《方程》教案

时间:2024-10-27 08:06:55 教案 我要投稿

关于《方程》教案3篇

  作为一位无私奉献的人民教师,时常会需要准备好教案,借助教案可以更好地组织教学活动。教案应该怎么写才好呢?下面是小编精心整理的《方程》教案3篇,欢迎大家借鉴与参考,希望对大家有所帮助。

关于《方程》教案3篇

《方程》教案 篇1

  四年级(下册)用字母表示数教学含有字母的式子,学生初步学会了写式子的方法。五年级(下册)方程教学了方程的意义、用等式的性质解一步计算的方程,学生能够列方程解答简单的实际问题。本单元继续教学方程,要解类似于axb=c、axbx=c的方程,并用于解决稍复杂的实际问题。教学内容的编排有以下特点。

  第一,把解方程和列方程解决实际问题的教学融为一体,同步进行,这是和以前教材的不同编排。在例1里,解2x-22=64这个方程是新知识,用它解答实际问题也是新知识。在例2里,解方程x+3x=290是新授内容,解决的实际问题也是新授内容。这两道例题,既教学解方程的思路与方法,又教学列方程的相等关系和技巧。这样编排,能较好地体现数学内容和现实生活的联系。一方面分析实际问题里的数量关系,抽象成方程,形成知识与技能的教学内容;另一方面,利用方程解决实际问题,使知识技能的教学具有现实意义,成为数学思考、解决问题、情感态度有效发展的载体。

  第二,突出思想方法,通过举一反三培养能力。全单元编排的两道例题、两个练习,涵盖了很宽的知识面。先看解方程。例 1教学ax-b=c这样的方程,练习一里还要解ax+b=c、a+bx=c这些形式的方程。从例题到习题,虽然方程的结构变了,但应用等式的性质解方程是不变的。也就是说,解方程的策略是一致的,知识与方法的具体应用是灵活的。再看列方程。例1把一个数比另一个数的2倍少22作为相等关系,练一练和练习一里陆续出现一个数比另一个数的几倍多几、三角形的面积计算公式以及其他的相等关系。实际问题变了,寻找相等关系是解题的关键步骤始终不变。在例2和练习二里也有类似的安排。无论教学解方程还是列方程,例题讲的是思想方法,以不变的思想方法应对多变的实际情况,有利于形成解决问题的策略,培养创新精神和实践能力。

  全单元内容分成三部分,例1和练习一教学一般的分两步解的方程;例2和练习二教学特殊的需两步解的方程;整理与练习回忆、整理、应用全单元的教学内容,反思、评价教学过程和效果。

  一、 解稍复杂方程的策略转化成简单的方程。

  两道例题里的方程都要分两步解,通过第一步运算,把稍复杂的方程转化成五年级(下册)里教学的简单方程,使新知识植根于已有经验和能力的基础上。化复杂为简单、变未知为已知是人们解决新颖问题的常用策略。这两道例题突出转化的过程,不仅使学生掌握解稍复杂的方程的方法,还让他们充分体验转化思想,发展解决问题的策略。

  1. 从各个方程的特点出发,使用不同的转化方法。

  解形如axb=c的方程,一般根据等式两边同时加上或减去同一个数,结果仍然是等式的性质化简。例1在列出方程2x-22=64以后,教材里写出了解这个方程的第一步: 2x-22+22=64+22。教学要让学生理解为什么等号的两边都加上22,体会这样做是应用了等式的性质,感受这样做的目的是把稍复杂的方程化简。过去教材里强调把ax看成一个数,是为了应用加、减法中各部分的关系解方程,新教材应用等式的性质解方程,突出转化的思想和方法。

  解形如axbx=c的方程,一般应用运算律或相应的知识化简。axbx可以改写成

  (ab)x,这已经在四年级(下册)用字母表示数时掌握了,现在只要计算ab,就能实现化简原方程的目的。教学时仍然要让学生理解为什么可以这样改写,以及这样改写的目的。

  2. 转化后的简单方程,教法不同。

  例1让学生算出2x=?,并求出x的值。这是因为学生具有解2x=86这个方程的能力。教学这样安排,是把转化思想和方法放在突出位置上,促进新旧知识的衔接,有效地使用教学资源。把求得的x的值代入原方程进行检验,在五年级(下册)已经教学。例1提出检验的要求,不仅是培养良好的习惯,还要通过结果是正确的,确认解稍复杂方程的策略和方法是正确的。

