《找次品》教学反思

时间:2024-06-30 16:44:07 教学反思 我要投稿

《找次品》教学反思15篇(优)

  身为一名到岗不久的老师,课堂教学是重要的工作之一,借助教学反思我们可以拓展自己的教学方式,那么大家知道正规的教学反思怎么写吗?下面是小编收集整理的《找次品》教学反思,仅供参考,大家一起来看看吧。

《找次品》教学反思15篇(优)

《找次品》教学反思1

  《找次品》是人教版教材五年级下册数学广角里的内容,属于一节思维训练课,通过找次品这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系,逐步优化找次品的方法。

  以找次品这一操作活动为载体,让学生通过观察、试验明白解决问题的多样性,体会运用优化方法解决问题的有效性。主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。

  本节课先分析从5个零件中找一个次品的'方法和次数,初步认识找次品的基本方法,然后再来分析在9个零件中找一个次品的方法和次数,这时进行优化,并且延伸10、11个零件怎么分?教材虽然给我们提供一个基本教学思路,但是教学过程如何展开;优化在什么时候妥当;还需要教师充分地备好课。

  充分的动手操作和课件直观演示是学生分析找次品次数的基础。本节课是属于思维训练课,所以难度较大,比较抽象,学生学起来会有困难,特别是对学习能力中下的学生。这节课我给每个学生提供了学具,让学生借学具模拟称一称,并小组交流方法,同学间相互帮助,让学生都能理解找次品的基本方法和基本原理,为接下来符号化分析称球过程打下了基础。课堂上还有一部分同学一直很安静,那就是他们的思维根本就没有调动起来。

  本节课中教师力图渗透一些基本的学习方法,如观察,比较,分析、猜测等方法始终贯穿着整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的学会找次品的方法乃至认识更多更广的生活世界,这也是我们教师要在教学中经常要体现的重要思想。

《找次品》教学反思2

  作为一线的数学教师,我一直在不遗余力地追求心目中的理想课堂:直面学生的数学现实、尊重教师的个性创造、目标落实有效、学生持续发展。而有效的课堂教学需要教师通过不断的反思发现不足,从而改进教学设计。最近教研室开展了“一课同上,同课异构”活动,作为青年教师的我经历了两周的精心准备,并进行了多次的的课堂实践之后,感慨颇多,收获颇多,并对有效的课堂教学有了更深的认识。

  一、美好的预设≠理想的课堂

  找次品这节课属于思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。

  我是这样设计教学过程的:先从3个零件中找一个偏重的次品,再从5瓶口香糖中找一个轻一点的次品,让学生初步掌握找次品的基本方法,接着再来分析9筐松果中找次品的方法和次数,这时进行优化,并用12个零件进行验证,最后设计的巩固练习是:有15箱饼干,其中有一箱是次品,轻一点。至少称几次一定能把它找出来?该怎么分?在教学中我让学生利用手中的学具做一做(称的.过程),然后同桌说一说(怎样称的)。看着学生们动手又动脑,积极、主动地参与研究,我也禁不住加入其中。精心预设后的课堂显得更加活跃,更加生机勃勃。在这时问题出现了,学生在验证时发现12个零件不用平均分成3份,平均分成4份,3个3个的也可以只用3次就找到次品。我随即问道:“有没有比平均分成3份更少的分法?”学生:“没有。”“一般情况下我们就平均分成3份去称,次数一定是最少的。”我仓促的进行了小结。40分钟的课堂就这样结束了,带着遗憾,带着疑问下了课。

  二、精雕细琢,和学生一起收获着

  课后我又反复解读教材,回忆着课堂上的一个个镜头,听了其他老师的点评和建议,我重新备课,又进行了第二次上课。

  这次我是这样预设的,把3个零件和5瓶口香糖作为学生研究的起点,3给以最优策略的暗示,5给予学生研究方法的指导,师生结合共同研究,训练学生的逻辑思维能力和表述能力,而9个零件是研究的主体,学生独立自主研究,找出最优方案,并体会最优方案的道理。将待测物品平均分成3份这种方法,在第一次称时,能确定合格品的个数最多。无论天平是否平衡,都能一次排除三分之二的合格品。将第二次称的范围缩小到待测物品的三分之一。经过老师的引导,学生发现了其中的奥妙。这次我把原来的巩固练习换成了有趣的小游戏——猜一猜,猜猜如果有27个、81个、243个待测物品,要想找出唯一的次品,用天平称至少称几次一定能找到次品?让学生运用本节课的知识实现思维的跨越,并从中发现规律,如果待测物品个数×3,那么找次品称的次数会加1。课堂上学生们积极举手发言,交流想法。通过观察、猜测、实验操作、画图、推理与合作交流等学习方法,使学生的思维逐步提高,进行优化思维的渗透。

