平行四边形面积的教学反思
作为一名人民教师,我们要在课堂教学中快速成长,写教学反思能总结教学过程中的很多讲课技巧,教学反思应该怎么写才好呢?以下是小编整理的平行四边形面积的教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
平行四边形面积的教学反思1
《平行四边形的面积》这一课是在学生掌握了平行四边形、三角形、梯形这些图形的特征以及长方形、正方形面积计算的基础上,以未知向已知转化为基本方法开展学习的。通过本节课的学习要使学生掌握平行四边形的面积公式,能准确计算平行四边形的面积。通过数、剪、拼等动手操作活动,探索平行四边形面积计算公式的推导过程,渗透转化的数学思想,发展学生的空间观念。在解决实际问题的过程中,感受数学与生活的联系,培养学生的数学应用意识。于是,我尝试放手让学生自主探索发现平行四边形面积的计算。
通过工作室专家们的鼓励与指导,通过反思,我将坚定朝着以下几个方面努力。
一、注重师生互动、生生互动。最好的教学是最适合学生发展的教学,了解学生、研究学生、分析学生、激励学生,是教师永远的工作,帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,同时获得广泛的数学活动经验。互动是一种师生之间双向沟通的教学方法,就是把教学活动看作是师生之间进行的一种真诚,和谐的交往沟通。通过优化“师生互动”的方式,即可以调节师生关系及其相互作用,形成和谐的师生互动、生生互动,学习个体与教学中介的互动,更能提升学生人际交往能力强化人与社会的相互影响;还可以产生教学共振,让教学效果达到潜移默化的提高。
二、注重语言的变化,学会放手。在课堂中,教师的一个表情、一个动作、一个手势可以改变很多,可以控制或调节课堂气氛节奏,增强教学效果,还可以促进师生间、生生间的`情感交流。在本节课中我没有完全放开,语言、动作、课堂,今后也要加强自身的学习增强数学素养。在课堂当中也要学会放手,我们工作室古主任一直强调“三让”让出讲台、让出话筒、让出黑板,就是要让学生多说,让出课堂,多让孩子发言,自主发言,充分发挥学生的主体作用。练习要有梯度性,提升学生的数学思维能力。
三、关注学生个体,注重融错教学。培养学生的数感,注重学生应用题的解决能力。落实三维目标,关注全体学生,用好课本,认认真真钻研教师用书等教参。当堂巩固,收集学生的信息。学生完成的怎么样?要有所了解,教师心里要有数。特别是对于学生做错了的题多去反思,思考,鼓励学生积极地去探索,深化他们对数学知识的理解,发展学生的反思力,培育学生直面错误、纠正错误的勇气与习惯,让课堂因融错而精彩!
四、体现先学后教,感受数学之美。教育就是一个灵魂唤醒另一个灵魂,在今后课堂教学中,抓住主线。注重预习“先学后教”培养好学生的学习习惯,并持之以恒的抓下去。沉下心认真思考,让孩子们在玩中学、乐中学,让孩子们在获取知识、形成技能的同时感受数学的美,学生爱上了数学这门学科。
“路漫漫其修远兮,吾将上下而求索”,在今后探索的路上,不忘初心,诠释潜心育人内涵。
平行四边形面积的教学反思2
一、精心创设情境。
心理学研究证明,学习材料与学生的生活经验相联系时,学生对学习最感兴趣,会觉得资料亲切,易于理解和理解。创设情境,将静态的生活资源加工成动态的数学学习资源,让学生感受到熟悉的活动情境蕴含着许多奇妙的数学知识。数学是从现实生活中抽象出来的,生活中处处有数学,把熟悉的生活事例引入数学课堂,使数学资料具有丰富的现实背景。本节课,精心创设情境,沟通生活中的数学与教科书上数学的联系,使生活和数学融为一体,既让学生对数学倍感亲切,又利于学生理解数学,热爱数学,设定恰当的生活情境和利用真实的生活原型展开数学活动,充分体现了数学与现实世界的密切联系,更重要的是,能让学生学习富于真情实感的,能动的,由活力的知识,使学生的情感世界获得实质性的发展,提升。
二、努力营造学习氛围。
为学生营造宽松、民主、和谐的学习氛围,源于教师对学生真挚的爱。在教学中,我关注、激发、保护、帮忙、鼓励学生,使学生敢想、敢说、敢做、敢真实地表现自我,让学生的潜能和主体作用得以充分发挥。创设良好的氛围,使每个学生都有展示自我的机会,都敢于发表自我的见解,培养学生善于倾听,善于欣赏他人的良好品质。
三、鼓励学生大胆猜想。
鼓励学生大胆猜想,调动学生的思维,培养学生的创造本事。再教学伊始,就让学生大胆猜测,平行四边形的面积可能怎样计算?由于受长方形,正方形面积计算方法的影响,有学生说是底乘高;也有学生受知识的负迁移,说是邻边相乘。两种猜想思路,两种猜想结果,使学生产生悬念,激发了他们跃跃欲试的情绪。鼓励孩子们大胆猜测,有利于孩子们在今后的学习中愿意把自我的原始思维状态表现出来,这是一笔有价值的学习资源。
四、注重让学生动手操作。