  例2把原方程化简成4x=290,没有让学生接着解。教材写出x=72.5并继续算出3x=217.5,是因为72.5米和217.5米是实际问题的两个答案。学生以往解答的问题,一般只有一个问题,这道例题有两个问题,需要完整呈现解题过程,在步骤、书写格式上作出示范,便于学生掌握。另外,检验的思路也有拓展。由于题目的特点,不能局限于对解方程的检验,还要联系实际问题里的数量关系,检验算得的陆地面积和水面面积是不是一共290公顷,水面面积是不是陆地面积的3倍。教学时要注意到这一点,既保障解方程是正确的,更保障列出的方程符合实际问题里的数量关系。

  3. 加强解方程的练习。

  前面曾经说到,例1和例2都有列方程和解方程两个教学内容,列出的方程必须正确地解,才可能得到正确的'答案。因此,两个练习的第1题都安排了解方程。练习一在例1解方程的基础上向两个方向扩展,一是引出了a+bx=c、ax-b=c等结构与例题不完全相同的方程,二是把小数及运算纳入了方程。只要体会了例题里解方程的转化思想和转化方法,会进行小数四则计算,就能够适应这两个方面的扩展。要注意的是,小学阶段不要求解形如a-bx=c的方程。因为解这个方程,如果等式的两边都减a,就会出现-bx=c-a,不但等号左边是负数,而且右边c比a小;如果等式的两边都加bx,就出现a=c+bx,这些都是现在难以解决的问题。练习二在例2解方程的基础上带出形如ax-bx=c的方程,解方程涉及的除法计算都控制在三位数除以两位数以及相应的小数除法范围内,学生一般不会有困难。

  还有一点要提及,整理与练习中安排小组讨论像3.4x+1.8=8.6、5x-x=24这样的方程各应怎样解,表明教材十分重视引导学生组建认知结构。如果既从两个方程的特点回顾解法的不同,又从策略角度进行整理,对学生是有好处的。练习中出现的方程15x2=60,是为应用三角形面积公式解决实际问题服务的。

  二、 列方程解决实际问题的关键找出相等关系。

  列方程解决实际问题要找到相等关系,方程是依据相等关系列的。其实,某个实际问题为什么选择列方程的方法解答,或者为什么选择列算式的方法解答,经常是由相等关系决定的。所以,两道例题的教学,都是先找出相等关系。

  相等关系是一种数学模型,它把数量关系表达成等式。列算式解决实际问题要分析数量关系,这时的分析着眼于挖掘已知条件之间的联系,沟通已知与未知的联系,通常把条件作为一个方面,问题作为另一个方面,因而用已知数量组成的算式求得问题的答案。实际问题里的相等关系也是数量间的关系,它的最大特点是将已知与未知有机联系起来,通过已知数量和未知数量共同组成的等式,反映实际问题里最主要的数量关系。学生在五年级(下册)初步感受了相等关系,能找出简单问题的相等关系。本册教学寻找较复杂问题的相等关系,就应充分利用学生已有的知识经验。

  1. 灵活开展思维活动,找出相等关系。

  较复杂的问题之所以复杂,在于它的数量关系错综复杂。例1里大雁塔的高度比小雁塔的2倍少22米,其中既有倍数关系,也有相差关系,是两种关系的复合。例2里已知颐和园水面面积与陆地面积一共290公顷,还已知水面面积大约是陆地面积的3倍,这是两个并列的条件。因此,寻找复杂问题的相等关系,要梳理数量关系,分清主次和先后。