  本节课所研究的待测物品个数都比较特殊,都是3的倍数,刚好可以平均分成3份,我准备第二课时再研究其他普通的一些数如8个、10个等。

  “学然后知不足,教然后知困”。面对新的教学内容,我们习惯性的反应就是“难”,可经过这次磨练,我才发现不是教材难,而是自己太“懒”,不愿意去学习,不愿意去思索,其实方法总比困难多。有效的课堂需要精心的预设,有效的课堂需要不断反思。

《找次品》教学反思3

  这节课以“找次品”这一操作活动为载体,让学生通过观察、猜测、实验等方式感受解决问题的策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力。

  “找次品”这样的内容对于大多数学生来说难度是比较大的,如果期望在一节课内讲完所有的知识点,那么最后导致的结果就是很多学生是一知半解,并不能够真正理解找次品的过程以及对过程的优化。

  首先从天平特点认识平衡与不平衡两种状态所反映的数学信息,确定找次品的方法及正确判断,方法的针对性。数学教学反思

  然后动员学生以组为单位,讨论找不合格钙片的策略,学生都能想到要分组,缩小范围,也就是最大限度地排除不是次品的物品个数。但到底具体分几组,有意见分歧。我没表态,顺承大多数同学意见,分不等的'3组(2、2、1),在大家的商议中找到了次品。接着我让他们从6个物品中找次品,有分2组的,有分3组的,虽然最后用的次数一样,到那反映了不同的数学策略,分2组,每组3个,只能排出3个,而分3组,称量一次却能排除4个,数量多的话,更有优势用时更短,这就把分组的科学性通过实际例子让学生明白。

  然后用通过其他数量比较并不是分组越多越省时间,得出3分法找次品是最佳的方法。

  接下来,让学生体验不能平均分的数量怎样分,从算式上让学生知道为什么会有其中一组与其他两组相差1,这既是分组的科学性有时分组的数学客观性。

  同学们很快就知道怎样确定次品了。

  最后要把方法和理论合二为一,也就是根据实践归纳推理,找出数量和检验次数之间的关系,确定大宗物品的检验次数是可以事先计算的,同学们越学越有趣,脸上洋溢着幸福的笑容,学有用的数学,增加了学生学习的积极性。

  最终,引导学生用简单的图形表示自己的实验过程,简单明了。 所以自己感觉这一堂课比较成功。

  要真正的上好每一堂课,研读教材、读懂教材是很关键的第一步,我想作为一名教师,一直是我们努力的方向。只有真正读懂了教材,读懂了学生,每一堂课才会真正有效!

《找次品》教学反思4

  “找次品”是五年级下学期数学广角中安排的教学内容,其目的是让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养学生观察、分析、推理以及解决问题的能力,同时也让学生感受到数学与日常生活的密切联系。

  我首先安排了从3个中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个,继续通过动手操作、小组合作交流的学习方式让学生继续发现多种方式找出其中的1个次品。最后安排了从12个找出次品,这次提高难度要通过写一写的`方式找出次品。总结以上三种情况要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。

  在数学广角的教学中培养学生数学思想方法一直是我们数学教学学科的特色。我在教学时渗透了一定的数学思考方法。本课的开始我就渗透了化繁为简的数学思想方法,然后在学生众多的策略中提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题。在教学过程中,就渗透了不完全归纳法,优化策略、分析,讨论等多种教学方法。围绕问题的解决,让学生经历探索数学 学习的过程,进而使学生得到数学思想方法的渗透、提高数学思维能力。通过在解决问题中展开观察、操作、猜测、实验、推理与交流等数学活动,感受最优策略的方法,提高学生解决问题的能力。

  本节课中我认为还有以下方面没有做好:首先是在教学过程中有一个学生还要说不同的方法,我没有给他机会,没照顾到个体差异;再者从5个待测物品中找较轻的一个中,有一学生举出了分成“2和3”的方法,面对这一生成性的资源我没有很好地把握住机会对学生进行平均分这一概念的渗透;最后是在对从9个物品中找一个较轻的比较归纳中,总结比较仓促,使得学困生在这方面的理解上还有些困难。这些都需要努力改进和提高。

《找次品》教学反思5

  《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”我这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。在本课的教学中有这样几点做得比较好:

  一、注重学生的自主探索。

  教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从5个中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了8个,继续通过动手操作、小组合作交流的学习方式让学生继续发现多种方式找出其中的1个次品。最后安排了9个找出次品,这次提高难度要通过写一写的方式找出次品。总结以上三种情况要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。

  二、注重数学思想方法的培养。

  在数学广角的教学中培养学生数学思想方法一直是我们数学教学学科的特色。我在教学时渗透了一定的数学思考方法。本课的开始我就渗透了化繁为简的数学思想方法,然后在学生众多的策略中提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题。这过程中,就渗透了不完全归纳法,优化策略、分析,讨论等多种教学方法。让学生经历探索数学知识的过程。围绕问题的解决,让学生经历探索数学的过程,进而使学生得到数学思想方法的渗透、提高数学思维能力。通过在解决问题中展开观察、操作、猜测、实验、推理与交流等数学活动,感受数学思想方法,提高他们的数学思维能力和解决问题的能力。

  三、重视操作活动,发挥主体作用。

  本节课的活动性和操作性比较强,沈佳老师让学生借助圆片,以动手操作为手段,以思维训练为目的,把5个零件和8个零件作为学生研究的起点,放手让学生操作探索,让学生通过操作、思考、讨论、交流去获得数学知识,使学生得到主动发展。

  虽然本课从整体上来看还是比较成功的,达成了预设的教学目标,但是有些细节问题还是应该注意的。如:对于孩子们发言的点评还应该再有一些针对性;时间的控制再合理些,如在5个中找次品的时间再压缩一些为8和9再节省出一些时间会更好。让课堂时间分配更加合理。

  《找次品》教学反思15

  本单元以找次品这一探索性操作活动为载体,让学生通过观察、猜测、试验等方式探索解决问题的策略。同时,进一步理解随机事件,感受解决问题策略的多样性和优化思想,培养学生的观察、分析、逻辑推理能力,并学习如何用直观的方式清晰、简洁、有条理地表示逻辑推理过程。

  成功之处:

  1.重视感受解决问题的多样性和优化思想。在例题的教学中,首先通过动脑思考怎样从3瓶钙片才能找出次品,并能用简单的过程清楚地描述出来。然后再从8个零件中找出次品,并让学生思考至少称几次能保证找出次品,在这一过程中,学生独立探索,并将自己探索的'情况填入课本中的表格里。探索情况如下:

  8(1,1,1,1,1,1,1,1)分成8份至少称4次

  8(4,4)分成2份至少称3次

  8(2,2,2,2)分成4份至少称3次

  8(3,3,2)分成3份至少称2次

  通过观察学生发现当平均分成3份时,称的次数最少,这3份应使多的一份与少的一份相差1。根据这一规律再让学生找出9、10、11个零件中的一个次品,至少称几次才能保证找出次品,并感受到把待测物品要尽可能的均分成3份,进一步明确找次品的最优方法,从而体会到优化思想的重要性。

  2.理解题目中的关键词。找次品中的“至少称几次能保证找出次品”是什么意思,先让学生理解关键词的意义,然后教师明确“能保证”就是在运气最差的情况下也能找到才叫保证,而“至少”就是指在所有各种方法中,称量次数最少的那种方案。

  不足之处:

  1.在探索多种方法的过程中,用时较多,导致时间分配不均匀,练习时间少。

  2.对于运气好的情况明确的不是很清楚,可以直接告诉学生待测物品无论是多少个,称一次是有可能称出来的。

  3.对于不知道次品是轻或重,还需要再称一次才能得出答案也没有明确。

《找次品》教学反思6

  从真正开始设想这节课到开课大概有3星期,在这二十来天的时间里,我轮回着与许冬丽导师设计教案、试教、讨论、修改这一过程。直到最后一次的修改是在开课前一晚上,改完心里似乎是有那么一点肯定的,但上完后才直到有那么多的遗憾!