苏霍姆林斯基曾说过:手是意识的培育者,又是智慧的创造着。操作实践能够让每个孩子既动脑、动眼又动手,调动各种感官参与学习,积累感性认识,深化理性认识。既能够培养学生的操作本事,发展学生的智力,又能培养学生的探索精神和求实的.科学态度。在本节课的教学中,让学生思考,讨论,平行四边形的面积能够怎样计算?当学生认为能将平行四边形转化为长方形时,让学生按照自我的设想动手操作使学生的知识,经验智慧充分发挥作用,经过剪拼,然后让学生交流各自的剪拼方法,结果学生想出了三种剪拼的方法,然后引导学生比较转化前后的图形探究出平行四边形的面积计算公式。每个学生经过操作活动,经历知识的再创造的过程,获得数学知识,学得主动,让学生在获取知识的过程中获得学习数学的方法,获得探索数学知识的体验,获得多种本事的提高、
五、充分发挥交流的作用。
学生的数学学习过程中,交流是不可或缺的,交流能够帮忙学生在非正式的直觉的观念与抽象的数学语言、符号之间建立起联系,交流能够加深学生对数学概念和原理的理解,教学中,我选择适当的时机组织交流,供给具体的情境让学生去表达、倾听,在与他人交流中展示自我的原始策略,了解同伴的学习策略,发展自我的学习策略;在与他人的交流中开阔眼界,丰富自我的知识,完善自我的想法或认识。
平行四边形面积的教学反思3
本节课的教学内容属于公式推导课。教学重点是推导出平行四边形的面积计算公式,并能正确运用。教学难点是把平行四边形转化成学过的图形,通过找关系推导出平行四边形的面积公式。课前我一直在思考,如何用新课程的理念去教这一内容呢?于是我对这节课进行了大胆的尝试。整个推导过程较为抽象,学生掌握起来有相当的难度,所以根据学生的认知规律,本节课充分发挥学生的主动性,在教师的引导下,让每一个学生亲自动手操作,把平行四边形转化为长方形,通过观察、比较、分析、概括、讨论的方法,自己去发现平行四边形与长方形之间的关系,然后一步步地推导出平行四边形面积的计算公式。现针对实际课堂教学效果进行自我反思。
一、注重学法的指导,将转化的思想进行了有效的渗透,让学生学会用学过的知识来解决现有的问题。
新授课中,找准知识的生长点是很重要的。长方形面积的计算是平行四边形面积计算的生长点,是认知前提。因此,开始伊始,先复习长方形面积的计算方法,让学生实现知识的迁移,为推导平行四边形的面积计算公式作铺垫。在比较长方形和平行四边形两个图形的大小这一教学环节中,学生用了数方格的方法去比较它们面积的大小。学生上台汇报时充分利用电脑演示,突出怎样去数方格(先数满格,不满一格的按半格计算,两个半格算一格)为以后学习不规则图形面积埋下伏笔。然后放手让学生将自己准备的平行四边形通过剪拼转化成长方形,这样将操作、理解、表述有机地结合起来,学生有了非常直观的“转化”感受。将平行四边形转化成学生学过的长方形来计算它们的面积,这时教师可以进行适时的小结:探索图形的面积公式,我们可以把没学过的图形转化为已经会算面积的图形来研究。我们可以将数学方法传递给学生,而数学眼光却无法传递,故应着重把握好对数学思想的教学,这样有利于学生主动探索解决问题的方法,体会解决问题的策略,提高数学的应用意识。
二、让孩子亲身体验,增长自身的经验,体现学生的`主体性
学生是数学学习的主人,在教学中给学生提供了充分的从事数学活动的机会,先让学生大胆猜测,再通过同桌合作剪一剪,拼一拼,互相交流总结,验证猜想。学生在自主探索、动手操作、合作交流的过程中真正理解和掌握了基本的数学知识与技能,数学思想和方法,学生的主体性得以体现。推导出平行四边形的面积计算公式,完成了本节课的知识目标教学。
三、注重学生数学思维的发展和学习水平的深化
通过有梯度的练习设计,提高学生对平行四边形面积计算的掌握水平。以开放练习的形式,出示①课件出示平行四边形,使学生关注这个平行四边形的底和对应的高分别是多少,再让学生指一指底和对应的高分别在什么位置,问问学生用底和不对应的高相乘可不可以,这样就强调了用底和对应的高相乘,学生对平行四边形的面积计算的认识也会更深。本课的教学中平行四边形底和高对应关系的寻找是很重要的一个环节,这就为日后学习三角形、梯形等平面图形的面积计算奠定了基础。②讨论:下列两个平行四边形的面积大小相等吗?通过讨论、交流,使学生明白等底等高的平行四边形的面积相等。③讨论:将一个长方形框架拉成一个平行四边形,什么变了?什么没变?为什么?通过这些练习进一步丰富了学生的认识,拓宽了学生的思维,有效的提高了课堂教学的效率。
四、增强自身的应变能力
有效的把握学生课堂生成,灵活应对课堂突发的情况,是我今后教学中应注重的。在课堂教学中,教师的应变能力十分重要,它对提高教学效果和完成教学任务具有重要的意义。如果教师具有较好的应变能力,在教学过程中就能从容不迫,随机应变组织教学,即使课堂上出现意想不到的问题,也能临危不乱,坦然处之,妥善地加于解决。如果缺乏一定的应变能力,一旦课堂上出现意想不到的问题,就会乱了方寸,必然影响教学效果,完成不了教学任务。因此,作为教师要具备一定的应变能力,上课的时候就能灵活变通,这样我们的课堂教学就一定会很精彩。
