圆锥的体积教学反思必备(15篇)
身为一名到岗不久的老师,我们的工作之一就是课堂教学,通过教学反思可以有效提升自己的课堂经验,那么问题来了,教学反思应该怎么写?以下是小编帮大家整理的圆锥的体积教学反思,欢迎大家分享。
圆锥的体积教学反思1
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。本课教学摒弃了以往把学生分成若干组,小组实验得出结论的方法。
新课一开始,我就让学生观察,先猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。然后让学生看白板演示将圆锥里的水倒入等底等高的圆柱里,需要倒几次。虽然孩子们没有进行实验,但孩子目睹了过程,从中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,巩固深化知识点。
思考:虽然学生在学习的过程中,应该成为一个探索者、研究者、发现者,但不是并不是每个知识的获得都必须学生动手操作。从课后的作业反馈来看,学生的`出错率比以前小组合作的学习的还要好。看来,这样的学习,学生学的活,记得牢,即发挥教师的主导作用,又体现了学生的主体地位。
圆锥的体积教学反思2
(1)
让学生真正成为活动的主动者,才能让学生真正的感受自己是学习的主人。在图形的教学中,根据学习内容的特点,注重操作,注重实践,可以让教学达到最高效。
就正如探究圆锥体积计算方法的学习过程,学生可以不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。同时,在操作与实践的过程中让一些学习困难的学生也有参与的兴趣,让他们也能感受数学学习的.快乐,使他们懂得他们也可以通过玩掌握到数学的知识。
让每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。同时对于学习困难的学生该学习方法也是降低了他们对知识的掌握的难度。
出现了验证等底等高的圆锥体和圆柱体体积的方法。涌现出了对圆锥体体积计算公式中“1/3”的不同理解,实现了学习策略的多样化,丰富了学生的学习资源。虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的。这也证明了学生是有着各自不同的思维方式的。
(2)
《圆锥》这节课,其教学目标是:1)、认识圆锥,了解圆锥的底面、侧面和高;2)、掌握圆锥高的测量方法;3)、圆锥体积公式的推导;4)、通过例一例二使学生会应用圆锥公式进行简单的计算。教学中,学生通过实际触摸,动手测量、探索推导等活动,前三个教学目标在轻松快乐的氛围中顺利完成。在公式V锥=1/3sh=1/3r2h,应用这个环节,考虑到学生已经预习过例题,就把例二教学做了改动给出一圆锥形麦堆,底面直径是20分米,高是14分米,每立方米小麦重0.375千克,求这堆小麦重多少千克?让学生自主练习,本以为应用公式很快就能解决的一个问题,可学生算了好长时间还没有完成。原来我在改动数字时没有考虑到圆锥体积公式的1/3和3.14给出的直径和高与1/3都不能约分,使本应该巩固公式应用的目标辩词了复杂的小数计算,浪费了大量的时间,课后习题没有处理完就匆匆结束了这节课。课后反思数学既活又严谨,看似一个简单数字的出示也要付出周密的策划。一节简单流畅的好课,并不是随手拈来的,只要用心的去思考,统筹安排,关注到每个细节才能得到。
教学需要学习,教学更需要反思,在反思中进步,在反思中提高。
(3)
一节课下来,我静心思考,有以下几点反思:
1、一节好的课,在教学时要层次清楚,步步深入,重点突出。
在教学“圆锥的体积”时,我首先从实物图形讲解到空间图形,采用对比的方法,不断加深学生对形体的认识。然后要学生用自己的学具动手做实验,从实验的过程中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。
2、一节好的课,应注意激发学生的求知欲。
新课一开始,我就让学生观察,先猜测圆柱和圆锥的大小,激发学生的学习兴趣,使学生明白学习目标。在应用公式的教学中,又把问题转向到课初学生猜测且还没有解决的问题,引导学生计算出圆锥的体积,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。
3、一节好的课,要有全体学生的积极参与,突出学生的主体作用。
由于我平时非常重视让学生参与教学的全过程,重视培养学生的思维想象力,因此,学生在这节课上,表现也相当的出色。我在教学中注意调动学生的学习积极性,采用分组观察、操作、讨论,动手做实验等方法,突出了学生的主体作用。
