- 相关推荐
运算律的教学反思
作为一名优秀的人民教师,我们的工作之一就是教学,写教学反思可以很好的把我们的教学记录下来,来参考自己需要的教学反思吧!以下是小编为大家收集的运算律的教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
运算律的教学反思1
今天我和学生一起学习了有理数的加法。课堂环节基本上是这样的:
一、复习导入
提问有理数的加法法则并进行了相应练习。发现同学们这部分掌握的非常好,及时鼓励表扬的学生。那么我们这一节课一起看一下加法的运算律在有理数范围内是否也适应呢?我们一起探讨一下:同桌之间进行交流
(1)(-8)+(-9)(-9)+(-8)
(2)4+(-7)(-7)+4
(3)6+(-2)(-2)+6
(4)[2+(-3)]+(-8)2+[(-3)+(-8)]
(5)10+[(-10)+(-5)][10+(-10)]+(-5)
二、组内探究合作交流
1有理数的加法的运算律
2紧跟跟踪练习:要求学生独立完成,并找4号同学去黑板练习,并进行讲解点拨总结规律方法。
1.12+(-8)+11+(-2)+(-12)
2.6.35+(-0.6)+3.25+(-5.4)
3.1+(-2)+3+(-4)+…+20xx+(-20xx)
三、课堂小结
谈谈本节课的收获。
四、当堂检测
要求学生独立完成,并找同学核对答案。
【达标检测】试一试你能行!
1.(-28)+29=29+(-28)利用的是加法的________________.
2.(-3)+7+(-4)+3=[(-3)+3]+7+(-4)利用的是________________.
3.若a,b互为相反数,且c的绝对值是1,则c-a-b的值为( ).
4.计算:
(1)(-7)+(-6.5)+(-3)+6.5;
(2)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;
(3)(-18.65)+(-6.15)+18.15+6.15.
五、课堂评价:学科班长评出本节课的'优胜小组及个人。
教学反思:本节课的重点是有理数加法的运算律,难点是:灵活运用加法运算律进行简化运算。课堂中学生通过自主互助交流,师生不断地总结规律和方法,解题技巧,总体来说课堂效果很好。学生都能掌握解题技巧。
运算律的教学反思2
1、确实复习课是很难上的一种课型,很容易给人单调、乏味的感觉,学生厌烦,老师没劲。这次的数学课是一节运算律的复习课。班上学生已经基本掌握了运算律的运用。提问时,学生很快回答出加法交换律、加法结合律、乘法交换律、结合律、分配律的字母公式。在学生练习中也证明了学生对基本运算律的运用掌握的不错,只是乘法对加法的分配律掌握的不太好,因此我在复习中增加了一个有趣的小故事,用来帮助学生记忆,事后证明学生掌握的.不错。
2、这节课我以学生为主,让学生自己回忆规律、公式,并且对学生自己做得题目也让他们自己分析、讲解、评价。学生参与积极,收到了良好的效果。
3、这节课也有不足之处,学生说的多了,留给学生练习的时间就相对减少了,这节课只是把书上的练习刚好做完,没有时间补充新的题目。今后要想办法尽量弥补这个不足,充分利用时间给学生在课堂上练习的机会。
运算律的教学反思3
以学生身边熟悉的课间活动:跳绳、踢毽子为教学的切入点,收集信息,提出数学问题。在解决问题时,针对同一问题列出两个不同的算式,对两个算式进行观察比较,唤醒了学生已有的`知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提供自主探索的时间和空间,让他们在合作交流中经历加法运算律产生的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。主要是渗透“观察猜想——举例验证——得出结论”这一学习方法,这其中要注意方法的科学性,因为学生往往只通过一个例子就轻率的得出规律,这时教师就应该引导学生本着严谨科学的学习态度,只有通过大量的举例验证,得出规律,体验不完全归纳的数学方法。到了加法结合律就让学生尝试运用这种方法自己去探索规律了。由于加法结合律是本课教学难点。教学中老师安排了三个层次,首先学生在观察等式,初步感知等式特征的基础上模仿写等式,在模仿中逐步明晰特征。第二层次在观察比较中概括特征,通过“由此你发现了些什么”引发学生由三个例子的共同特征联想到是否具有普遍性。从而得到猜想:是不是所有的三个数相加都具有这样的特征,再通过学生大量的举例,验证猜想,得出规律。