平行四边形面积的教学反思4
“平行四边形的面积”的教学反思 “平行四边形的面积”一课是 “多边形的面积”这一单元第一小节的内容。根据新课标的要求及教材的知识特点,并结合我班学生的具体情况,我制定了以下的教学目标:
1、了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。
2、通过操作、观察、讨论、比较活动,让学生初步利用图形转化来推导平行四边形面积的计算方法,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。
3、通过活动,激发学习兴趣,使学生在数学活动中获得成功的体验,建立自信心、培养团结协作的精神,感受数学与生活的密切联系。
学生先前已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力还不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。
《数学课程标准》提出了重视学生学习过程的全新理念,要充分发挥学生的主观能动性,让学生参与知识发生发展的全过程。本节课中,我采取多种手段引导学生积极参与学习过程。本节课教法上最大的特点是让学生动手操作,把静态知识转化为动态,把抽象数学知识变为具体可操作的规律性知识,指导学生理论联系实际,开展讨论,
使他们自主、快乐地解决问题。另外,我还力图体现学生学法的转变:从被动接受学习变为在自主、探究合作中学习,让学生亲身体验知识的形成过程,促使学生思维的发展,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一、创设有效的问题情景
在课的开始就以我校要建设两块绿地,一个是长方形,一个是平行四边形,现在要将种植任务平均分给五年级的.四个班,如果让你来分配任务,你打算先解决什么问题?这一生活中的实际问题引出平行四边形面积的计算问题。让学生带着浓厚的兴趣开展新知的探究。这样的设计有助于学生感受数学与生活的密切联系,有助于学生学会用数学的眼光审视我们的生活,激发学生的情感体验,提高学生理解数学并运用数学解决问题的能力。
二、注重学生数学思维的发展
在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生将平行四边形转化成长方形,在学生体会转化这一数学思想方法的同时,引导学生进一步观察、思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生易于得出结论。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,我注重学练结合,习题的设计既有梯度又注重变式,同时利用教具和多媒体课件进行直观演示,帮助学生理解和掌握。
本节课的不足之处:
1、在公式的推导环节的教学中应该再强调一下转化后的长方形的长和宽与原来平行四边形的底和高之的关系,从而便于那些学习能力稍差的学生更好地理解平行四边形面积公式的推导过程。
2、教师的语言应该再精炼一些,避免重复自己的问话或是重复学生的回答,从而可以节省一部分时间。
3、在练习中应再多给学生留一些思考的时间,尽量使每个学生都能有正确解题的体验,增强自信心。
在今后的教学中我会注意以上问题,不断改进,使我的课堂教学更加精彩。
平行四边形面积的教学反思5
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点。教学中通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。
平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。我首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的'数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。
这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。
平行四边形面积的教学反思6
数学教学的价值目标不仅仅局限于让学生获得基本的数学知识和技能,更重要的是在数学学习的活动中,获得思想方法,经历解决问题的过程。本节课遵循这一原则进行设计,结合教材内容及学生实际,有以下几点思考:
一、创设情境,方法巧妙迁移
