圆柱体积教学反思

时间:2024-11-06 09:30:44 教学反思 我要投稿

圆柱体积教学反思

  身为一名人民老师,我们需要很强的教学能力,对教学中的新发现可以写在教学反思中,写教学反思需要注意哪些格式呢?下面是小编帮大家整理的圆柱体积教学反思,仅供参考,大家一起来看看吧。

圆柱体积教学反思

圆柱体积教学反思1

  《圆柱的体积》是在学生已经学会计算长方体、正方体的体积,并且掌握圆柱基本特征的基础上,引导学生探索并掌握圆柱的体积公式。通过教材教学学习后,下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

  一、在教学过程的设计方面

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。不过应该注意时间的控制,不能花费太多的时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

  3、练习时,形式多样,层层递进

  例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型: a。已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  b。已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  c。已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

  d。已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

  e。已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

  二、在教学策略方面

  我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

  三、在教学技能方面

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的.答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

  四、教学要达到三个目的

  一是认识等底等高的含义,便于判断圆柱可以转化成与它等底等高的长方体。

  二是从长方体与正方体等底等高,体积也相等的事实,引发等底等高的圆柱与长方体的体积也相等的猜想,形成把圆柱转化成长方体的活动心向。

  三是复习长方体、正方体的体积公式,圆柱的体积最终也要这样计算。

圆柱体积教学反思2

  《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:

  (1)圆柱的体积等于长方体和正方体的体积。

  (2)圆柱的体积也等于底面积乘高。

  猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的:一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。

  在本节课的教学过程中还存在诸多的问题。

  1、演示圆柱的'体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。

  2、在圆柱体经过切割、拼接之后转化为近似长方体的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。

  3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。

圆柱体积教学反思3

  一、我在导入时,突破教材,有所创新 圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。

  二、我教学新课时,实现人人参与,主动学习 学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的'教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。

  三、我在 练习时,形式多样,层层递进 ,例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,教师在设计练习时要多动脑,花心思。

圆柱体积教学反思4

  《圆柱的体积》要求让学生经历“类比猜想—验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。教学一开始,我就先让学生回忆圆的面积公式我们是如何得到的,有的同学马上想到用转化的方法,接着我再提出:那么你认为圆柱的体积公式该如何推导呢?学生自然而然就想到也用转化的.方法,然后我再让学生分成四人小组活动,充分利用学具盒的学具讨论如何得到圆柱的体积公式。

  最后,学生通过积极的讨论、交流后,很自然的想到把圆柱转化成长方体,并根据长方体与圆柱的关系来推导出圆柱的体积公式。这样运用原有的经验让学生去解答,充分激发了学生学习的潜能,大大调动了学生的学习积极性,学生学得愉快,我也教得轻松,真是事半功倍。

圆柱体积教学反思5

  本课主要内容是圆柱的体积公式的推导及其应用。因为公式的推导过程是个难点,因此在教学设计时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,帮助学生理解公式的来源,从而获得知识。下面我从教学过程、教学策略、教学技能等方面谈谈自己的一些反思。

  一、在教学过程的设计方面

  1、导入时,力求突破教材,有所创新

  圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。于是我设计时不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、

  流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的`。不过应该注意时间的控制,不能花费太多的时间。

  2、新课时,要实现人人参与,主动学习

  学生进行数学探究时,应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。在推导圆柱体积公式过程时,我让学生经历先想—观察—动手操作的过程。把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着让学生小组交流长方体的长和宽与圆柱的各部分有什么关系?圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。这样学生亲身参与操作,有了空间感觉的体验,,也有了充分的思考空间。这样设计我觉得能突破难点,课堂效果很好。