  寻找相等关系没有固定的模式照搬、照套,教材从实际问题的结构特点和学生的思维发展水平出发,灵活设计寻找相等关系的教学方法。学生在二年级(下册)已经能解决类似红花有10朵,求红花朵数的2倍少4朵是几朵的问题,对几倍少几这样的数量关系已有初步的理解。因此,例1要求学生找出大雁塔与小雁塔高度之间的相等关系,让他们利用已有的倍数概念和相差概念,通过推理,把比小雁塔的2倍少22米改写成数学式子小雁塔高度2-22,从而得到相等关系。例1为什么提出还可以怎样列方程,这是由于同一个几倍少几的关系,可以写出不同的相等关系式,如小雁塔的高度2-大雁塔的高度=22、小雁塔的高度2=大雁塔的高度+22等。在小组里交流想法是尊重学生的思考,允许学生按自己的想法解题。要注意的是,这里不是要求学生一题多解。要组织学生对各种解法进行比较,体会它们在概念上是一致的,仅是表现形式不同;还要引导学生体会例题里呈现的等量关系,得出答案时的思考比较顺,从而自觉应用这样的等量关系。对于学生中未出现的相等关系,不必提及,以免搞乱思路。

  怎样合理利用例2里的两个并列的已知条件?教材选择了线段图。先在表示水面面积的线段上填3x,再在线段图的右边括号里填290,在图上感受水面面积和陆地面积之间的倍数关系和相并关系。然后通过填空写出等量关系,体会水面面积和陆地面积一共290公顷是这个实际问题里的等量关系。

  2. 加强写式练习,进一步把握数量关系,为列方程打基础。

  含有字母的式子是方程的重要组成部分,根据数量关系列方程时,都要写出含有字母的式子。是否具有用字母表示数的意识,能否顺利写出含有字母的式子,对列方程解答实际问题是至关重要的。因此,教材加强写式的练习。

  练习一第2题写出表示梨树棵数的式子3x+15,表示鳊鱼尾数的式子4x-80,都是解答几倍多几、几倍少几实际问题所需要的基本技能。安排写式练习,使学生进一步理解数量关系,养成顺着梨树比桃树的3倍多15棵、鳊鱼比鲫鱼的4倍少80尾这些数量关系的表述进行思考,并转化成数学式子的习惯,从而选择最适当的相等关系解决实际问题。所以,这道练习题既是写式训练,也是思路引导。

  练习二第2题是和倍、差倍问题的专项训练。根据黄花x朵和红花朵数是黄花的3倍,先写出红花有3x朵,用含有字母的式子表示红花的朵数,再用x+3x(或4x)表示两种花一共的朵数,用3x-x(或2x)表示红花比黄花多的朵数,发展联想能力。联想到的式子,正是方程里等号左边的部分,这道题也在写式训练的同时,进行思路引导。

  3. 列方程解答新颖的问题,拓展等量关系。

  本单元安排两节练习课,分别教学练习一第6~13题、练习二第6~11题。着重解答一些与例题不同的实际问题,找到这些问题的等量关系是教学重点,也是难点,对发展数学思考非常有益。

  练习一第7题起拓展等量关系的作用。第(1)小题画出了三角形,学生看到图上的高和底,就能想到三角形的面积计算公式,于是把底高2=三角形的面积作为解题时的等量关系。第(2)小题利用熟悉的括线表示19.8元的意思,形象显示了3枝铅笔的钱+1个文具盒的钱=一共的钱是问题里的等量关系。教材的意图是通过这些题打开思路,让学生体会不同的问题里有不同的等量关系,两个部分数之和往往是可利用的等量关系。这就为继续解答第8、9、12题作了有益的铺垫。至于第13题,把两种温度的换算公式作为等量关系。公式在题中已经揭示,只要在它上面体会已知华氏温度求摄氏温度,列方程解答比较好。反之,已知摄氏温度求华氏温度,依据公式能直接列出算式。

  例2和练一练分别是典型的和倍、差倍问题,已知的总数或相差数是等量关系的生长点。练习二第7~11题的题材和例题不同,且各有特点。但是,等量关系的载体仍然是已知的总数与相差数。第7题用线段图配合展示题意,便于学生发现小丽走的米数+小明走的米数=两地相距的米数这一等量关系,并把这个经验迁移到解答后面的习题中去。

《方程》教案 篇2

  教学目的:

  1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2、提高分析数量关系的能力,培养学生思维的灵活性。

  3、在积极参与数学活动的过程中,树立学好数学的信心。

  教学重点、难点:

  引导学生独立分析问题,找出题目中的等量关系。

  教学对策:

  在积极参与数学活动的过程中,树立学好数学的信心。

  教学准备:

  教学光盘

  教学过程:

  一、复习准备

  1、解方程(练习一第6题的第1、3小题)

  4x+12=50 2.3x-1.02=0.36

  学生独立完成,再指名学生板演并讲评,集体订正。

  二、尝试练习

  师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

  出示:30x÷2=360

  学生独立尝试完成,全班交流。

  指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?