运算律的教学反思4
运算律是数学中非常重要的基础知识之一,掌握它对学生日后的数学学习和生活中的实际问题解决都有很大的帮助。然而,在六年级的运算律教学中,我发现了一些问题,并进行了反思。
我认为在教学中应该更注重实际应用,让学生明白为什么要学习运算律以及它在实际问题中的应用。例如,可以引导学生在日常生活中寻找例子,让他们理解这些规律不仅仅是为了数学而存在的。
教学中应该注重基础知识的`巩固。在学习运算律之前,学生需要掌握基本的数学运算,如加、减、乘、除等。如果这些基础不够扎实,就很难理解和掌握运算律的规律和应用。
另外,我还发现在教学中应该注意教学方法的多样性,因为每个学生都有不同的学习方式和习惯。因此,教师可以通过提供多种教学资源和方法,以满足学生的不同学习需求。
最后,我认为教师应该给学生更多的反馈和支持,让他们在认识和掌握运算律的过程中获得更多的帮助和鼓励,以提高他们的学习兴趣和能力。
让我深刻认识到教学中的不足和需要提高的地方,我会不断反思和改进自己的教学方法,以更好地帮助学生掌握运算律,并在数学学习和生活中受益。
运算律的教学反思5
本学期学习了乘法运算定律。乘法运算定律包括乘法交换律、乘法结合律。
学生对于加法交换律和乘法的交换律掌握较好,然而对于乘法结合律则运用得不太理想。
反思造成的原因及解决办法如下:
第一,学生现在只是能够初步认识,还不明白这几个运算定律的作用和意义。
第二,学生不能正确的分析算式并正确的运用运算定律,如遇到25× 16就不知道如何计算 ,有时会把16分成10×6,有时会写成25×10+6 ,针对上述情况还需对学生加强算理、算法的'理解,更要在学生的脑海中渗透“凑整”的思想。
第三,对于有些算式,有的学生甚至运用运算定律折腾了一番又回到了原来的算式,不会灵活处理。
综上所述,学生并没有深刻体会到运算定律带来的方便,解决办法可以是多讲多练,多做一些对比性强(能简便与不简便的混合运算)的题目,不断的培养学生的数感,在不断的重复练习过程中,体会应该如何运用运算定律,(以能凑成整十、整百的优先组合为原则)也就是如何做题。等接触的题目类型多了,我想学生会感悟到原来在计算的过程中运用运算定律可以使运算过程变得简单,这样,学生在计算的时候,自然就会去运用了,而且会十分的感兴趣
运算律的教学反思6
听课是一种学习,听课还是一种思维与思维的交流。我们共同反思,共同成长。听了苏燕文老师的《加法运算律》,真让我有获益不少:
“动手实践、自主探索与合作交流上学习数学的重要方式”。在探索加法运算律的过程中,教师为学生提供自主探索的'时间和空间,使学生经历加法运算律产生和形成的过程,同时也在学习活动中获得成功的体验,增强了学习数学的信心。
教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。
这节课学生的积极性很高,课堂达到了很好的效果。
思考:
在教学中学生是主体,老师只是指导作用。是不是让学生多发言,才是了解学生掌握知识程度的好方法呢?如果老师只是一手包办,对老师来说是一件艰辛的事情,你的课堂也没有活力了。有句话说得好:当老师不理解学生时,课堂上讲得越多,学生不理解到的知识就会越多。
运算律的教学反思7
本节课一方面巩固学生对加法交换律和结合律的理解和运用,另一方面是让学生在学习的过程中进一步体会到学习运算律的价值。在第一节课的教学中,在揭示运算律的意义时,也曾提到过,但只是点到为止。在本节课中是作为重点来讲的。所以在教学时,要着重体现出学生运用加法运算律进行简便计算的探索过程。