数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。让学生积极主动地投入到数学活动中去。我创设了学生熟悉的生活情境,学生很喜欢,很快的就投入到学习中去,也体会到了计算它的面积的用处,这就使学生对学习的内容产生了浓厚的兴趣和亲切感,激发起他们强烈的求知欲望,结合求面积的实际操作性,进而引发学生的猜测,并进一步引导学生将平行四边形的面积转化成长方形的面积进行推导。
二、学生自主合作探究
苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中,这种需要特别强烈。”动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中我先是给学生提供学习单,由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,通过发现提出求平行四边形面积的猜想。接着是读活动要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的'面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,很好的掌握了平行四边形公式的推导过程,学生获取知识的能力、观察能力和操作的能力得到培养。
三、拓展方法,渗透数学思想
教学时,以学生的验证推导为主,先引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。学生探究出了将平行四边形转化成长方形的三种方法,并通过操作加以演示推导。在学生探究后,我出示了第四种方法,还让学生观察这几种方法有什么相同点,从而让学生明确自己刚才所运用的转化的思想方法。在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。
四、巩固练习,深化应用。
我设计了具有针对性的习题组。练习设计的优化是优化教学过程的一个重要方面。本课的习题设计灵活运用公式,引导学生熟练利用平行四边形的面积公式解决生活中的实际问题,让学生在练习的同时提高应用知识解决问题的能力。 虽然本节课能以学生为主体,教师主导,但课堂上能够对学生起到导向和引领的有效的评价语言还需要进一步提升。教学是一门有着缺憾的艺术。做为教者的我们,只有用心思考,不断改进,我们的课堂才会日臻具有艺术性!
平行四边形面积的教学反思7
本节课我主要采用自主探究、合作交流的方式进行,根据学生的预习,先说一说自己有质疑的、不会的问题,以及自己不同的见解、看法和重点等。接着让学生在展示台上演示自己的操作过程。教师追问,引发学生思考,学生评价,当堂检测,充分尊重了学生的主体地位,突破难点,解决了关键,发展了学生能力,很好地完成了学习目标。
在创设情境,设疑引入环节中,学生现有知识水平中无法通过计算来比较两个花坛面积的.大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。
在操作探索,获取新知环节,我主要让学生亲身经历用数、移、拼等操作方法在自主、合作的积极学习氛围中推导出平行四边形的面积公式,学会“转化”的方法。同时使学生明白学会一种解题方法比做十道题都重要,教会学生不仅要“学会”,而且要“会学”。充分尊重了学生的主题地位,突破了难点,解决了关键,发展了学生能力。
在练习环节,练习题量虽然不大,但内涵盖了本节课要讲的所有知识点,具有一定的弹性,使不同的学生得到了不同程度的发展,从而进一步内化了新知。同时,在成功的喜悦中,使他们体会到,数学就存在于我们身边,只要细心观察,认真思考,都可以找到数学方面问题。
回顾本节教学,我也感到了不足之处,比如:
应该让学生更多的表达,更清楚的表述,教师应该是一个快乐的倾听者。而我在课堂上虽想到了这一点,还是急于归纳概括学生的结论,应让学生再说的充分些,让每个学生有更深刻的理解的基础上,站在更高的角度去归纳,更深更全面的去概括。
学生明白但表述不清楚,就是因为被圈在了教师给的固定模式里,因此我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。不仅要求学生在课堂上大胆地说,而且还要求学生与同学互相交流着述说,这样让学生充分展示自己的思考过程,并用流利的语言来叙述给同学听,在这样的过程中才能不仅能及时发现问题,及时查漏补差。
平行四边形面积的教学反思8
在多边形的面积这一单元的教学中,都是以引导学生自主探索为教学目标。让学生通过剪拼、平移、旋转等方法,把未知转化成已知,并在动手实践的过程中,发现各种图形之间的内在联系,从而探索出平面图形的面积公式。