圆锥的体积教学反思3
就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同,没有采用“转化”的思想。因而这节课首先出示例5,让学生从图画直观上感受——圆锥体的体积比等底等。就小学现有的知识,把圆锥体积转化为体积相等的其它物体有些困难。因此,教学圆锥体积公式采用的方法与圆柱不同,没有采用“转化”的思想。因而这节课首先出示例5,让学生从图画直观上感受——圆锥体的体积比等底等高的圆柱体体积小。在此直观的基础上,让学生猜想该圆锥的体积是圆柱的几分之几。当然这里教师并不追究学生猜想的是否准确,可以说1/2,1/3,或其它的分数都可以。,关键在猜想的基础上让他们明白,估计的结果一定要经过验证才能确认或修正。
让他们明白“估计——验证”是解决问题的一种策略。因而,在估计的`基础上,我再让学生亲自动手实验,这里除了培养学生的自主探究、发现的能力,还让学生在操作实验的过程中,各种能力得到锻炼,同时还让学生在实验中感受数学的严密性,感受数学的内在魅力,激发学生对数学的热爱。学生学识的关键还在于会不会运用,因而,在学生探索好后,让学生用自己探索到的结论,解决生活中的一些实际问题,让他们真正感受到数学的用处——生活中处处离不开数学。最后让学生谈谈收获,巩固这节课的重点,加深印象。
圆锥的体积教学反思4
教学圆锥的体积是在掌握了圆锥的认识和圆柱的体积的基础上教学的。教学目标是让学生通过观察实验来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。由于六年级的学生对圆锥的认识和圆柱的体积的知识掌握较牢固,学生感到简单易懂,因此学起来并不感到困难。
新课一开始,我用课件出示一个圆柱体和一个圆锥体让学生观察并猜测圆锥的体积和什么有关,学生联系到了圆柱的体积,在猜想中激发学生的学习兴趣,使学生明白学习目标。从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后课件演示实验过程,让孩子从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,这样学生对知识的掌握就水到渠成了。对圆锥的体积建立了鲜明的印象之后,再应用公式解决实际的生活问题,起到巩固深化知识点的作用。
当然,教学是一门缺陷艺术,在教学之后我感到遗憾
的是,没让学生动手实际操作,我想如果每个小组准备一套学具,让他们以小组合作学习的方式使每个学生都能真切的参与到探究中去,最大限度的发挥每个学生的自主学习的能力,这样的学习不仅使学生学会更多的知识,更重要的是能培养学生的能力。 1、探究圆锥体积计算方法的学习过程中,学生获得的不仅是新活的数学知识,同时也获得了更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
2、每个学生都经历“猜想估计---设计实验验证---发现算法”的自主探究学习的过程,在教师适当的引导下给于学生根据自己的'设想自由探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积的计算方法。让每个学生都经历一次探究学习的过程。
通过本节课的教学,让我真正体会到了让学生通过动手实践去发现新知识的好处,学生自己去发现的新知识,是一种真正的理解,不是老师硬灌输给他的,他们能灵活用知识解决问题,这使我熟悉到新课改提倡的:“动手实践、自主探索、合作交流是学生学习数学的重要方式。“在今后的教学中我将用新课程的理念指导我的教学,提高课堂教学效率。
圆锥的体积教学反思5
【案例】
师:同学们,前面我们已经认识了圆锥,掌握了它的特征,那么圆锥的体积怎样计算呢?下面我们就来研究这个问题.(板书:圆锥的体积)
(1)创发悬念出示圆柱与圆锥(“等底等高”)同学猜一猜,这个圆锥的体积是这个圆柱体积的几分之几(有的说1/3,有的说1/2)
(2)分组实验:究竟是1/2,还是1/3呢?我们来做个实验好吗?(把事先准备好的圆柱、圆锥体等容器发给各组,每组白、红、黑的圆柱、圆锥体容器各一个,两个白的等底等高,两个红的等底不等高,两个黑的等高不等底。让学生用圆锥容器盛满水往相同颜色的圆柱容器中倒,观察它们之间的关系。
(3)各小组报实验结果,几次正好灌满(三次正好灌满)“三次正好灌满,说明了什么?”
生:圆锥体积是圆柱体积的1/3。(师板书)
师:同意吗?