一、加强了对比的力度(运用运算律和不运用运算律在计算上的对比)。
例如在教学例题:29+46+54时,首先让学生尝试自行解决,大部学生根据已有的知识,知道应该从左往右计算,先算29+46=75,75+54=129。少部分学生通过观察发现46+54能凑成100,可以先加起来:29+46+54=29+(46+54)。将两种做法让学生书写在黑板上,让学生进行观察比较。追问:第二种方法正确吗?为什么可以先计算46+54呢?(生:可以凑成100,整百数再加一个数就简便了。)这样对比的结果是显而易见的,使学生清楚地认识到进行简便计算是运用运算律的结果,同时学生也能体会到运算律的价值所在。
二、小组活动,巧妙安排,得出规律。
新课改提出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当学生的学习兴趣被激起,强着发表自己的意见时,我提出让学生通过小组合作,去验证自己的猜测,这是符合学生的内心需要的,他们需要动笔计算证实自己的'想法,需要同伴合作及时解决问题,需要通过事实来证明自己是对的。合作不是盲目的,由于合作前的充分酝酿,学生都积极投入到小组学习中。而且在合作前,我给学生提出要分工合作,使学生的活动能够有序进行。合作是成功的,先是紧张的举例验证,然后是有效的总结交流。规律的得出顺理成章,同学们体验到了探究的乐趣,体尝到了成功的快乐。我也体会到了教学的乐趣。
运算律的教学反思8
教材分析
这节课主要教学乘法交换律和结合律进行相关的简便运算,由于学生已有应用加法运算律进行简便计算的基础,所以本课时的主要目标是对“两个数相乘”进行简便计算的教学,以及对简便运算方法的提升。
学情分析
在学习本节课乘法交换律、结合律之前,学生已经学习了加法交换律和结合律,逐步学会了不完全归纳法和用字母表示数学规律,并运用规律进行简便计算。本节课在此基础上,重点让学生经历探索乘法交换律、结合律的过程,并会运用乘法交换律、结合律进行简便计算的方法。在学生日常的自学活动中,重视让学生依据已有的知识和经验自主探索,重视小组的合作与交流,所以学生的理解能力、自学能力和合作能力正逐渐提高,良好的自主学习习惯正在逐渐养成。
教学目标
1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。
2、让学生学会运用乘法交换律和乘法结合律进行简便计算,体验运算定律的应用价值,培养学生的探究意识和问题解决能力,增强数学的应用意识。
3、培养学生观察、比较、概括等思维能力,使学生在数学活动中获得成功的体验。
教学重点和难点
1、引导学生概括乘法交换律、结合律。2、乘法交换律和结合律进行简便。
教学过程
一、创设情境,发现问题
师:同学们喜欢搭积木吗?
生:喜欢
师:我们的淘气也很喜欢搭积木,而且聪明的他还从其中发现了一些数学的奥秘呢,你们想知道是什么吗?
生:想
师:那好,就让我们一起去探索与发现。
二、探索乘法交换律
播放课件1,出示情境图。(用小正方体搭成的一个长方体的一面)
师:你知道图中有多少个小正方体吗?说说自己是怎样想的。
生:我是横着数一行有5个小正方体,一共有4行,5×4=20个。
生:竖着数一排有4个小正方体,一共有5排,4×5=20个。
师(板书5×4=4×5)可以这样写吗?为什么?
生:可以因为积相等,(求的就是一个整体)
师:认真观察这个等式,你能发现什么奥妙吗?
生思考,汇报(数字相同,交换了位置,积不变)
师:你们的发现淘气也找到了,不过喜欢思考的他还想到了一个问题,是不是所有的两个数相乘交换乘数的位置积都不变呢?
生:……
师:请你帮淘气举一些这样的例子来验证一下行吗?
生举例验证
师:大家找到了这么多例子,也就是说两个数相乘交换乘数的位置,积不变是普遍存在的一种规律,如果用a、b表示两个数,你能写出发现的规律吗?
生说师板书:
a×b﹦b×a叫做乘法交换律
师:a.b指的是什么?