  三、巩固练习

  1、出示练习一第7题。

  (1)分析数量关系

  提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

  第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

  (2)学生独立计算,并检验答案是否正确,全班核对。

  小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

  2、练习一第8题。

  学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

  学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

  3、练习一第9题。

  学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

  学生独立解方程再集体订正。

  4、练习一第10题。

  教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。

  5、练习一第11题。

  学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

  学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。

  6、练习一第12题。

  提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢

  学生独立列方程解答,同桌同学互相检查,再集体订正。

  7、练习一第13题。

  学生阅读第13题,理解后独立解决问题,再交流。

  教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

  四、全课小结

  说一说你这一节课的学习收获及还有什么问题。

  五、布置作业

  完成配套习题。

  教后反思:

  本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的“课前思考”,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?(2)果园里有梨树60棵,比桃树的3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的题目适合用算术方法解。另一组补充的'题目是:(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。

  通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。

《方程》教案 篇3

  教学目标:

  1、结合具体情境,了解方程的含义。

  2、会用方程表示简单情境中的等量关系。

  3、在列方程的过程中,发展抽象概括能力。

  教学重难点:

  了解方程的意义。会用方程表示简单情境中的等量关系。

  教材分析:

  为了使学生体会方程是刻画现实世界的一个有效的数学模型,产生学习方程的欲望,教材设置了多方面的问题情境。

  教学设计:

  一、创设情境,了解方程的含义

  1、出示88页的天平图

  师:你从图中看到了什么?

  天平的左边有一个药丸和5克砝码,右边有10课砝码,天平的'指针在中间,说明天平平衡。

  师:天平平衡说明了什么?

  天平两边的质量相等。

  师:如果用x表示药丸的质量,你能根据天平平衡写出一个等式吗?每人在纸上写一写,试一试。

  学生汇报

  师:x+5表示什么意思?10表示什么意思?=表示什么意思?

  2、出示92页的月饼图

  师:你从图中看到了什么?

  师:你能不能写一个等式吗?

  同桌讨论

  一生汇报

  生:每块月饼的质量×4=400克。

  师:如果用x表示每块月饼的质量,你能写一个等式吗?每人在纸上写一写。

  学生汇报:4x=400

  3、出示88页水壶图的左半幅

  师:你从图中看到了什么?根据这幅图,你能不能说出一个等式呢?(同桌互相说)

  一生汇报。

  师:如果每个热水瓶能进x毫升的水,你能用字母表示这个等式吗?每人在纸上写一写。

  生汇报

  2x+200=20xx;

  2x=20xx-200

  师:请同学们观察我们列的几个算式,它们有什么共同点?与同学交流。

  师:像上面这些含有未知数的等式叫方程。

  谁能说一说方程有什么特点?

  二、拓展应用:会用方程表示简单情境中的等量关系。

  同学们已经认识了方程,那么怎么列方程那?

  1、第93页第1题

  看图列方程

  你是怎么想的?

  2、第89页第2题

  根据题意列方程

  第二题对于学生来说有一定的难度,需要教师引导学生做。

  3、第89页第3题

  可以先引导学生找出日历中尽可能多的规律,并尝试用字母表示出来,在讨论书上的问题。

  三、总结

  今天这节课我们学了什么内容,你学到了什么,还有哪些疑问?教学反思:学生通过天平了解了方程的含义,学会了用方程表示简单情境中的数量关系,在列方程的过程中,发展了学生的抽象概括能力。

【《方程》教案】相关文章:

《方程》教案06-27

方程的意义教案08-21

《方程的意义》教案08-23

《方程》教案4篇10-06

《方程》教案15篇08-16

《方程的意义》教案15篇09-18

高中数学直线的方程教案10-10

《方程》教案范文汇编5篇11-08

学方程09-25

列方程解决实际问题教案10-20