  3、练习时,形式多样,层层递进

  例题“练一练”中的题目都比较浅显,学生还能容易掌握,但遇到多转几个弯的题目就束手无策了。所以,为了让学生能熟练地掌握计算圆柱的体积,我在设计练习时动了一番脑,花心思去考虑怎样才能让学生用最短的时间完成不同类型的题目。通过反思,我概括出五种类型。

  a.已知圆柱底面积(s)和高(h),计算圆柱体积可以应用这一公式:V=sh。

  b.已知圆柱底面半径(r)和高(h),计算圆柱体积可以应用这一公式:V=πr2h。

  c.已知圆柱底面直径(d)和高(h),计算圆柱体积可以应用这一公式:V=π(d/2)2h。

  d.已知圆柱底面周长(c)和高(h),计算圆柱体积可以应用这一公式:V=π(c÷π÷2)2h。

  e.已知圆柱侧面积(s侧)和高(h),计算圆柱体积可以应用这一公式:V=π(s侧÷h÷π÷2)2h。

  因为是第一课时所以在巩固练习中,只要从前四种类型去考虑,做到面面俱到,逐层深入,由易到难,使学生真正掌握好计算圆柱体积的方法另外,还设计了解决生活中的问题,让学生能学以致用解决生活中的问题。

  二、在教学策略方面

  我采用多媒体的直观教具相结合的手段,在圆柱体积公式推导过程中指导学生充分利用手中的学具、教具,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流、总结归纳等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。而在巩固练习这一环节,我用多媒体发挥它大容量、节省时间的优点。

  三、在教学技能方面

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是学生在自己艰苦的学习过程中发现并从学生的口里说出来的,这样的知识具有个人意义,理解更深刻。但是我觉得这个引导的过程需要教师有认真准备,随时能解决课堂上可能出现的一些问题。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而我在本课创设了丰富的教学情景。

  四、存在的问题

  不足之处是:由于这节课的设计是以学生为主、发挥学生的主体作用,要充分展示学生的思维过程,所以在学生动手实践、交流讨论和思考的时间上教师应合理把握,不能时间较多,否则会导致练习的时间较少。

  另外,在练习设计上,题形虽然全,但觉得题量偏多,因为这部分练习涉及的计算多、难,这样练习题还需精心设计。

圆柱体积教学反思6

  在本节课的教学中,教师根据教学的需要,充分利用现实生活中的素材,把教材中有关圆柱的提积的应用所呈现的内容变为现实生活中的问题,变书本知识为生活中的知识。

  本节课中教师没有过多地教学生,而让学生回归到生活原形中去,应用所学的知识解决了生活中的实际问题,使本来很枯燥的圆柱的体积应用的题材生活化,增加了学生的信息量,提高了学生体会数学奥秘的'积极性。学生体会到了生活中处处有数学,数学就在我们身边,知识才是我们解决实际问题的“金钥匙”。通过寻找这些信息背后的信息,学生掌握了知识、形成了技能。同时也感受到了数学应用的广泛性以及数学与生活的紧密联系。

  但在本节课中也有不足的地方,如①由于中心问题空间较大,具有挑战性,中下等学生自主探索有一定的难度;②实践中,学生独立思考和小组讨论花时间太多,影响了后面的教学,这都是以后在教学中应注意的问题。

  总之,随着数学的发展,数学的应用也越来越广泛。作为教师的我们,应该提供给学生充分的机会,让学生运用已学过的数学知识解决问题,在问题的解决过程中,发展学生的思维能力,用数学的眼光去感知、去观察、去应用。

圆柱体积教学反思7

  在教研组评课的时候,程老师说过这样几句话,我总结如下:

  1、 这节课讲的是什么?

  2、 学习这些知识为了什么?

  3、 这节课讲给谁?学习这些知识的学生处在什么水平?

  从这几个点反思了自己的本节课:

  一、 这节课讲得是什么?

  “是什么”的问题我的理解是理清楚本节课的教学内容,教学目标和重难点,教师要做到心中有数。

  在备课时教师首先要关注教材,尊重教材,尽自己最大的力量认识理解教材的编写意图,理解教材所传递出来的信息。同时教师在阅读教材时要清楚教学内容在数学知识体系中的作用,对前面学习内容的延续,对后面学习内容有什么作用。

  前面已经学习了“长方体、正方体”立体图形体积的计算,圆柱体积的学习是学生已有知识的延续,同时为后面圆锥体积的学习做好了铺垫和准备。在整个立体图形的学习中起着承前启后的作用。

  本节课重点是让学生理解并掌握圆柱体积公式,并能够熟练应用计算,难点是让学生经历圆柱体积公式的推导过程。

  二、 将这节课是为了什么?