(4)集体实验(师取等底不等高的圆柱和圆锥容器,让两个同学上台实验,其它同学观察)(三次没有灌满)
师:“灌满了吗?”(没有)“为什么没有灌满?问题出在哪里呢?是不是刚才的`结论不对?”(师将圆柱与圆锥容器放在一起比较,引导学生观察、讨论)
讨论得出:圆锥体积是等底等高圆柱体积的1/3。(师板书补充:“等底等高”)
一、学生成为学习活动的主动者。
在探究圆锥体积计算方法的学习过程中,学生不再是实验演示的被动的观看者,而是参与操作的主动探索者,真正成为学习的主人。在整个学习过程中,学生获得的不仅是新活的数学知识,获得更多的是探究学习的科学方法,探究成功的喜悦以及探究失败的深刻反思,在这样的学习中,学生会逐步变的有思想、会思考、会逐渐发现自身的价值。
二、在操作中体验
儿童的思维是从动作开始的,切断了动作和思维的联系,思维就得不到发展。《新课程标准》指出“让学生在做中学”。实践证明:开放学生的双手,让学生手、眼、脑等多种感官协同活动并参与学习活动。它不仅能使学生学得生动活泼,而且能启迪大脑思维,对所学过的知识理解更深刻,掌握得更牢固。因此,在圆锥体积的教学中我多为学生创设实践操作的机会,并提供丰富的材料.让他们在动手操作中学生经历了“独立探究圆锥体积的算法、交流中比较体会圆锥与圆柱体积的关系”的过程。这一系列活动,让抽象的概念变的生动形象。通过这样的步骤让学生在操作中体验,在操作中发现,学生学得兴趣盎然,不但主动地掌握了数学知识,还感受到发现和探索知识的乐趣。使他们亲身体验探讨问题和寻求结论的过程,增进学生对数学现象的体验。
圆锥的体积教学反思6
在本节课中,通过用排水法测量外形类似于圆锥的体积(比如铅锤)不但麻烦,而且有时还不能用(比如测量麦堆的体积),体会此方法具有一定的局限性而引入新课。从面上的相似性知道圆锥的体积可能与圆柱的有关,然后经历大胆猜测、实验验证、分析实验结果,从而得出体积公式的过程。再利用适当的练习巩固公式而达到本节课的教学目的。本节课总体感觉很顺畅,学生思维活跃。在课堂上利用实物演示,较好地引导学生思考,总结出等底等高的圆柱与圆锥之间的关系,突出了重点,突破了难点。
《数学课程标准》明确指出,要让学生能够“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。”本课的设计充分体现了这一理念。课中让学生动手分别用圆锥和圆柱盛沙,让学生感受到数学与生活的密切联系,通过自己的探究,运用数学的思维方式解决问题,又能运用掌握的知识去研究解决生活的其它数学问题,,培养了学生的应用意识。同时,课堂教学注重让学生自主学习,合作探究,充分发挥了学生的.学习主动性,也培养了学生的创新能力。
虽然本节课达到了教学目的,取得了不错的教学效果,但也存在一些不足,由于受条件限制,学具准备不够充分;课堂语言还不够简练;在学生汇报时,没有抓住生成;没有认真研究不等底不等高的体积关系等。在以后的教学过程中一定会注意这些问题,使自己不断地进步。
圆锥的体积教学反思7
圆锥的体积是学生在掌握了圆锥的认识和圆柱的体积的基础上教学的。是小学几何初步知识教学的重要内容。本节教学分两个层次进行,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。在教学时,主要运用了探究式的教学方法进行教学,收到了较好的效果,现总结以下几点做法:
一、大胆猜测,培养猜测意识。
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。
二、操作验证,培养科学的实验观。
数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式.教学中,使学生通过自主探究实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一。从而总结出圆锥体积的计算公式:V=1/3Sh。
教学圆锥的体积计算时先分组做实验,在空圆锥里装满沙子,然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。然后用不等底等高的圆锥和圆柱所得的情况与以上不同。最后得到一个原理等底等高。圆锥的体积等于和它等底等高的圆柱体积的三分。
《圆锥的体积》的教学都是先由教师演示等底等高情况下的三分之一,再让学生去验证,最后教师通过对比实验说明不等底等高的差异,而在以上教育中却不然,先采用学生做实验的方法,让学生亲自实践,在实际中懂得其中的道理,用一个等底等高圆柱和圆锥,让学生分组进行实际操作,使学生清楚的知道其中的知识点,明白了圆锥与圆柱之间的体积关系,从而是学生发现其中的`数学原理,而且有意地将实验的环节复合,在看似混乱无序的实践中,增加了学生对实验条件的辨别及信息的批判,同时这也是这堂课需要解决的重点和难点。在整个教学过程中,重视让学生参与教学的全过程,学生始终是活动的主体,我则是这一活动的组织者、指导者、和参与者。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验出现了和别人不太一样的结论的原因,培养学生科学实验观。学生学的主动,经历了一番观察、发现、合作、探究的过程,既能达到圆满地推导出了圆锥的体积公式,又使学生的实践能力得到发挥。
总之,这节课,每个学生都经历了“猜想———实验———发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。思考:如果长期在这样的探究中去学习知识,学生就会变成有思想、会思考、会研究、会学习的人。