  首先我不得不佩服许冬丽导师的眼里,她一眼看出了我上课时的情绪低沉。真的,这节课我没有试教时的状态好,能全身心的投入,情绪亢奋,能引领学生的情绪与状态。这是第一个遗憾,也是我以后的教学生涯中必须要避免。

  接着是我课堂调控能力的不足,在教2个物品里找次品的环节中,由于自己没有好好引领,导致学生被我多余的举动与语言给糊涂化了。要知道这是最简单与最开始的环节啊,在这里就弄不清楚,接下来就可想而知了,学生根本就没有那种主动性。再加上我在情绪的调控上失败,整节课给自己的感觉就是很拖很拖。

  最后来说说我教学语言和机智的欠缺吧。首先是课前唱歌,本来想让学生调整状态的,没想到学生说不会唱,我在那会儿也没想到要玩个游戏什么的,也就这么突兀的就开始上课了。接着就是我在教学中语言重复不精炼不规范。有些问题如果老师问的精准就可以避免学生不必要的思维发散,从而可以节省时间,加大课堂教学密度!这个需要我在今后每一节上课中不断注意,不断改进才能慢慢达到的`,而不是一朝一夕就能改得过来的。

  当然这节课也是有优点的,毕竟有许冬丽导师的大部分心血在里面。

  首先是教学具的轻便,可重复利用,且直观易懂。吹塑纸,在小时候作手工的时候接触过,但不知道它叫什么,长大之后就再也没有看过了,以至于许老师说到吹塑纸的时候我还是很纳闷这个怎么用,原来只要用水就能使它贴在黑板上了,非常方便。

  接着就是教学环节设计的层层递进,思路非常清晰。我想如果不是自己没有好好把握,换成许冬丽导师去上的话,肯定是很精彩的。

  虽然有太多的不足与遗憾留下来,但我并不泄气。我知道进步需要在不断的失败,然后不断的反思才能得到的。我也知道在教学道路上我还有很长的路要走,而这一路上又有太多太多的东西等着我去学习与探究!

《找次品》教学反思7

  《找次品》是属于一节思维训练课,以“找次品”这一操作活动为载体,让学生通过观条、试验明白解决问题的多样性,体会运用优化方法解决问题的有效性,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。本节课先分析从3瓶钙片中找一个次品的方法和次数,初步认识找次品的.基本方法,然后再来分析在9个零件中找一个次品的方法和次数,进行优化,并且延伸到10、11虫个零件怎么分。教材虽然给我们提供了一个基本教学思路,但是教学过程如何展开,优化在什么时候妥当还需要教师充分地备好课。

  充分的动手操作和课件直观演示是学生分析找次品次数的基础。本节课是属于思维训练课,所以难度较大,比较抽象,学生学起来会有困难,特别是对学习能力中下的学生。这节课我给每个学生提供了学具,让学生借学具模拟称一称,并小组交流方法,同学间相互帮助,让学生都能理解找次品的基本方法和基本原理,为接下来符号化分析称的过程打下了基础。课堂上还有一部分同学一直很“安静”,那就是他们的思维根本就没有调动起来。本节课中教师力图渗透一些基本的学习方法,如观察、比较、分析、猜测等方法始终贯穿着整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好地学。

《找次品》教学反思8

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培养学生的应用意识和解决实际问题的能力。

  对传统设计思想的分析

  传统设计一般是首先找5个零件中的次品(目标:在认识平衡与不平衡两种可能结果的基础上引导学生画框图,经历逻辑推理的过程);再找9个零件(目标:找到最优称法,形成猜想);然后称8个,27个,探索规律;最后称100个、243个零件(目标:继续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看体现了操作 ----猜测----验证 ---- 归纳 ----应用的教学思路,它的重点放在学生优化方案的比较上。这样设计有两个弊端。问题一:按这种单刀直入式进行研究,因学生的知识和方法储备不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维容易断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣不足,影响学生思维的主动性。问题二:在9个物品中找次品的探究过程中,让学生猜想最佳策略:分三堆,每堆尽量同样多的规律,学生不容易找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思考过程,另一方面也影响了学生对最佳策略的关注。如何通过优化策略的形成,提升学生的思维品质,高老师进行了如下的探索。

  探索适合学情的实践尝试

  1、巧:游戏互动做铺垫--巧妙渗透优化思想

  在学生的猜数过程中,高老师总让学生处于最不利的处境,除非他选择了最佳策略,否则猜的次数总是最多。高老师心中想的数不是固定的,是根据学生的猜在不断的变化,也就是说,一开始他心中并没有想好一个具体的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生认识到运用缩小范围猜数可以提高效率 ,让学生在无意识的猜数游戏中感悟快速猜数的方法与策略。

  2、趣:交流策略多样化---引出优化方法

  有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天平来进行实践探究,学生非常感兴趣。高老师放手让学生探究3个、5个测品中找一个次品,体现策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不容易理解,教学时我根据学生的回答同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下一定的基础。

  3、实:打破常规设悬念---激起优化需求

  如果说数学思想方法是可以传授的话,那教师肯定是把其中富有思考意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想一定要让学生经历了自主体验和反思顿悟的过程。本节课高老师打破常规,让学生大胆猜测:如果有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么办法?(把数据变小些,并举例研究。)激起学生优化需求,学生也从中认识到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。