平行四边形面积公式的基础是长方形的面积公式,学生在三年级已经掌握,所以教材首先引导学生探索平行四边形的面积公式。例1出示了两组不规则图形,让学生比较每组的两个图形面积是否相等?通过交流运用剪拼、平移的方法转化成长方形后发现每组的两个图形面积相等。接着进入例2的教学环节:出示一个平行四边形,提出“你能把平行四边形转化成长方形吗?”带着学生进入了平行四边形面积的探索过程。先让学生感受转化思想再运用转化方法探索新知,但是学生在这一过程中真正是自主探索吗?教师是引导还是支配?如何真正引导探索呢?我产生了这样的想法:沟通知识间的'联系,引发对新知的自主探索。
呈现第一个问题:“有四根小棒,两根8厘米,两个4厘米,你能拼成学过的平面图形吗?请画在方格纸上”。(学生在方格纸中画出了平行四边形或长方形)
呈现第二个问题:“这两个图形有什么联系吗?”
(学生出现争议:周长相同,面积相同;周长相同,面积不同;周长和面积都不同。)
对学生出现的争议,最好的办法就是让学生自己解决。于是辩论开始了:
生1:“都是由两根8厘米和两根4厘米的小棒围成的图形,周长是相等的”。对于周长相等,大家都达成了共识;生2:“长方形面积是长乘宽,8×4=32,平行四边形的面积也是8×4=32,所以面积相等”;生3:“不对,平行四边形的边是斜的,长方形的这条边是直的,不能都用8×4”;对于面积的比较产生了异议。
师:“认为平行四边形的面积是8×4的同学请说明这样算的道理;认为不是8×4的同学请想办法算出这个平行四边形的面积?”同学们拿出课前剪下的平行四边形忙开了,自主探索的过程自然开始了。
平行四边形面积的教学反思9
《平行四边形面积》的教学目标是通过操作活动,经理推导平行四边形的面积计算公式的过程,能运用平行四边形面积公式计算相关图形的面积并解决一些实际的问题。
教材是直接出示一块平行四边形的空地,要求计算面积,这样安排的目的是让学生面对一个新的问题,思考如何解决新问题。教材这样的安排对学生来讲,提供了很好培养学生独自思考能力的素材,但对学生的要求较高,鉴于本班的学生情况,可能有一部分中下层生没能参与其中,于是我灵活地进行了基于本班实际情况的教学设计,我是这样设计的:
1、先出示两个不规则图形,要求学生说出面积。这两个不规则图形学生在前面的课里已经学习过,可以通过数格子的方法去计算面积,也可以转化为规则图形去计算的,课堂上不少学生就是用转化的方法去解决的,这就为新课埋下伏笔。
2、上一环节不规则图形转化后为正方形和长方形,这里就复习下正方形和长方形面积公式。
3、比较等底等高的`平行四边形和长方形面积谁大?通过图形出示。学生讨论得出结论:可以把平行四边形转化成长方形,这样就可以用底X高得出面积。
4、补充其他转化策略,明确平行四边形面积=底X高。
5、练习巩固。
先出示不规则图形让学生想到转化为熟悉的规则图形进行计算面积,就是课堂里要求掌握的“转化思想”,有了课始的铺垫,后面的探索活动是顺理成章的,其中的道理学生也是清楚的,包括中下层生也能掌握,改变了以往直接出示公式,让学生套公式进行计算来得科学符合学习规律。
平行四边形面积的教学反思10
1.先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的,做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,渗透了转化的思想方法。
2.注重学生数学思维的发展,设计了剪一剪、拼一拼等学习活动,让学生在活动中探索出平行四边形的面积公式。
3.注重了师生互动、生生互动,这节课始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的'共鸣。师生之间应该互有问答,学生与学生之间也要互有问答。
平行四边形面积的教学反思11
“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程,数学教学要求紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设各种情境,为学生提供从事数学活动的机会,激发他们对数学的兴趣,以及学好数学的愿望。”为此,老师们都非常重视情境的创设,力求将自己置于组织者、引导者、合作者的地位,树立以学生为主体的`教学观。
对于情境教学,首先我们应该充分重视“问题情境”在课堂教学中的作用,不仅要在教学的引入阶段格外注意,而且应渗透到教学过程的每一个环节,在情境中不断激发学习冲动,使学生经常处于渴求新知的状态,激发其自身的学习动力和思维空间。其次,从长远的前景来看,引入教学情境不仅要让学生“学会”数学,更重要的是使他们“会学”数学,培养他们在生活中科学地思考,把学习中探索、体会到的观念、方法尽快地提升到理论的高度。当然,要设置好情境还不可忽视情境创设和教材主旨的统一,始终坚持从激发学生的学愿望和参加动机出发。以下我将根据情境教学的要求结合《平行四边形的面积》来谈一谈?