圆锥的体积教学反思8
圆锥的体积是在学生认识了圆柱与圆锥,并掌握圆柱的体积的基础上教学的。本节课我主要分两个层次进行教学,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。我在教学时,主要运用了探究式的教学方法进行教学,收到了良好的效果,现总结以下几点做法:
一、大胆猜测,培养猜测意识
假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中借助教具和学具,让学生充分观察“等底等高的圆柱和圆锥”后,再大胆猜想它们的体积可能会有什么样的关系?”这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的'欲望强烈,为本节课的成功教学奠定了基础。
二、操作验证,培养科学的实验观。
数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式。在教学中,我准备实验的用具,让学生通过动手做实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一,圆柱体积是与它等底等高的圆锥体积的3倍。从而总结出圆锥体积的计算公式:V=1/3Sh。
从本课的练习环节,发现学生对圆锥体积的计算掌握扎实,这说明操作实验在圆锥体积公式的推导中显得非常重要。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验。培养学生科学实验观。
让每个学生都经历了“猜想---实验---发现”的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到探究数学的乐趣。
圆锥的体积教学反思9
这一节失败的课让我反思了很多,除了总结和练习,还找到了很多不足之处均待提高。
1.课堂提问没有给学生留下足够的思考空间。
如:你打算用什么方法测量这个圆锥的体积?问题提出后,我仅停顿了2秒,没有学生举手我就接着说我们解决一个未知问题通常会把它转化为已知问题,那么圆锥的体积可以转化为我们原来学过的哪个立体图形的体积呢?说完这句话,我就意识到,这个地方应该让学生充分的思考,充分的说一说方法,如果学生说不出,我再说这些话,学生可能会给我很多惊喜。
2.实验结束后,你想说什么?
学生经历了猜想、体验、探究、验证的过程,在实验的过程中肯定会发现很多问题、矛盾。实验结束后,学生应该有很多话要说。此时问一问,你想说什么?既给了学生一个思维提升的过程,又能顺利的总结出这节课的'结论。
3.如何有效的调动起学生的积极性,让高年级的学生也能积极回答问题?
这个问题,我曾经百思不得其解,总以为就是高年级学生的公开课比低年级的公开课难上,这节课后也豁然找到了原因:一是出在我平时的课堂上。由于平时上课总要照顾后进生,所以在回答问题时,往往不去叫举手的好学生,总去点不举手的后进生,公开课时也不由自主地这样做。但是这样做的后果就是导致,举手的同学本来就有些害怕,我还总不去叫他。不但打击了举手同学的积极性,还打消了其他同学举手的念头。另一个很重要的原因是缘于教师上课的心态。对着低年级学生上课,我们很容易放下姿态,去哄他们,有一点做的好、说的好了,教师就会给很高的评价。而且态度还和蔼可亲。但是对着六年级学生,就觉得他们是大孩子了。自己首先都没有用同样的态度去对待他们,又怎么能向他们要同样的课堂效果呢?
通过不断的反思自己,让我发现了很多自己的问题。这一节课,可以说是我从教以来对我打击最大的一节课,却又是让我收获最大的一节课。课堂上留下了很多遗憾,有机会真想再重新上一遍这节课。
圆锥的体积教学反思10
一、教学内容:义务教育课程标准实验教科书(北师大版)六年级下册第11~13页
二、教学目标:
1、知识技能目标:
◆使学生探索并初步掌握圆锥体积的计算方法和推导过程;
◆使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
◆提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:
◆使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:
1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:
(一)创设情境,导入新课
1、故事情景引发猜想
电脑呈现出动画情境(伴图配音)。
炎热的夏天,小明和小强去“广场超市”的 冷饮专柜买冰淇淋,圆锥形的冰淇淋标价是0.8元,圆柱形的标价2元。于是,他们两个为买哪一种形状的冰淇淋争执起来。同学们,你们能帮他们解决到底买哪种形状的冰淇淋更合算吗?(图中圆柱形和圆锥形的雪糕是等底等高的。)
(学生回答自己的猜想,有说买圆锥形的,有说买圆柱形的)
教师:学完今天的内容后,同学们就能正确解决了!
2、圆锥实物揭示课题
①教师出示一筒 沙,师:将这筒沙倒在桌上,会变成什么形状?
(学生猜想后教师演示)
②师:在这堂课上,你希望学到哪些知识呢?
(生自主回答,确立学习目标)
③揭题:圆锥的体积
师:好,我们一起努力吧!
(二)自主探索,合作交流
1、直观引入直觉猜想
(1)教师演示刨铅笔:把一支圆柱形铅笔的笔头刨成圆锥形。
(2)引导学生观察,并思考:你觉得圆锥的体积与相应的圆柱体积之间有联系吗?你认为有什么联系?