[设计意图:乘法的结合律探索中往往包含着交换律,因此先经历交换律的探索过程既把分散的情景整合为一个整体,又为乘法结合律的学习作了铺垫。]
三、探索乘法结合律
1、课件2出示情景图(书54页)
师:请大家认真观察,估一估搭这个长方体用了多少个小正方体?
学生独立观察、思考后集体交流。(说说估计的方法)
师:谁估计的准确呢?请同学们在本子上算一算。
(学生独立思考,计算,教师巡视)
师:谁愿意把你的想法介绍给大家?
生举手汇报,师追问:怎样想的?
师引导从上面、正面观察
上面:(3×5)×4
师:这个算式可以写成(5×3)×4 吗?
生:可以,都是求同一个物体,
生:可以,虽然3和5的位置交换了,但根据乘法的交换律它们的积不变。
师:出示4×(5×3) 可以这样写吗?
生交流,师引导可以把(5×3)看成一个数,这里也运用了乘法的交换律。
正面:(4×5)×3
师:你还可以怎样写?根据是什么?
生:(5×4)×3 3×(5×4)
[设计意图:通过对算式的变换,巩固乘法交换律]
师:细心的淘气在这些算式中发现了两组特别的`算式,(师擦掉其它算式,留下(3×5)×4 3×(5×4)请同学们比较这两个算式你发现了什么?把你的发现告诉大家。
生;乘数相同,三个数的位置不相同,运算顺序不同,积相同。
师:可以写成(3×5)×4 = 3×(5×4)吗?
生思考回答。
[设计意图:通过对算式异同的比较,让学生自己发现规律。]
2、提出假设,举例验证
师:你们的发言很精彩,那么象这样的三个乘数的位置不变,改变运算顺序,积不变是不是在其他算式中也存在呢?你还能举出例子来吗?可以是两位数或三位数相乘的,为了节省大家计算的时间,在运算时可以使用计算器
(学生在小组内举例交流讨论,教师巡视指导。)
师:谁愿意介绍一下你们举例的情况。
生:……
3、概括规律
师:从刚才大家所举的例子来看,每一组的结果都是相同的。这样的例子多不多?(生:多)能不能举完呢?(生:不能)那么从中你又能发现乘法运算中的什么规律吗?
生思考概括
师:你们概括得真好,你能用三个不同的字母分别表示乘法算式中的任意三个数字,写出我们发现的规律吗?
生说师板书:
(a×b)×c﹦a×(b×c)叫做乘法结合律
四、运用模型,完成练习
1、学生独立完成“练一练”1题。最后运用课件集体订正。
2、运用乘法结合律很快算出38×25×4 42×125×8
生独立完成,小组交流后汇报
3、完成“练一练”。先要求学生独立计算,教师巡视,发现有错的让该生上去视屏展示,集体交流,并说明运用了什么规律。
[设计意图:通过练习让学生能够独立运用乘法结合律进行简便运算.对所学的知识通过练习加以巩固运用。]
五、小结:
1、这节课你学到了什么?
2、我们是怎样认识这个好朋友的?
