三角形的内角和教学反思

时间:2024-06-28 16:51:33 教学反思 我要投稿

三角形的内角和教学反思

  身为一位优秀的教师,我们的任务之一就是课堂教学,在写教学反思的时候可以反思自己的教学失误,快来参考教学反思是怎么写的吧!以下是小编为大家整理的三角形的内角和教学反思,欢迎阅读与收藏。

三角形的内角和教学反思

三角形的内角和教学反思1

  “三角形内角和”是北师大版数学四年级下册第二单元认识图形的一节探索与发现课,使学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:

  一、创设情境,营造研究氛围。

  怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的.内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在导入“研究三角形内角和”时,没有按课前设计的进行,学生直接说出“三角形的内角和是180°”。而我本身却没有顺势进行引导,直接抛出“研究三角形内角和”这一任务,更巧妙的是借此机会鼓励学生,以“验证三角形内角和是不是1800”入手。这一处成为本节课最大的失误。

  二、小组合作,自主探究。

  “是否任何三角形内角和都是180°”,如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生说一下有哪些因素会影响到研究结果的准确性。

  三、练习设计,由易到难。

  研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。第二层练习是判断题,让学生应用结论检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

  四、教学中存在不足。

  在教学中,由于我对学生了解的不够充分,没有很好的电动学生发言的积极性,另外的原因是教师本身语言枯燥,过渡语设计的不够精彩,也影响了学生的学习兴趣,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。

三角形的内角和教学反思2

  新课标把三角形的内角和作为四年级下册中三角形的一个重要组成部分,它是学生学习三角形内角关系和其它多边形内角和的基础。即使在以前没有这部分内容,大部分教师在课后也会告诉学生三角形的内角和是180度,学生容易记住。因此让学生经历研究的过程成了本节课的重点。既让学生经历“再创造”----自己去发现、研究并创造出来。教师的任务不是把现成的东西灌输给学生,而是引导和帮助学生去进行这种“再创造”的工作,最大限度调动其积极性并发挥学生能动作用,从而完成对新知识的构建和创造。

  本节课我基本达到了要求,具体表现在以下2个方面。

  1、为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。上述教学中,我在引出课题后,引导学生自己提出问题并理解内角与内角和的.概念。在学生猜测的基础上,再引导学生通过探究活动来验证自己的观点是否正确。当学生有困难时,教师也参与学生的研究,适当进行点拨。并充分进行交流反馈。给学生创造了一个宽松和谐的探究氛围。

  2、充分调动各种感官动手操作,享受数学学习的快乐。在验证三角形的内角和是180度的过程当中,大部份同学都是用度量的方法,此时,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示,出现了很多种方法,有的是把三个角剪下来拼成一个平角。有的用两个大小相等的直角三角形拼成一个正方形,还有的是用折纸的方法,极大地调动了大脑,就连平时对数学不感兴趣的学生也置身其中。

  总之,充分让学生进行动手操作,享受数学学习的乐趣,是我这一节课的出发点,也是这一节课的最终归宿。

  

三角形的内角和教学反思3

  《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。针对教材的如此安排,我也设计了如下的开放的课堂预设:

  验证过程

  1、要知道我们猜测的是否正确,你有什么办法验证呢?

  先独立思考,有想法了在小组里交流。

  学生交流想法:

  生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。

  学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。

  生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。(及时表扬了能主动预习的好习惯。)

  生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。

  生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。

  生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的`角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。

  也有同学提出了采用了减下角再拼的方法。

  以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。

  自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。

三角形的内角和教学反思4

  《三角形的内角和》是青岛版数学四年级下册第四单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

  一、创设情境,营造探究氛围。

  怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”。而画一个有两个内角是直角的三角形却无法画出这一问题的出现,使学生萌生了想了解其中奥秘的想法,激发了学生探究新知的欲望。由于学生对三角尺上每个角的度数比较熟悉,新知的探究就从这里入手。我先让学生分别算出每块三角尺三个内角的和都是180°,由此引发学生的猜想:其它三角形的内角和也是180°吗?

  二、小组合作,自主探究。

  “是否任何三角形的内角和都是180°呢?”,我趁势引导学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折、算一算。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的.方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。

  三、练习设计,由易到难。

  探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。

  这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。

三角形的内角和教学反思5

  《课程标准》倡导探究性学习,力图改变学生的学习方式,引导学生主动参与、乐于探究、勤于动手,逐步培养学生收集和处理科学信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力等,突出创新精神和实践能力的培养。探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去量,得到三角形的内角和都在180°左右。

  一、直入情境,营造研究氛围。

  为了使学生有兴趣去研究三角形内角的和,先让学生说三角形的分类,再用学生的三角板说出三个角的度数和是多少,直入情境,来导入引出研究问题。引导学生弄懂“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。

  二、小组合作,自主探究。

  “给学生一些权利,让他们自己选择;给学生一个条件,让他们自己去锻炼;给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。”我记不清这是谁说过的话,但它给我留下深刻的印象。