①教师鼓励学生大胆猜想。(生说可能的情况)
②师:你们是怎样理解“相应的”一词的?说说你的看法。
生说后,师总结:“相应的”,即圆锥与圆柱是等底等高的。(用实物演示给生看)
2、实验探索发现规律
(1)小组讨论填写材料单,有顺序地领取材料
学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、米、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子、米等,等底不等高和等高不等底的圆柱形和圆锥形容器各一个)
(2)小组合作实验,并填写实验报告单。
实验方法
发现结果
第一次实验
第二次实验
第三次实验
结论:
(3)汇报结果,实物投影展示实验报告单。
(4)组际交流,得出结论:
结论1:圆锥的体积v等于和它等底等高圆柱体积的三分之一。
结论2:等底不等高的圆锥体与圆柱体,圆锥的体积是圆柱体积的二分之一。
结论3:等高不等底的圆锥体与圆柱体,圆锥的体积是圆柱体积的四分之一。
结论4:圆柱的`体积正好是圆锥体积的3倍。
结论5:圆柱的体积是等底等高的圆锥体积的3倍。
……
师:同学们实验的结论各不相同,到底哪组的结论对呢?
(各小组纷纷叙述自己小组的实验过程、结论;说明自己小组的准确性,学生的思维处于高度集中状态)。
(5)参与处理信息。
围绕三分之一或3倍关系的情况讨论:
师:我们先来看得出三分之一或3倍关系的这几个小组;请小组代表说说他们是怎样通过实验得出这一结论的?
(请他们拿出实验用的器材,自己比划、验证这个结论。突出他们小组的圆柱和圆锥是等底等高的)
师:其他小组得出的结论不同,是不是由于实验过程或结论有错误呢?我们也请小组代表说说你们的看法。
(生说明他们的过程和结论都是对的,只是他们的圆锥和圆柱不是即等底又等高的)。
师:总结以上各个小组的看法,我们可以得出什么样的结论?
生1:圆锥的体积等于和它等底等高圆柱体积的三分之一。
生2:圆柱的体积是等底等高的圆锥体积的3倍。
生3:我认为第一种说法较合理,强调了圆锥体积的求法。
……
师总结并板书:
圆锥的体积等于和它等底等高的圆柱体积的1/3。
3、启发引导推导公式
师:对于同学们得出的结论,你能否用数学公式来表示呢?
生:因为圆柱的体积计算公式v=sh;所以我们可以用1/3 sh表示圆锥的体积。
师:其他同学呢?你们认为这个同学的方法可以吗?
生:可以。
师:那我们就用1/3 sh表示圆锥的体积。
计算公式:v= 1/3 sh
>师:(1)这里sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件?
生回答,师做总结
4、简单应用尝试解答
例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?
(生独立列式计算全班交流)
(三)巩固练习,运用拓展
1、试一试
一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?
2、练一练
计算下面各圆锥的体积:
3、实践性练习
师:请你们将做实验时装在圆柱容器里的沙(或米)倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。
4、开放性练习
一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)
(四)整理归纳,回顾体验
1、上了这些课,你有什么收获?(互说中系统整理)
2、用什么方法获取的?你认为哪组表现最棒?
3、通过这节课的学习,你有什么新的想法?还有什么问题?
(五)问题解决。(电脑呈现出动画情境)
小明和小强到底买哪种形状的冰淇淋更合算呢?
师:谁能帮他们解决这个问题呢?
(学生说出买圆柱形的冰淇淋更合算的理由。)
六、板书设计:
圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的1/3。
七、设计反思:
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:
(1)密切数学与生活的联系,富有儿童情趣。
从学生熟悉的生活故事引入,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。最后的问题解决回归于生活,实现了丛生活中来,又服务于生活的指导思想。
(2)在经历“错误”之中历炼思维
在平时的课堂教学中,学生往往会出现很多错误性的东西,比如:错误的认识、错误的过程、错误的结论等。很多老师不是“遇错即纠”,就是“遇错即批”,其实大可不必,因为错误之中也有可以充分利用的宝贵资源。“授人以鱼,不如授之以渔”。学生学习数学不仅要学会题的解法,更要懂得解法的来龙去脉。我们要利用“错误”这一资源让学生思考问题,经历碰壁,最终找到解决问题的方法,把思考的实际过程展现给学生,让学生经历思维的碰撞,真正关注学习的过程,帮助他们理解和掌握数学思维和方法。
为了使学生对“等底等高”这一条件能牢固掌握并深刻理解,在分发学具时,我有意将等底等高、等底不等高和等高不等底的三组不同的圆锥形和圆柱形容器分发给各小组,学生通过动手操作后,得出的结论大不相同,在学生汇报的过程中,意见发生了重大分歧,不同结论的各小组都坚持自己的结论准确无误,认知出现了激烈的冲突,此时,我并没有给出评判,而是要求学生认真去观察、比较、发现各自小组的圆锥和圆柱有什么相同或不同的地方,通过观察、比较,最后终于得出只有在等底等高的条件下圆锥的体积才等于圆柱体积的三分之一。这样做既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的实现,完全是利用“错误”这一资源产生的效果
(3)学习过程中揭示了一般科学的研究方法:
提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、思想和方法,更发展了学生的反思意识、小组自我评价意识。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,学生体验到了成功的快乐。
纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出。
圆锥的体积教学反思11
教学过程
一、复习旧知,铺垫孕伏
1、(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?