  4、准:找准盲区巧点拨---形成优化策略

  学生挑战在100个中找次品时,高老师及时点拨引导---------当遇到一个问题时,我们迈出第一步至关重要。结合课前游戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的'计划。当出现分2份和3份的对比分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。

  探索实践后的启示与思考

  启示一:发展才是硬道理。在备这课时,高老师也考虑到用天平来操作演示,但由于现场条件的限制----没有准备现成的天平;同时又考虑到学生用天平来称在操作上也会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天平带进课堂,而是让学生用自己的肢体演示代替天平操作。只要能让学生得到发展,删繁就简是很划算的。

  启示二:万丈高楼平地起。解决再难的问题,丰实基础是至关重要的。为了让学生的思维顺利由方法的多样性转向最优化,高老师在教材例1之前增设在3个中找次品的环节,目的有二:

  1、走实第一步。在这一环节中让学生重温天平的结构和用法,收集平衡与不平衡所反映的信息,为后续研究储备能量。

  2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从模仿开始的习惯。要想学生的思维提升的更高,必须把思维的基础打得最牢。

  思考一:经历了本堂课的预设与生成后,对于本课这样有一定难度的教学内容,教到怎样一个度是最合适的?

  思考二:这节课中,对于最佳策略的成因还有没有更好的、更有说服力的解释方法呢?

  古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高老师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。

《找次品》教学反思9

  “找次品”是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法,找次品教学反思。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课,我认为有以下几点优点与不足。

  一、优点

  (1)导入激发学生学习热情

  首先,我以讲故事美国航空飞机爆炸导入,抓住学生好奇心理,(飞机的爆炸真的和一个次品有关)课一开始,发挥学生对新课学习的积极性和主动性,形成主体意识。而后又加以课件来解决他们心中的某些疑问,这样能激发学生学习的热情。

  (2)民主导学中渗透“退”也就是“化繁为简”的数学思想

  我在教学中体现了华罗庚“退”的数学思想——善于“退”足够“退”,“退”到最原始而不失去重要性的地方,也是学好数学的一个诀窍。把复杂的问题退回简单化,再从解决简单的问题中发现规律,用这个规律解决复杂的问题。在本节课的开始我就设计了让学生猜“从81瓶钙中找一个次品,用天平称,至少要称几次就一定能找出次品”学生猜无论如何都要81次,有的说42次。要解决这个难题,我们首先研究2瓶,3瓶5瓶等逐渐寻找规律和方法,最后找到“平均分3份来称所需次数最少”的方法,然后用找到的方法来解决从81瓶中找次品的问题。后来经过探究后发现从81瓶中找次品只需4次即可,在这种强烈的对比之中学生感受到数学思想方法的魅力,数学的奇妙!从而激发了学生数学的学习欲望。

  (3)展示交流中体验“猜想与验证”的数学思想方法

  猜测与验证是学生开展数学活动的一种重要思想方法。正如荷兰数学教育家弗赖登塔尔所说“真正的数学家——常常凭借数学的直接思维做出各种猜想,然后加以证实。”因此小学数学教学中教师要重视猜想验证思想方法的渗透,以增强学生主动探索、获取数学知识的能力,促进学生创新能力的发展。本节课就让学生经历了“实验探究——猜想——验证——归纳”的过程。首先从9瓶中找1瓶次品的几种方法的对比中,我们发现均分3份的方法所需次数最少,是否无论是多少瓶都是均分3份的方法所需的次数最少那?为了验证这一猜想,就必须再用一个例子去实验,最后归纳得出结论。学生通过经历知识的'形成过程,不仅获得了数学结论,更重要的是逐步学会了获得数学结论的思想方法——猜想验证,提高了主动探索,获取知识的能力,增强了学好数学的信心。

  二、不足

  在得出待测物品是3的倍数后,我适当将知识进行了拓展,学生经过观察后,很快地分别说出了所要称的次数。这一拓展,有效地开启了学生的思维。当然不足之处也有很多:(1)本节是思维训练课,但最终是不是所有的同学的思维都得到了不同的发展呢?现在反思一下,确实课堂上还有一部分同学一直很“安静”,那就是他们的思维根本就没有调动起来。

  (2)另外所用的图示的办法,应该多做讲解,要让每一位同学能熟练的运用它。

  (3)在板书中由于看到黑板是一块,本来设计的板书临时改为2列,结果出现了板书中“操作方法”占了2行。总之,这次教学优质活动给我了一次很好的锻炼机会,找到自身的不足,方可对症下药!我深信,只要我们想方设法摸清学生的学情,找到他们的现有知识起点,不断改变教学方式,使他们乐学、爱学、好学,定会为学生和自身成长辅垫出一条坚实之路!