板书设计
运算律:乘法交换律、结合律
a×b﹦b×a (a×b)×c﹦a×(b×c)
运算律的教学反思9
本节课主要内容是加法的交换律和结合律,并且孩子们在小学阶段已经学过假发的结合律何交换律。所以本节课我以2个问题复习导入。第一个问题:有理数加法法则什么?第二个以四道题导入15+28+5=?13+14+6+7=???50+18+10=?12+7+8+3=,回顾用加法交换律和结合律简便计算。在新授内容出示两组对比题,通过让学生观察、比较、猜想、验证。让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律从而得出结论。课已经上完了,现通过反思,找出不足,从而提高自己的教学水平:
1、提供自主探索的机会本节课以学生身边熟悉的知识点切入,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己提问题,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提国自主探索的时间和空间,使学生经理加法运算率产生的形成的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
2、关注学生已有的知识经验。在学习加法运算律之前,学生对加法的运算已有了较多的感性认识,为新知的'学习奠定了良好的基础。教学中注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。
3、引导学生在体验中感悟数学。教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。
不足之处:
1、在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。
2、安排这两个运算律教学时采用的都是不完全归纳推理,因此在教学加法结合律时也应该让学生多举些列子,让学生去评价举的列子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。
运算律的教学反思10
学生从上学就开始接触乘法运算律,对乘法运算律积累了较多的感性认识,这是学习乘法分配律的基础。教材安排运算教学时,采用了不完全的归纳推理。运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解决之间的共同特点,初步感受运算规律。然后让学生根据对运算律的出步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。教材有意识地让学生运用已有经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理地建构知识。
本节课我以建构主义学习理论位指导,力求体现“以学生发展为本”的指导思想。基于这种思想,设计课堂教学时,注意了以下几个问题:
1、提供自主探索的机会。
“动手实践、自主探索与合作交流上学习数学的重要方式”。在探索乘法运算律的过程中,教师为学生提供自主探索的时间和空间,使学生经历乘法运算律产生和形成的过程,同时也在学习活动中获得成功的体验,增强了学习数学的信心。
2、关注学生已有的'知识经验。
在学习乘法运算律之前,学生对四则运算已有了较多的感性认识,为新知学习奠定了良好的基础。教学中始终处于探索知识的最佳状态,促使学生对原有知识进行更新、深化、突破、超越。
3、引导学生在体验中感悟数学。
教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化与外化运用的认知飞跃,同时也体验到学习数学的乐趣。
运算律的教学反思11
数学教学不是一个简单的“告诉”,把内隐在学生口算中的乘法分配律显性化并成为学生的自觉认识,对于学生来说并不是一蹴而就的事,它需要一个过程,这个过程就是要让学生经历“观察——体验——猜想——验证”这样一个循序渐进的探索发现的过程。同时,在这个过程中,也让学生学会运用数学的思维方式去观察、去思考、去探索,获得一些经验和方法,培养进一步学好数学的信心,提升对生活的认识,感受自我生命的价值。由此,我紧紧把住乘法分配律教学的魂,充分挖掘乘法分配律的可探究资源,让学生多次经历有序观察、大胆猜想、小心验证的探究性学习过程。在此基础上,引领学生进行总结、反思、升华,感悟人生哲理。
教学过程如下: (在比较从生活实践应用中得到的两个等式(40+3)×25、40×25+3×25和(40-3)×25、40×25-3×25 的'不同点后)
师:由此,你能提出什么猜想?
生:两个数的差与一个数相乘,是否可以用两个数分别与这个数相乘,再把所得的积相减呢?
师:我们惊喜地看到×××同学在科学的道路上迈出了关键的一步:大胆的提出了这样一个猜想。如果把他的猜想用字母表示出来,该怎样表示?
生:(a-b)×c、 a×c-b×c
师:这个猜想能成立吗?怎么办? 师:好!那就让我们举例验证一下,开始。 (学生举例后,请 2~3 名同学上台汇报展示)
师:由两个数的和与一个数相乘,你还会想到什么?
生 2:三个数的和与一个数相乘,是否可以用三个数分别与这个数相乘,再把所得的积相加呢?
生 3:很多个数的和与一个数相乘,是否可以用很多个数分别与这个数相乘,再把所得的积相加呢?
生 4:如果括号里有加有减,是否可以用这些数分别与这个数相乘,再把所得的积相加相减呢?
师:同学们提出了各种各样的猜想,让我们带着这些猜想课后继续探讨,相信还会有许多惊人的发现。
师:在这节课即将结束的时候,让我们一起回顾一下,我们是怎样发现乘法分配律的?
生:首先对几道简单的口算题进行有序的观察,然后大胆地提出猜想,用举例的方法进行验证,最后得出结论,发现了乘法分配律。
师:是啊,几道简单的口算题,让我们发现了一个重要的运算律——乘法分配律。同样,简单的生活现象,也能生发出伟大的发明与发现。(图片配音展示)英国科学家牛顿从苹果落地的生活现象中引发思考,发现了万有引力定律,创立了伟大的经典力学理论体系;美国发明家莱特兄弟,从鸟的飞行中得到启示,发明了飞机,实现了人们翱翔蓝天的梦想。可以这样说,平凡中孕育着伟大。
师:看了这个短片,你有什么想说的?