2、复习高的概念。
(1)什么叫圆锥的高?
(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)
评析:
圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。
二、创设情境,引发猜想
1、 电脑呈现出动画情境(伴图配音)。
夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去“动物超市”购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)
2、 引导学生围绕问题展开讨论。
问题一:狐狸贪婪地问:“小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)
问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)
问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)
过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了“圆锥的体积“后,就会弄明白这个问题。
评析:
数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。
三、自主探索,操作实验
下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。
出示思考题:
(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?
(2)你们的小组是怎样进行实验的?
1、小组实验。
(1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的`,也有5倍关系的。
(2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。
2、大组交流。
(1)组织收集信息。
学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:
①圆柱的体积正好是圆锥体积的3倍。
②圆柱的体积不是圆锥体积的3倍。
③圆柱的体积正好是圆锥体积的8倍。
④圆柱的体积正好是圆锥体积的5倍。
⑤圆柱的体积是等底等高的圆锥体积的3倍。
⑥圆锥的体积是等底等高的圆柱体积的1/3。
……
(2)引导整理信息。
指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)
(3)参与处理信息。
围绕3倍关系的情况讨论:
①请这几个小组同学说出他们是怎样通过实验得出这一结论的?
②哪个小组得出的结论更加科学合理一些?
圆锥的体积是等底等高的圆柱体积的1/3。
(突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)
③引导学生自主修正另外两个结论。
3、诱导反思。
(1)为什么有两个小组实验的结果不是3倍关系呢?
(2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?
4、推导公式。
尝试运用信息推导圆锥的体积计算公式。
(1)这里sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件?
5、问题解决。
童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。
评析:
圆锥体积公式的推导,教师敢于大胆放手,让学生自主探索,经历“再创造”的过程。学生在教师的引导下,通过观察、实验、猜测、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式。特别是数学交流体现得很充分,有学生与教师之间的交流、学生与学生之间的交流以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。在有的小组实验失败后,引导学生在反思中不断进行自我调控,在调控中增强了体验的力度,有效培养了学生的元认知能力。
四、运用公式,解决问题
1、教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?
2、学生尝试行算,指名板演,集体订正。
3、引导小结:不要漏乘1/3;计算时,能约分时要先约分。
五、巩固练习,拓展深化(略)
六、质疑问难,总结升华
通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?
回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示、
总评
1、摸得清,考虑周。教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。设计教案时,能充分估计教学过程的复杂性,考虑学生在课堂上可能发生的“意外情况”,以顺应学生的学习过程,力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。
2、理念新,设计巧。教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的童话情境——狐狸和小白兔换雪糕,并把这一故事情节贯穿整节课的始终。教学中尽量做到一波未平,一波又起,整节课的结构浑然一体。教师遵循了“现实题材——数学问题——数学模型——数学方法——解决问题”的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。