《找次品》教学反思10

  新教材中的“数学广角”一直是教师感叹难教、学生感觉难学的内容,这次“找次品”也不例外。为了让学生低起点,拾级而上,我将例1单独作为一课时来教学。反思本课教学,有成功也有困惑:

  一、两处成功

  1. 注重学生的自主探索

 想快捷准确地解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈”教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从2~8个零件中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个零件,通过小组合作交流,的`学习方式。并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现把零件分成3份称的方法最好,进一步认识“找次品”这类问题 ,探索解决问题的最优方法。

  2.重视“数学化”。

 用语言描述找次品过程,当遇到使用天平次数较多时,叙述起来十分麻烦。在例1教学过程中,学生们更乐意用绘制简单天平示意图的方式表示找的过程。可是随着物品个数的增加,这种方式虽然形象直观,但毕竟不方便。“繁”则思变,教材137页第5题用简单文字加箭头的方式清晰描述过程10个物品分成3份:3个、3个、4找次品。这种方式比画天平简洁得多,但有没有更简便的记录方式呢?《教参》中为我们介绍了一种树形图。这种树形图用小括号代替了“把物品分成几份,每份分别是几”的叙述,一目了然。同时还吸收了箭头示意图的优点,用两个分支表示称得的不同结果。但我觉得“天平两边各放3个”这类语言能否符号化,使图示更具有数学味,也更简洁。当天平两边各放3个平衡时,再将4个物

  品分成3份,1、1、2,后面也应按前面格式写明“天平两边各放1个”,接着按平衡或不平衡分析,这样思维才能完整体现。经过自己的修改,我将树形图改为如下格式:

  我通过在两个数字下划线的方式代表“将这两堆物品分别放在天平两边”,这样既减少了文字,又方便最后统计次数。每种情况,最后只需数一数共划了多少条横线即可,既准确、又形象。

  二、两点困惑

 其一、找次品的题目一般都是求“至少称几次就一定能找出次品”,在使用树形图记录中,是否必须在最后标明谁是次品。即上图是否必须像这样写:

  其二、当所分物品是偶数个(如4、6、8)时,我发现学生更亲睐于将其平均分成2份。这种分法在总数是4和6时,并不影响最少次数,但如果是8个物品时,如果平均分成2份,则至少需要3次,而如果分成3份(3、3、2),则只需要2次就可以找出次品。所以,要引导学生发现规律:应尽量将物品分成3份,能够更好找出次品“找次品”教学反思显得有些牵强。在练习中,有部分学生仍旧痴迷于平均分成2份的方法,在“做一做”中就有部分学生将10分成5和5,用这种分法同样也能做出正确结果,这时教师该怎样评价?

《找次品》教学反思11

  这两天教学了“找次品”一课,它是五下数学广角里的教学内容,是一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。

  教材的编排是先分析3瓶钙片中找一瓶次品的方法和次数,初步认识找次品的基本方法;然后再来分析在8个零件中找一个次品的方法和次数,这时进行优化,并且延伸到9、10、11个零件中。本节课我创造性的使用了教材,先从3瓶钙片中找一瓶次品入手,让学生充分感知把待测物品的`个数分成能平均分成3份可以更简便。

  在练习5瓶钙片时,有部分学生仍平均分成2份的方法,虽然适用于这道题,但换成例2的8个零件时,明显发现方法不够简便。所以,在从8个零件中找一个次品时,我首先让学生小组内交流都有哪些方法可以找出次品,分别用了多少次?并通过列表的方法进行对比分析。学生在分析中渐渐发现找次品的快捷方法,并在我的引导下发现规律,同时感受平均分和不平均分对寻找次品次数的影响,在归纳出“找次品”的最优策略:平均分成3份,如果不能平均分的话,他们之间只能相差1,这样才能使所需次数最少。

  在整节课中,我通过幻灯片的直观演示让学生分析找次品次数,但发现学生学起来还是会有困难,特别是语言表述上。所以,在练习中我让学生借助学具模拟称一称,并在小组中交流方法,同学间相互帮助,让学生都能理解了找次品的基本方法和基本原理,明显效果好多了。最后,我让学生在自己的认知基础上,了解课本中的补充材料,让学生进一步发现所测物品数目与至少需要次数之间的关系。