生:我们要学会用心观察。
生:我们要对生活充满好奇心,因为好奇心是一切发现的基础。
生:许多伟大的科学发现都源于我们的日常生活,我们做一个生活的有心人。
师:是啊,只要我们做一个生活的有心人,勤于观察,善于思考,大胆猜想,小心求证,也可能会有许多惊人的发现!让探索成为我们永恒的追求!
师:通过这节课的学习,你有什么想对老师和同学说的?
生:世上无难事,只怕有心人。只要我们用心去观察、去思考、去探究,我们就会发现许多没有发现的知识。
师:这位同学说的太妙了!让我们就以这位同学的至理名言作为本节课的结束语:只要我们用心去观察、去思考、去探究,就会有所收获!让我们共同努力吧! 这样教学,巧妙地把数学教学提升到科学教育、生命教育的层面,让学生感受到数学的神奇魅力,感受到科学探究的巨大价值,感悟人生哲理,培养学生对数学、对科学、对生活、对自我积极的情感、态度和价值观。 因此,我们要以冷静的态度、批判的眼光审视当下的数学教育,研究教材,准确把住数学知识的根,研究学生,从
运算律的教学反思12
本单元的内容有:加法运算定律,包括加法交换律和加法结合律。乘法运算定律,包括乘法交换律、乘法结合律和乘法分配律。学生对于加法和乘法的交换律掌握较好,可运用这两个定律对一步加法和乘法进行验算,基本能够灵活运用。然而对于加法、乘法结合律则运用不是很好,乘法分配律则更为糟糕。细想有以下几个原因:
第一,学生现在只是能够认识,弄明白这三个运算定律,还不明白这几个运算定律的作用和意义。(除了少部分思维敏捷的学生之外)
第二,学生能正确的分析算式,并正确的运用运算定律,对学生的已有基础提出了不少的考验,如42X25,运用运算定律计算这个算式,很多学生是把25分为20和5,这样即使运用了乘法分配律,但较之把42分成40和2相比,有很大的出入。这主要是因为学生还没有完全形成25X4得100这个重要的因素造成的。这里简单的描述为数学“数感”吧,还有125和8得1000一样。第有的学生甚至运用运算定律折腾了一番又回到了原来的'算式。
综上所述,解决办法只能是多练,不断的培养学生的数感,在不断的练习过程中,体会应该如何运用运算定律。
运算律的教学反思13
本节课主要内容是加法的交换律和结合律,并且孩子们刚学完四则运算,对四则运算已有较多感性认识。本节课我是以孩子们最熟悉的体育大课堂中的体育活动为情境引入的,让学生通过观察、比较和分析,初步感受运算的规律。然后让学生根据对运算律的初步感知,举出更多的例子,进一步观察比较,发现规律。
1.提供自主探索的机会
本节课以学生身边熟悉的情境为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己提问题,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的'过程中,为学生提国自主探索的时间和空间,使学生经理加法运算率产生的形成的过程,同时也在学习活动过程中获得成功的体验,增强学生学习数学的信心。
2.关注学生已有的知识经验。
在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。
3.引导学生在体验中感悟数学
教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象内化运用的认识飞跃,同时也体验到学习数学的乐趣。 不足之处:
1. 在探索加法结合律的过程中应该再放开一些,引导学生观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算律。
2. 安排这两个运算律教学时采用的都是不完全归纳推理,因此在教学加法结合律时也应该让学生多举些列子,让学生去评价举的列子好不好,让学生自己去发现结合是把可以得出整百整十的数放在一起,而不是随意的乱编。然后进一步分析、比较,发现规律,并先后用符号字母表示出发现的规律。
运算律的教学反思14
教学乘法分配律之后,发现学生的正确率很低,特别是对乘法结合律与乘法分配律极容易混淆。针对这种情况,在教学中应该注意些什么呢?
