来列方程式
2x+(35-x)4=94
2x+354-4x=94
140-94=4x-2x
2x=46
x=23
35-23=12(只)
答:鸡有23只,兔有12只。
(2)、算术解:
假设都是鸡。
235=70(只)
94-70=24(只)
24(4-2)=12(只)
35-12=23(只)
答:鸡有23只,兔有12只。
三、巩固与运用
1、完成教科书第115页做一做的第1题。
学生独立读题分析后,列式解答。鼓励用方程解。
2、完成教科书第115页做一做的第2题。
提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)
请同学独立列式解答。(讲评时重点解释算术解的每步的算理)
68=48(人)
假设8条都是大船可坐48人。
48-38=10(人)
假设人数比实际的人数多10人。
多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。
10(6-4)=5(条)
8-5=3(条)
这是表示有3条大船。
四、作业
练习二十六第一、二题。
【鸡兔同笼教案】相关文章:
鸡兔同笼教案09-26
《鸡兔同笼》教案最新10-23
鸡兔同笼教案15篇08-22
《鸡兔同笼》教案15篇07-18
鸡兔同笼教案汇编10篇08-16
鸡兔同笼教案模板汇总10篇08-29
鸡兔同笼教案模板汇编7篇09-21
鸡兔同笼教案集合6篇10-04
鸡兔同笼教案范文集锦9篇09-19
鸡兔同笼教案范文合集十篇08-19