  对于此类找最佳策略的题目,必须要学生充分经历学习的过程,在自我操作中感受其规律,并能进行应用,而只通过直观演示还是不够的。

《找次品》教学反思12

  执教《找次品》一节课时,在导入环节,我用孩子们最常见的事物——“口香糖”引入课题,既与本课内容相关,又能提高孩子们的兴趣,从而引出“次品”。

  在探索新知环节中,我让孩子从易到难,从3瓶口香糖中找出一瓶次品,然后为了让学生对所学知识产生浓厚的兴趣,我设置了一个环节:让电脑大屏滚动起来,最后停在哪个数字上,就从那个数字的口香糖中找出一瓶次品,最后电脑停在了19683瓶上,学生的兴趣陡然升高。此时老师告诉孩子们,像这种情况我们可以利用“化繁为简”的数学思想来解决类似问题,作为老师,不仅要对学生“授以鱼”,更要“授以渔”,让学生学会解决数学问题的方法。接着从6瓶、9瓶口香糖中找出一瓶次品,其中在从9瓶口香糖中找次品时,我设计了一个小组合作的活动,旨在让孩子自己在动手的过程中发现找次品的规律,发现规律后再从27瓶、81瓶、243瓶、729瓶、2187瓶、6561瓶、19683瓶口香糖中找次品,当学生发现从19683瓶口香糖中至少9次就能找出一瓶次品时,孩子们的情绪立即达到了高潮,也加深了对新知的理解。接着我设计的是让学生发现问题:当待测物品数不是3的倍数时又该如何找次品?引导学生得出当待测物品数平均分成3份后余一瓶或余两瓶时如何放就不影响我们用天平找次品,在这个环节的设计上,旨在让学生养成勤动脑、细观察的好习惯。最后,我设计的.是让学生口述出找次品的最优化策略,目的在于培养孩子的总结表达能力。

  在接下来的练习环节中,通过孩子们感兴趣的闯关模式,练习由易到难,让孩子们本节课所学的知识在练习中得到升华。

  执教过这一节课后,感到存在的不足是:

  1、学情把握不准,准备不充分。在小组合作时,学生对待测物品分份数时,不大胆,导致老师提示过于明显。

  2、对教学时间把握不好。

《找次品》教学反思13

  《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。

  一、创设情景 通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的'探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。以前的视频画面距离学生的生活较远,孩子们兴趣不大。集体备课时大家建议这一环节,还是应该联系生活实际,这样可以更加激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。

  二、难点转化 降低教学起点,按照例题,本课例1是从5瓶钙片中找到次品,而我却让孩子们先从3个药瓶中找出次品,这样就降低了教学起点,孩子很容易的从3个中找到次品。那么在后面的5个、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。

  三、层层推进 本课我让孩子们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用12进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。

  四、知识拓展 当学生通过例2发现把待测物品平均分成3份称的方法最好后,以此为基础让学生进行猜测:这种方法在待测物品的数字更大的时候是否也成立呢?引发学生进行进一步的验证、归纳、推理等数学思考活动,逐步脱离具体的实物操作,采用文字分析方式进行较为抽象的分析,实现从特殊到一般、从具体到抽象的过渡。这部分在集体备课后我进行了调整,将以前不能平均分成三份的教学挪到了下一课时。本节重点砸实,能平均分成三份的,怎样找出次品。总结出规律后,进行了相应的练习。增加了课后“你知道吗”中一部分内容。学生充分练习后已经能很熟练的运用最优方法解决问题、发现规律。通过今天教学实际来看,效果更好一些。

  五、教学方法 在教学过程中,充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。 不足之处:

  1、由于时间关系,在研究从9个和12个中找次品时,学生小组交流的时间不够充分,汇报时有些方法,没有反馈。

  2、板书设计本课板书很难设计,很抽象,不容易使孩子们理解,因此我在设计板书时,在第一次试讲的基础上进行了简化。用下划线来代表天平,上面的两个数字代表托盘两边的物品数量,这样就更形象一些,让孩子们也更容易理解一些。但改过之后,分析天平两边出现的两种情况,不如以前清楚、易懂。究竟哪种方法更利于学生理解,希望大家一起来探讨。

《找次品》教学反思14

  《找次品》这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。第一次接触到这样的内容让我不知所措,脑中一片空白,学生该如何学?我该怎样教?于是我认真的阅读了教材及教学参考书,在认真思考以后,确定了自己的教学方案。