3、重建构,促发展。建构主义学习观认为,学习是学习者主动建构内部心理表征的过程,不同的学习者可能以不同的方式来建构对事物的理解,产生不同的建构结果,本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时,又能建立起新的平衡,学生在“平衡——不平衡——新的平衡”中,认知结构得到了丰富和发展。多样化的数学活动,如实验、交流、反思、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。
圆锥的体积教学反思12
《圆锥的体积》一课的教学,是在学生掌握了圆锥的认识和圆柱的体积的基础上进行的。多年的教学,让我学习和累计了很多的教学经验。教学时我先生活故事导入激发学生的学习兴趣,再让学生大胆的猜想圆锥的体积公式,然后通过实验操作来发现圆锥与等底等高的圆柱之间的关系,从而得出圆锥的体积等于和它等底等高的圆柱体积的三分之一,并能运用这个关系计算圆锥的体积,让学生从感性认识上升到理性认识。
一、让学生经历发现、提问、解决问题的全过程
新课一开始,我就利用教师出示一堆煤,师:将这堆煤倒在地上,会变成什么形状情境导入,教师再演示削铅笔:把一支圆柱形铅笔的笔头刨成圆锥形,让学生观察,猜测圆锥的体积和什么有关,由于课件很形象直观,学生很快联系到了圆柱的体积,而且很容易想到应该是几分之几的关系。在猜想中学生的学习兴趣高涨,更明确了学习的目标。教师从展示实物图形到空间图形,采用对比的方法,不断加深学生对形体的认识。然后让学生动手实验,让孩子亲历教学的验证过程,从实验中得出结论:等底等高的圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式。这样,就有一种水到渠成的感觉。对圆锥的体积建立了鲜明的印象之后,就应用公式解决实际的生活问题,起到巩固深化知识点的作用。
二、让学生在现实情境中体验和理解数学
在实验前让学生先猜想,再通过小组合作实验、演示、交流得出结论,亲自去验证自己的猜想是否正确,既调动了学生的实际操作能力,也通过他们的实际操作自己得到结论促进了小组的合作意识。符合数学来源于实践的认知。充分发挥学生小组合作的精神,大胆放手让学生动手操作,实验,并完成实验结论。推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。在感知事物,获取感性知识中,操作与思维紧密结合,加深对圆锥及体积的认识
1、情感的.发展
小学数学教学中的情感发展主要包括学生对数学、数学学习活动的兴趣;自信心和意志力,学习数学的态度与学习习惯。本节课的教学,摆脱了传统“灌”的教学,从引导学生发现问题、探索问题,学生在发现中激起兴趣,从探索中寻找快乐,然后又应用知识解决问题。学生经历了一个探索性的学习过程,不知不觉地掌握了知识,发展了能力,增进了对数学的情感。学习变成了一个赏心悦目的活动。
2、思想的发展
小学数学教材中,含有大量思想教育因素,是对学生进行教育的良好素材。教师在教学数学知识的同时,要注意发挥教材本身思想教育功能,不失时机地、潜移默化地渗透思想教育活动是儿童认识数学的重要方式。新课改提倡学生的自主活动,把数学学习的主动权交给学生,鼓励每个学生积极参与教学活动,在教学中创设丰富多彩的活动情境,让学生亲自实践,大胆探索。
三、多层次设计练习题
练习设计从基本题入手,过渡到情境题,发展到综合解决实际问题,这个过程中训练了学生的解题能力,培养了运用所学知识解决实际问题的能力。
在教学后感觉到遗憾的是,由于教具准备不足的关系,学生参与以小组合作学习的面小,小组合作分工不太合理,使每个学生不是全身心投入到探究实验中去。这样少部份学生的学习参与积极性不高,有点被动、遗憾进行学习,没有最大限度的发挥每个学生的自主学习的能力。这样的学习虽然是培养了学生的能力,但合作意识还需加强,学生小组合作完成试验的默契还需加强。
圆锥的体积教学反思13
教学“圆锥的体积”一课,重点是体积公式的推导。公式导出后,如何进行计算应用。我让每个学生都经历“猜想估计———设计实验验证———发现算法”的自主探究学习的过程,适当的引导学生根据自己的设想探究等底等高的圆锥体和圆柱体体积之间的关系,圆锥体体积是圆柱体体积的三分之一,从而推出圆锥的体积公式——v=1/3sh,这样,就有一种水到渠成的感觉。然后,利用公式解决生活中的实际问题,加深学生印象。
1、学生对公式推导过程理解有困难,对圆锥体体积计算公式中“1/3”的理解不深入,虽然学生的学习用具是固定的,但是他们所采用的方式却是不一样的.,学生有着各自不同的思维方式。
2、在计算的过程中,运用公式计算时往往丢失“1/3”,单位名称用错,体积单位用面积单位。
1。为了避免单位名称的错误,可在课前复习中设计单位换算的填空题,辨析题等。例如:1立方米=——立方分米=——立方厘米,100平方厘米=1立方分米。
2。在学生利用学具理解公式的推导过程时,应放手让学动手动脑自己解决,但动手之前一定要把任务布置清楚,让孩子们自己发现圆锥与圆柱体各部分之间的关系,从而推导出圆锥的体积公式。
圆锥的体积教学反思14
(课前准备:等底等高、不等底不等高的空圆柱、圆锥、沙子,利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思。课前学生都预习过这一内容。)
教学片断
师:下面分组做实验,在空圆锥里装满沙子,然后倒入空圆柱中,看看几次正好装满。
小组代表从教具箱中自选实验用的空圆锥圆柱各一个,分头操作。
师:请同学们利用手中的圆柱和圆锥、沙子,从倒的次数看,研究两者体积之间有怎样的关系?