1、把数学知识的教学融于现实情境中,学生在情境中学的高兴,学的扎实。我通过主题图这一个情境,将新知的学习置于这一现实情景中,通过猜想、转化、平移、旋转、演示等活动,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。
2、充分发挥学生的主体作用,加强学生主观能动性的培养。整节课中,老师给学生提供了探究交流的时间和空间,并创设多种教学活动,激发学生兴趣,学习与巩固知识。例如在平行四边形面积计算方法推导过程中,老师先让学生独立思考,然后互相交流,最后动手操作,把平行四边形转化成长方形,推导出平行四边形的计算方法,在平等和谐的氛围中培养了学生的合作意识、团队精神和动手能力。
3、 有效的渗透了数学的一些思考和学习方法。在教学中,老师让学生经历了提出猜想—操作转化—验证猜想这一过程,对学生以后学习三角形面积和梯形面积打下了良好的基础。
4、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
平行四边形面积的教学反思12
平行四边形的面积,是教师相当熟悉的一堂课,我曾多次听这课,发现平行四边形的面积教学存在三种状态:第一种状态,教师认为学生学习数学就是要掌握知识,所以教学注重对学习“平行四边形面积”的知识铺垫,仅仅关注学生对平行四边形面积计算方法的识记与演练,掌握;只要结果,不要过程。第二种状态,教师开始重视学生获得知识的过程,但重视过程是为了更快地接受知识、更好地理解知识,却忽视了过程本身的价值。第三种状态,希望学生不仅获得平行四边形面积计算公式的知识,而且能获得数学思想和方法;不仅能够正确地应用公式,而且能更好地理解这一公式的来源。在学习中,展示探求平行四边形面积计算方法的真实思维过程,凸显“重知识更重方法,重结果更重过程”的价值追求。我一直在苦苦追求着第三种状态,因此在课前、课中我一直思考以下四个问题:
1、数学学习,除了关注知识的传承,还应关注什么?
2、怎样从学生的角度出发设计教学?
3、怎样让数学课堂变得厚重?除了显性课程外,学生还能获得哪些方面的发展(隐性课程)?
一节厚重的数学课,总是能够让人看到学生数学素养的提升。
一节厚重的数学课,总是能够让人看到学生数学地思考问题。学生有潜力,并非这个孩子考试的分数高,而是这个孩子的后劲足。这些后劲足的孩子思维活跃,往往能在复杂的信息中抓住关键点,能透过复杂的现象抓住数学的本质。也就是,这些孩子会数学地思考问题。
4、如何优化课堂结构?
基于以上四个问题的思考,我把“有益的思考方法和应有的思维习惯”放在本节课教学的首位。在数学教学中如何以数学知识为载体,培养学生有益的思考方式和思想方法。我在设计与执教“平行四边形的面积”一课中获得一些启示。
一、以数学知识教学为载体,渗透“转化”的数学思想方法,发展学生主动获取知识的能力。
“转化”法是开展数学研究、解决数学问题常用的方法,在小学数学教学中起着十分重要的作用。小学阶段的几何形体面积、体积计算公式都是运用“转化”法推导的。平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的.本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。
教师首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?