  数学来源于生活,有应用于生活,生活中处处有数学,学习数学知识的目的就是为了应用。那么本节课所学的知识就是为了计算一些圆柱体积的大小,这是这节课的目的所在。

  三、 这节课讲给谁?学生的水平。

  这一点就是提醒我们在备课时,充分的备学生,在充分理解教材的基础上。再重新放空自己,把自己摆在学生的位置,重新学习这部分知识。以学生的姿态来备课,读懂学生是上好课的有力保证。

  “圆柱体积公式的推导”是在学生学习了圆柱的特征、表面积计算以及“长方体的体积”“正方体体积”等相关立体图形的基础上教学的,学生拥有继续学习的旧知识和经验,即:

  1 知识铺垫:学生知道“体积”的含义及计算体积的方法;

  2 经验铺垫:在研究圆的面积时,采用“割补转化”的方法,渗透了一种探究学习的思想方法;

  四、反思本课的落实情况

  导入部分,先复习了“圆柱”的特征, 然后通过解读课题,复习了“体积”的概念,自然的`引出“我们学习过哪些图形的体积公式”复习了长方体正方体的体积如何计算,并重点分析了立体图形的统一公式,说明二者的体积与“底面积”和“高”相关。从而创设问题情境,引导学生运用已有的生活经验和旧知,制造认知冲突,形成了“任务驱动”的探索氛围。

  探究部分,为学生提供了观察思考及交流讨论的平台,由于教具的限制,没有让学生充分的进行动手操作。这比较遗憾。通过多媒体演示让学生在观察中逐步经历计算公式的推导结果,并发展学生的空间观念。

  练习环节安排注重练习生活实际,让学生应用自己推导出的计算公式解决引入环节中的两个问题,第一个问题数据提供,直接利用公式进行计算,同时在巩固两个计算。之后再让学生解决老师手中的圆柱体积,这时需要让学生测量相关数据。让学生认识数学的价值,切实体验到数学其实就在我们身边。并且学生在解决问题的同时推导出了已知半径和直径计算圆柱体积的公式。

  本节课最大的不足就是:学生在练习中教师关注度不够全面。

圆柱体积教学反思8

  本节可的教学内容是九年义务教育六年级下册的《圆柱的体积》,以前教学此内容时,直接告诉学生:圆柱的体积=底面积×高,用字母表示公式:V=Sh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:

  一、学生学到了有价值的知识。

  学生通过实践、探索、发现,得到的知识是“活”的,这样的知识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。

  二、培养了学生的.科学精神和方法。

  新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。

  三、促进了学生的思维发展。

  传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。

  本节课采用新的教学方法,取得了较好的教学效果,不足之处是:由于学生自由讨论、实践和思考的时间较多,练习的时间较少。

圆柱体积教学反思9

  我进行了圆柱体积的教学,圆柱的体积公式的推倒,需要学生的动手操作或教师教具的.操作演示,把圆柱体转化成学过的立体图形长方体,再根据长方体与圆柱体之间的关系推倒出圆柱体的体积。上课前我对学生的动手操作环节进行了思考,学生的学具就既小又直接拼成了长方体,对于学生操作起不到效果,所以就直接用课件演示让学生观察.学生能很快的发现知识,因此推导时间过短,总感觉没有达到效果。学生缺少动手实践,就没有了探究知识的过程,很多的同学可能只是被动的接受知识。这一次让学具和教具成了教学的绊脚石。

  其次有一个学生大胆猜想圆柱体也有可能转化成正方体,当时讲到转化为长方体时,没有及时处理好这个学生的问题,而是在下一个课时补处理的。对于课堂的灵活掌控也是不够的。在今后的教学中要加强自身对课堂的掌控能力。灵活及时处理课堂中的问题。