生1:我们将空圆锥里装满沙子,然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。
生2:三次倒满,圆锥的体积是圆柱的三分之一。
生3(有些迟疑地):我们将空圆锥里装满沙子,然后倒入空圆柱中,四次正好装满。说明圆锥的体积是圆柱的四分之一。
生1:是三分之一,不是四分之一。
生5:我们在空圆锥里装满沙子,然后倒入空圆柱中,不到三次就将圆柱装满了。
……
师:并不都是三分之一呀。怎么会是这样!我来做。(教师从教具箱中随手取出一个空圆锥一个空圆柱)你们看, 将空圆锥里装满沙子,倒入空圆柱里。一次,再来一次。两次正好装满。圆锥的'体积是圆柱的二分之一。怎么回事?是不是书上的结论有错误?(以前曾有学生对教材中的内容提出过疑问)
学生议论纷纷。……
师:你们说该怎么办?
生6:老师,你取的圆柱太大了。(教师在他的推荐下重新使用一个空圆柱继续实验,三次正好倒满,教育论文《利用“错误”资源,展示思维过程 ——《圆锥的体积》一课的案例反思》。)学生调换教具,再试。
师:什么情况下,圆锥的体积是圆柱的三分之一?
生:等底等高。
生:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
师:也就是说圆锥的体积等于圆柱体积的三分之一的前提条件是等底等高。
案例反思
以前教学《圆锥的体积》时多是先由教师演示等底等高情况下的三分之一,再让学生验证,最后教师通过对比实验说明不等底等高的差异,但效果不太好,学生对等底等高这一重要前提条件,掌握得并不牢固,理解很模糊。为了让学生理解“等底等高”是判断圆锥的体积是圆柱体积的三分之一的前提条件,我就设计了以上的教学片断:让学生自选空圆柱和圆锥研究圆柱和圆锥体积之间的关系,学生通过动手操作得出的结论与书上的结论有很大的差异,有三分之一、四分之一、二分之一,思维出现激烈的碰撞,这时我没有评判结果,而是让学生经历一番观察、发现、合作、创新过程,得出圆锥体积等于等底等高的圆柱体积的三分之一,这样让学生装在看似混乱无序的实践中,增加对实验条件的辨别及信息的批判。既圆满地推导出了圆锥的体积公式,又促进了学生实践能力和批判意识的发展。而这些目标的达成完全是灵活机智地利用“错误”这一资源,所产生的效果
在平时的课堂教学中,我们要善于利用“错误”这一资源,让学生思考问题几经碰壁终于找到解决问题的方法,把思考问题的实际过程展现给学生看,让学生经过思维的碰撞,这样做实际上是非常富于启发性的.学习数学不仅要学会这道题的解法,而且更要学会这个解法是如何找到的.
圆锥的体积教学反思15
《圆锥的体积练习课》教学反思正如探究圆柱体积计算方法的教学过程一样,学生不再是实验演示的被动观看者,而是参与操作的主动探者,是学习的主人。
在整个教学过程中,学生获得的不仅是鲜活的数学知识,同时也获得了更多探究学习的科学方法,探究成功的喜悦以及探究失败后的深刻反思。在这样的学习中,学生会逐步变得会思考,逐渐发现自身的`价值。同时,在操作与实践的过程中,我让一些学习有困难的学生参与其中,使他们感受到学习数学的快乐,并使他们懂得可以通过玩学习到数学知识。
这是本节课在教学组织上的优点所在。对于教学内容的设计,我通过提问引入圆锥的体积,生动而形象地揭示了本节课的课题。对于学生易混淆的知识点,我通过实物展示、语言强调、练习等方式,让学生掌握只有当圆柱和圆锥等底、等高时,圆柱的体积才是圆锥的3倍这一知识点。
对于圆锥的形成过程,我也设计了一个习题让学生自行思考和感受,并通过比较计算结果发现沿一个直角三角形不同直角边快速转动后所得到的圆锥的区别与联系,使学生在对比中进一步理解并掌握知识。
【圆锥的体积教学反思】相关文章:
圆锥的体积教学反思06-18
《圆锥的体积》教学反思05-16
《圆锥的体积》教学反思04-14
圆锥的体积教学反思07-02
(实用)《圆锥的体积》教学反思06-12
圆锥的体积教学反思(15篇)12-01
圆锥的体积教学反思【必备15篇】05-20
圆锥的体积教学反思【汇总15篇】05-16
《圆锥的体积》教学反思(合集15篇)06-12
《圆锥的体积》教学设计优秀05-12