激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。在课堂小结时,我不满足于学生的认识仅仅在对具体知识的获得上,而是启发学生提炼出数学的思想方法。教师最后的评价,既给学生以鼓励,更给学生以导向,导向在数学的思想方法上。因为数学的思想方法是数学的灵魂,学生拥有了它,其主动获取知识的能力将会得到提高,创造力的发展就有了基础。
二、以探索解决问题为主线,运用“大胆猜想,小心求证”的数学学习方法,培养学生探索精神和探究能力。
现代科学的探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉等多种思维方法,提出猜想性假说,建立起新的概念和理论框架,推出具体结论,最后通过实验予以验证。这种“猜想—验证”的方法已成为科学探索中常用的方法。
这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。
这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。
平行四边形面积的教学反思13
本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行学总结了一些成功的经验和失败的教训,具体概括为以下几点:
1、亲身经历,感知公式推导过程。全体学生亲身经历,动手剪一剪、拼一拼,推导平行四边形面积。教学中,我先让学生在动手剪、拼的过程中,得到长方形。
2、利用课件,直观演示。
3、语言抽象。
以上面两个环节为基础,让学生回过头来想一想,“我们是怎样得出平行四边形的面积的”,学生把自己的所做、所看、所想,用自己的语言充分地表达出来,并进行利用。
4、把数学知识的`教学融于现实情境中,学生在情境中学得高兴,学得扎实。我通过四小校门口这一个情境,将新知的学习置于这一现实情景中,进一步加强数学知识与生活的联系,感受数学在生活中的作用,体会学习数学的意义与价值。
5、充分发挥学生的主体作用,加强学生主观能动性的培养。
6、有效地渗透了数学的一些思考和学习方法。“转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。
7、充分利用小组合作这一课题的有效性,发挥学生的主体地位和主观能动性,加强师生合作、生生合作,培养学生的合作能力和交流能力。
平行四边形面积的教学反思14
平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点,整个教学过程由复习准备导入新课,进行新课,巩固练习,课堂小结几个环节组成,在复习中,教师先让学生回答平行四边形的底和高各是多少,以唤起学生对平行四边形认识的回忆,在通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。
在拓展练习中,为了提高学生的判断能力,让学生主动去寻找计算面积所必需的`条件,并根据条件正确地求平行四边形的面积,效果还不错,整节课充分体现了新课标的精神。
这节课也有几个地方联系不够紧密,新课转折不够严密,练习强化不够具体,操作时间不够充分。
如果今后再上这节课,要注意练习的多样性,要注意语言表达严谨性,还要加强动手操作的训练,如让学生计算一些没有直接告诉底和高或近似平行四边形要求它的面积,让学生去量出需要的条件,有利于培养学生的综合运用知识和解决问题的能力。
平行四边形面积的教学反思15
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”在《平行四边形的面积》一课的教学中,我通过让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:
一.注重数学专业思想方法的渗透。
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中,先让学生回忆平行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出可以用数方格的方法来求平行四边形的面积。把这两个图形按每个格1平方米的方法来数,数的过程中提示学生:“可以把不满一个格的按半个来数。”学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有能力的学生向转化的方法靠拢。
二.注重学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地通过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的.核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以平行四边形的面积=底х高。学生掌握了平行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
三.分层运用新知,逐步理解内化
对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计了基础练习(算出下面每个平行四边形的面积。);提升练习(量出平行四边形的底和高的长度,并分别算出它们的面积。);
发散练习(下图两个平行四边形的面积相等吗?为什么?在这条平行线之间,还可以画出几种形状不一样而面积相等的平行四边形。)整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。
四.需要改进的地方
本节课的不足之处有:在进行把平行四边形转化为长方形时,书上虽只给出了两种方法,但是实际上有很多不同的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。而且这个环节过后,忘记强调一下,要沿着平行四边形的高剪下,才能平移拼成一个长方形。让学生说的部分还是显得很仓促,自己急于把正确答案给出,这是迫切需要改正的。
教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩。
【平行四边形面积的教学反思】相关文章:
平行四边形的面积教学反思12-19
《平行四边形的面积》教学反思06-05
《面积》教学反思05-27
面积教学反思04-24
数学《平行四边形的面积》教学反思05-22
《平行四边形的面积》数学教学反思08-26
数学平行四边形的面积教学反思03-07
《梯形面积》教学反思05-22
《圆的面积》教学反思06-18
《什么是面积》教学反思05-26