圆柱体积教学反思10

  一、让操作更详实,留下思考的痕迹

  动手实践、自主探索、合作交流是学生学习数学的重要方式。组织学生在实践操作中探究发现规律,从感性到理性,从实践到认识,从具体到抽象,引导学生积极动手动脑、概括分析、抽象推理等,这不仅有利于学生思维的发展,而且也可以加深学生对数学知识的理解和掌握。尤其是对于几何知识的学习,课堂教学中的动手操作就显得更加重要。究竟自己在教学的时候是否用好了学生的操作,让学生对操作的过程有深刻的体会与认识,在操作中是否激起了学生的思考。留下自己思考的痕迹,为进一步探索知识做好准备。

  二、让观察更细致,寻找知识的联系

  数学观察力,是新课标中对提出学生应必备的一种重要数学能力。学生在操作的基础上要学会观察,挖掘知识之间的联系,真正体现操作的价值。通过学生直观的观察,让学生去挖掘数学本质上的一些联系,让学生在知识的探索过程中有一个完成的体验过程,也对所学的知识有一个更好的理解。

  三、让探索更深入,渴求方法的掌握

  如果我们在教学的过程中能够很好地重视学生的操作经验积累,并形成一定的方法,相信学生在沟通新知和旧知之间的`联系时会更加的自然而然,也能顺利的实现知识的正迁移。因此,在数学学习的过程中,应该让学生的探索过程更加的深入,形成一定的学习方法,为今后的学习积累知识经验的同时

圆柱体积教学反思11

  本节课是在学生已经学习了圆柱的体积计算公式的基础上开展的,大多数学庭作业已经能够熟练运用体积公式计算直观圆柱形容器的容积,这对本节课的后续计算莫定了良好基础。但是对生通过上节课的课堂练习以及家于例7中非直观圆柱形容器的容积计算,很多同学一开始无处着手。通过课件将瓶子正置及倒置的情况分开讨论,然后逐步引导,从而最终使学生明白该瓶子的容积在数值上就相当于两个小圆柱的.体积。紧接着,两个及时的模仿练习再次让大家感受到解决此类问题的关键就在于“转换”和“构建”,即:将无法直接计算体积的物体转换成可计算体积的物体的体积;又或者将原不规则的物体换个角度或方向,从而便于我构建新的可计算体积的物体,进而得出解题思路和问题答案。

  对于“转化”这种数学思想的培养,在教学过程中多进行一些引导性提问,给于学生足够的思考讨论时间,尽量让学生自己分析出思路,享受到成功的快乐,从而增强学生的自信心,提高学习兴趣。

圆柱体积教学反思12

  圆柱的体积一课,重点是体积公式的推导。公式导出后,如何进行计算应用。

  教学中学生存在的问题是:

  1、学生对推导过程理解有困难,不深入;

  2、在计算的过程中,单位名称用错,体积单位用面积单位。

  3、对于书中所给的立体图形,认识不到位,不能正确分辨直径、半径以及圆柱的高,做题出错。圆柱的高也可以叫做圆柱的长(个别学生不清楚)

  突破难点的方法:

  1、为了避免单位名称的错误,可在课前复习中设计单位换算的填空题,辨析题等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。

  2、在学生利用学具理解公式的推导过程时,应放手让学动手动脑自己解决,但动手之前一定要把任务布置清楚,让孩子们自己发现圆柱与长方体各部分之间的关系,从而推导出圆柱的体积公式。

  3、注意引导学生参与到探索知识的发生发展过程中,突破以往数学学习单一、被动的学习方式,关注学生的`实践活动和直接经验,“通过自己的活动”获得情感、能力、智力的全面发展。小学阶段,操作活动是数学活动的重要组成部分,也是学生学习活动的重要方式。

圆柱体积教学反思13

  在教学圆柱的体积时,我采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。通过这节

  课的教学,我觉得有以下几个方面值得探讨:

  一、联系旧知,导入新知。

  圆柱的体积的导入,在回忆了长方体、正方体体积计算方法,并强调长方体、正方体的体积都可以用底面积乘高,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想:“圆柱体是否可以转化成我们学过的图形呢?”激发学生好奇心,独立思考问题,探索问题的愿望。这样联系旧知,导入新知,思维过度自然,易接受新知。