1、乘法分配律的教学既要注重它的外形结构特点,也要同时注重其内涵。
我们往往注意了等式两边的“外形”结构特点,即两数的和乘一个数=两个积的和。缺乏从乘法意义角度的理解。这时教师可提问“为什么两个算式是相等的?”这里不仅要从解题思路的角度理解如:(6+4)×9=6×9+4×9是相等的,还要从乘法的意义的角度理解,即左边表示10个9,右边也表示10个9,所以(6+4)×9=6×9+4×9。
2、注意区分乘法结合律与乘法分配律的特点,多进行对比练习。
乘法结合律的特征是几个数连乘,而乘法分配律特征是两数的和乘一个数或两个积的'和。在练习中(40+4)×25与(40×4)×25这种题学生特别容易出现错误。为了学生更好地掌握可以多进行一些对比练习。如:进行题组对比15×(8×4)和15×(8+4);25×125×25×8和 25×125+25×8;练习中可以提问:每组算是个有什么特征和区别?符合什么运算定律的特征?应用运算定律可以使计算简便吗?为什么要这样算?
3、让学生进行一题多解的练习,经历解题策略多样性的过程,优化算法,加深学生对乘法结合律与乘法分配律的理解。
如:计算125×88;101×89你能用几种方法?对不同的解题方法,引导学生进行对比分析,什么时候用乘法结合律简便,什么时候用乘法分配律简便?明确利用乘法结合律与乘法分配律进行间算的条件是不一样的。乘法分配律适用于连乘的算式,而乘法分配律一般针对有两种运算的算式。力争达到“用简便算法进行计算”成为学生的一种自主行为,并能根据题目的特点,灵活选择适当的算法的目的。
4、多练。
针对典型题目多次进行练习。练习时注意练习量和练习时间的安排。刚开始可以天天练,过段时间以后可以过1-2天练习一次,再到1周练习一次。典型题型可选择(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。对于比较特殊的题目可间断性练习,对优生提出掌握的要求。如36×98+72;68×25+68+68×74,32×125×25等。
运算律的教学反思15
1、提供自主探索的机会
本节课以学生身边熟悉的情境冬季锻炼项目跳绳、踢毽子为教学的切入点,激发学生主动学习数学的需要,为学生进行教学活动创设了良好的氛围。通过学生自己理解题意,自己解决问题,对两个算式进行观察比较,唤醒了学生已有的知识经验,使学生初步感知加法运算律。在探索加法运算律的过程中,为学生提供自主探索的时间和空间,使学生经历加法运算律产生、形成的过程,同时也使学生在学习活动过程中获得成功的体验,增强学生学习数学的信心。
2、关注学生已有的知识经验和生活经验
在学习加法运算律之前,学生对四则运算已有了较多的感性认识,为新知的学习奠定了良好的基础。教学中,我能注意激活学生原有的知识经验,让学生始终处于主动探索知识的最佳状态,促使学生对原有知识进行更新、深化、超越。我还充分利用学生已有的生活经验,引导学生把所学的'数学知识应用到现实中去,以体会数学在现实生活中的应用价值,学习数学知识,是为了更好地去服务生活,应用于生活,学习致用。如:在设计练习时,我设计了既符合实际又让学生直观感知计算方法的巧妙运用的题目,使计算既快又对,学生觉得很有成功感,进而增强了学习数学的兴趣.为即将学习简便运算奠定了基础;
3、引导学生在体验中感悟数学
教学设计中注意引导学生在数学活动中体验数学,在做数学中感悟数学,实现了运算律的抽象--内化--运用的认识飞跃,同时也体验到学习数学的乐趣。
不足之处:
1、整节课上下来,时间较紧,练习无法保证,此外在用符号表示加法交换律时学生想出的类型很少。
2、在总结、交流加法的结合律时,学生的语言表达能力较差,教师应适当地进行指导和帮助。
3、在本节课的设计中,我只注意了算式之间的比较,而忽略了两个运算定律之间的比较。
【运算律的教学反思】相关文章:
混合运算教学反思05-20
《运算》优秀教学反思05-23
小数混合运算教学反思12-02
角的比较与运算教学反思08-23
分数混合运算教学反思05-21
《集合的基本运算》教学反思06-16
关于混合运算教学反思06-22
《运算定律》教学反思06-16
混合运算复习教学反思05-22