  在教学过程中,我首先让孩子们明白三点:第一、当物体放在天平的两端时会出现平衡和不平衡两种情况;第二、要想通过天平的平衡与不平衡找到次品,那么天平两端的物体个数必须相同。第三:次品就是大小、形状、颜色完全相同,但质量稍重或稍轻的物品。理解了这三点以后,首先和孩子们一起体会3个物品中找1个次品至少称几次能保证找到次品?接着学习4、5、6…个,让学生想象着用天平找出次品,比较不同的方法之间的相同点和不同点,找出哪种方法称的次数最少。得出要使称的次数最少,应该把物体分成3份;能平均分的要平均分,不能平均分的,多的一份与少的一份要相差1。

  在这节课中,存在着许多的不足:

  1、理解和把握教材不够,没有用好教材

  教材设计的'是让学生从8包糖果中找出质量不足的,目的是让学生经历找次品的过程,体验“要使称的次数最少,应该把物体分成3份;能平均分的要平均分,不能平均分的,多的一份与少的一份要相差1”这个规律,它遵循了学生的认知规律。而我觉得不管是8、9、10…个次品,都离不开3、4、5…个次品的学习,只要学生弄会了如何从3、4、5…个物品中找出次品,其他数字大的物品找次品都会迎刃而解。因而我没有按教材的编排教学,而是首先和孩子们一起体会3个物品中找1个次品至少称几次能保证找到次品?接着学习4、5、6…个,这个想法挺好,可实际教学中效果并不好。因为找次品的规律只有在数字达到8以上,优越性才能体现出来,我和学生一起从3个物品找次品,太占用时间了,大量的时间浪费在讨论从4、5、6个物品中找次品,直到快下课才讨论到8个物品,学生已经注意力不集中了,对教学内容也失去了兴趣。

  2、在关键处点拨不到位

  这节课的关键是让学生得出要使称的次数最少,应该把物体分成3份;能平均分的要平均分,不能平均分的,多的一份与少的一份要相差1。受前面教学影响,我没有做好点拨,只是让学生浏览了课本,画出来,学生没有深刻的体验到这个规律的优越性。

《找次品》教学反思15

  想快捷准确解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养,学生少了发现后的'欣喜与快乐,缺乏比较、综合等思维能力的锻炼。为此,我今天给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现了结论。这样的教学显然费时较多,练习二十六第4、6、7题都没能在单元时间内完成,必须再增加一个课时练习课,但学生们学得开心,思维十分活跃。

  在教学例2时,学生们发现9个物品不可能按教材所说分成4份(2,2,2,3)放在天平上称。因为将其中两个2放在天平上称过以后,剩下的2与3是不同能可时放在天平两边的,所以这种分法应该改为分成5份,即(2,2,2,2,1)。而这种方法实质与9分成4,4,1是一致的。因此,学生认为教材这种分法不合理。不知大家怎么认为?

  因为9不能平均分成两份,因此学生们普遍选择了分3份。个性化解法丰富多彩,除了教材中提到的4,4,1;3,3,3外,还有2,2,5和1,1,7两种不同分法。这些分法中除平均分成3份以外的分法外,其它都至少需要称3次才能保证找出次品,所以通过观察比较,学生自己发现了解决问题的策略。一是把待分的物品分成3 份;二是要分得尽量平均,能够平均分的平均分成3 份,不能平均分的,也应使多的与少的一份只差1 。

  最后总结规律: “只要记住物品总数在2——3之间,需要称1次就能保证找出次品;在4——9之间,需要称2次;在10——27之间,需要称3次……。”我引导学生独立阅读137页的“你知道吗”。大家普遍认为这种方法好,如果是填空题可以根据表格快速填写,节省时间;如果是解决问题,可以根据表格核对自己的结果。但记不住数据怎么办?“从上表你能发现什么规律吗?”一石激起千层浪,对照数据寻记忆窍门。果然,不一会儿功夫,刘思源同学就发现了隐藏的规律。“要辨别的物品数目2——3;4——9;10——27;28——81……”,这里的后一个数3,9,27,81都是不断乘3得来的。因此,只需记住第一组数据,然后将3依次乘3,即可得到每组数据的第二个数,第一个数则是前一组数据中第二个数+1得到的。

【《找次品》教学反思】相关文章:

《找次品》教学反思06-12

《找次品》教学反思 15篇08-15

《找次品》教学反思(范例15篇)06-12

《找次品》教学设计02-25

《找次品》说课稿06-26

《找骆驼》教学反思04-08

《找规律》教学反思04-02

找小猫教学反思11-03

找规律教学反思05-22