  二、动手操作,探索新知。

  学生在探究新知时,教师要给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,学生亲身参与操作,先用小刀把一块月饼切成一个圆柱体把圆柱的底面分成若干份(例如,分成12等份),然后把圆柱切开,再拼起来,圆柱体就转化成一个近似的长方体。找一找:这个长方体的长相当于圆柱的什么,宽是圆柱的什么,高是圆柱的什么。圆柱的体积就是长方体的体积,从而推导出圆柱体积的计算公式。

  三、课件展示,加深理解。

  为了直观、形象,让学生观看课件:圆转化成近似长方形的过程,使学生很容易猜想出圆柱体也可以转化成近似的长方体来得出体积公式。在推导圆柱体积公式的过程中,要求学生想象:“如果把圆柱的底面平均分成32份、64份……切开后拼成的物体会有什么变化?”学生虽然能说出“拼成的物体越来越接近长方体。” 但是,到底拼成的图形怎样更接近长方体?演示动画后,学生不仅对这个切拼过程一目了然,同时又加深理解了圆柱体转化成近似长方体的.转化方法。

  四、分层练习,发散思维。

  为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。

  但是不成功的地方也有,如学生在操作时有些学生拼的不是长方体,而是其他的形状,这里由于是上公开课的原因就没有有针对性的讲解,只做到了多数学生的指导而没有做到面向全体学生,这点我觉得在课堂上很难做到。

  总之,通过这次的国培学习,使我的思想认识和课堂技能都有了新的认识,感谢国培!

  教材作为教学的凭借与依据,只不过是编者对学科知识、国家要求与学生进行整和思考的结晶。但由于受时间与地域的影响,我们在执行教材时不能把它作为一种“枷锁”,而应作为“跳板”——编者意图与学生实际的“跳板”。因此,教学时,我们要精心研究教材,揣摩编者意图、考虑学生实际,创造性地利用教材。

圆柱体积教学反思14

  《圆柱的体积》不仅要让学生掌握圆柱体积的计算方法,最重要的是掌握学习的思想方法(转化),因此,教学新课前,复习了圆的面积公式的推导过程,以及长方体正方体的体积计算公式。为转化做好了铺垫。课上,出示课件:等底等高的长方体、正方体、圆柱,学生通过观察,作出猜测:(1)圆柱的体积等于长方体和正方体的体积。(2)圆柱的体积也等于底面积乘高。猜测是否准确呢?点燃学生的学习欲望。让学生根据圆的面积公式的推导过程,让学生迁移想:圆柱体能转化成什么几何形体,然后让学生用教具验证圆柱转化成长方体过程,并讨论思考:这个圆柱体与转化后的长方体相比什么变了,什么没变?从而得出结论圆柱的体积等于底面积乘以高。有一种推导过程是我没有预设到的':一学生回答,长方体的长是圆柱的底面周长的一半,宽是底面半径,高不变。所以圆柱体积=底面周长的一半×底面半径×高。我没有否定她的回答,接着又让学生动手实践操作,让学生发现长方体与圆柱之间的联系,利用圆的周长和面积把圆柱体积的也转化成底面积乘以高。这样有学生的积极主动的参与,不仅创造性的建立了数学模型而且发现圆柱体的转换成长方体的规律,掌握了一种重要的学习方法,转化。

  为了培养学生解题的灵活性,进行分层练习,拓展知识,发散思维。如:已知圆柱底面积和高,怎样求圆柱体积;已知圆柱底面半径和高,怎样求圆柱体积;已知圆柱底面直径和高,怎样求圆柱体积;已知圆柱底面周长和高,怎样求圆柱体积;已知圆柱侧面积和高,怎样求圆柱体积;已知圆柱底面积和体积,怎样求高;已知圆柱体积和高,怎样求底面积等。

  在本节课的教学过程中还存在诸多的问题。

  1、演示圆柱的体积的时候,因为学生手中没有学具,教师教具的局限性,演示时后面的学生看不清楚。

  2、在圆柱体经过切割、拼接之后转化为近似长方体

  的时候,应多给后进生留有观察、讨论的时间,他们的思维反应能力比其他学生较慢,应给于他们一定的空间和时间,让后进生也积极参与到课堂的学习中,使全班同学共同进步。

  3、在解决实际问题的时候,不仅要注重公式的应用,还要注意计算能力的培养。

圆柱体积教学反思15

  《数学课程标准》指出“数学教学要让学生经历知识的形成过程”;“通过义务教育阶段的学习,学生能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和其它学科学习中的问题,增加应用数学的意识”。不难发现新课标注重的不只是让学生掌握学习中的结论,更关注的是他们个性的体验,在学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。为此,在本小节的教学中我着重做了以下几点:

  一、创设问题情境,激发学生求知兴趣

  学习圆柱的体积我是这样创设情境:1、长方体、正方体的体积是怎样求的?(根据学生回答统一为v=sh)2、圆的面积是怎样推导的?(化曲为直)3、如何求出圆柱的体积?能否借助于学过的知识和方法来推导圆柱的体积计算方法?一系列问题情境的创设,既有复习让学生做好知识上的储备,以便探求新知,又有一定的指导性、帮助性、鼓励性,容易激发学生求知的兴趣,调动学生参与学习的热情,同时也便于学生掌握学习的方向,不致于在下面的学习过程中显得无所适从。

  二、预设开放情境,引发学生操作欲望

  圆柱的体积公式推导教材上编排的只是一种摆放的方式,有一定的局限性,容易限制学生的思维,也容易引起学生想入非非。此处是教学中很好的生成资源,是引发学生操作、探究、解决心中疑问的切入点。教学中,我并没有一味的按书本的方式让学生去摆放长方体,而是为学生预设一种开放的情境:把圆柱体切开后,拼成的长方体有哪几种摆放的方式?它们的底面积和高与圆柱的哪些部有关系?一石激起千层浪,学生小组操作兴趣盎然,通过摆一摆、放一放、找一找、说一说,学生发现无论竖放、立放还是平放,从哪个角度思考,均能得到圆柱体积的计算公式为v=sh,学生大呼神奇。是的,这就是数学的魅力,这就是学生在经历知识形成过程中所获得成功的乐趣,学生亲身感受到数学的美,领略到数学天地中的风光无限,这是学生最开心的,也是课堂教学应追求的精彩。

  三、增设创新情境,诱发学生探究动机

  在圆柱体积应用的教学中,教材中的例5是求物体的.容积,计算结果要求保留一位小数(26847立方厘米≈26.8立方分米),教材在编写的时候可能没注意到容积计算应如何取近似值,而例题的设计又偏偏正好是“四舍”,忽略了生活中的一些实际情况,此处容易给学生造成知识上的欠缺,为此在教学中,我结合前面已学过的“进一法”,为学生增设了一个情境:如果要求得数保留整数,值应取多少?有的学生根据已有的知识经验进行讨论,有的学生联系生活实际说明理由,讨论很是激烈,个个争得面红耳赤,借助交流的机会,老师给予适当的点拔和引导,学生终究明白“四舍五入法”、“进一法”、“去尾法”的不同用处。课书没有出现的知识,学生通过自己的研究与探索获得,内心的喜悦是无法比拟的,学生探究问题意识增强的同时,随之创新能力也得到了不断的发展。

  教育家第斯多惠曾说:“教学的艺术不仅仅在于传授本领,而在于激励、呼唤、鼓励。”事实上,学生对力所能及而又需要亲身探究的问题最感兴趣,因此,老师在教学中应根据教学内容、教学需要,适当调整教材,加工教材,合理创设有效的教学情境去启发学生的思维,鼓励学生创新,激励学生探索,呼唤学生学习积极性。

【圆柱体积教学反思】相关文章:

圆柱的体积教学反思06-13

《圆柱的体积》教学反思05-22

圆柱的体积教学反思11-06

(优选)《圆柱的体积》教学反思07-05

圆柱的体积教学反思[实用]07-05

(热门)《圆柱的体积》教学反思07-06

【热】《圆柱的体积》教学反思07-08

【精品】圆柱的体积教学反思07-05

《圆柱的体积》教学反思(精品)07-08

《圆柱的体积》教学反思(必备)07-09