  “是否任何三角形内角和都是180°?”这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。首先让学生计算出已经测量出的三角形内角和,面对有些小组的学生量出内角和的度数要高于180°或低于180°,学生讨论一下有哪些因素会影响到研究结果的准确性。再引导学生思考有没有更简单快捷的方法验证三角形内角和是180°呢?带着这个疑问,小组内讨论,之后用自己喜欢的方法试一试。通过学生自己撕各类三角形,再把各个角拼在一起,从而验证了三角形的三个内角都能拼出一个平角,由此获得“三角形的内角和是180°”的结论。接着让学生合作,进行折叠三角形,算出折成后的三角形的内角和仍然为180°,再一次明确:不论三角形的大小如何变化,它的内角和是不变的。通过动手操作,为学生创设了解决问题的情境,以学生动手操作为主线,引导学生建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主题参与意识。同学们通过自主实践、合作探究完成了本节课的教学任务。

  三、练习设计,由易到难。

  在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的.内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。

  四、发挥多媒体的教学辅助作用

  在用“折”的方法验证三角形内角和是180度时,虽然发言的学生边说、边演示,但大多数学生在实际操作时,还是没有取得成功。准确地找到三角形的中位线,使折纸的关键,但对于学生来说,先找中位线,再进行对折,再验证三角形内角和是180 度,这却不是一件容易的事,因为学生没有对中位线的概念没有准确地认识。针对学生的这个特点,我选择不用语言讲解,而是利用多媒体直观演示。让学生在仔细观察、用心感悟的基础上,动手操作,给学生操作以正确的指引,保证学生体验成功,提高了教学效率。

  五、存在的不足

  听过我的的课的老师给我提出了中肯的建议,严肃的表情会或多或少地影,响学生学习的情绪,间接地也会或多或少地影响学习效果,我在今后的教学中一定要改进自己的教学表情,让自己更有亲和力。

三角形的内角和教学反思6

  一、设计思路:

  这节课是上“三角形内角和”,因为学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出一块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°,再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的.安排上,注意练习层次,共安排三个层次,逐步加深。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

  二、教学反思

  这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。

  但在学习活动的过程中,首先我觉得语言不够生动、连贯,声音也很小。其次,学生在进行操作活动前,我也没有明确说明操作方法,使学生不理解操作的用意,也没有让学生在操作中真正证实“三角形的内角和是180°”的结论。最后,对三角形内角和的归纳也没有完整,等等

  总之,在这节课中存在着很多不足,今后我将花更多的时间在课堂教学方法、策略的研究上,使自己不断进步。

三角形的内角和教学反思7

  今天教学《三角形的内角和》,对于三角板,学生是不陌生的,所以我们从一副三角板入手,让学生算出一副三角板的内角和是180°,于是抛出问题,在其他三角形中三个内角的和是不是也是180°呢?学生当然会猜是。我觉得今天孩子不仅学到了三角形的内角和,还学到了对待一个猜想就要想办法来验证的数学思想。当我要求孩子们来验证的时候,有的孩子想到了量,有的孩子想到了折,这里我先让孩子们都去量,量了以后,因为有的同学量的不精确,所以我建议更精确的验证方法,孩子又想到了折,我又让孩子们去折。事后想想,如果我一开始就让孩子们尝试用自己喜欢的方法去验证一下,说不定碰撞的火花会跟激烈些。我这样一步一步来的话,就有些按部就班,没有那种水到渠成的感觉了。后来,校长提出,一开始有个孩子说到他量到175°,比较接近180°的时候,我只是强调要精确,却没有很好的利用这一资源,如果我这时候让孩子把他画的这个三角形撕下来,折一折来验证的'话 ,学生的印象会更加深刻。这点我没想到,看来我还不够智慧啊!

  杨教导也提出,后面的习题三,正方形内角和是360°,而把它对折变成三角形,就变成了180°,把三角形对折还是180°,这道题我没有深入,这是教材没把握好啊!

  以后要注意,但是这节课上孩子的表现还是比较令我满意的,比平时好!呵呵!

三角形的内角和教学反思8

  《三角形的内角和》在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。让学生猜测-质疑-验证得出“三角形的内角和等于180°”,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。

  爱因斯坦说过:“问题的提出往往比解答问题更重要”,上课开始,我通过观察长方形的内角和连接对角线把它分成两个直角三角形让学生猜测三角形的内角和是180°,然后质疑:那是不是所有的三角形的'内角和都是180°呢?这个问题一抛出去马上激发学生的学习

  热情。接着就让学生来验证三角形的内角和。验证过程分两部分来进行,先通过量一量、算一算的方法让学生验证各类三角形的内角和,一是加深对三角形内角和的理解就是三个内角的度数之和,二是让学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,没有以小组的形式展示,给学生交流的空间太小没有达到小组合作的真正目的。再让学生通过拼一拼、折一折的方法来发现各类三角形的三

  个内角都可以拼成一个平角,从而得出三角形的内角和的确是180°的结论。汇报展示这个环节只是口头叙述的形式描述验证的结果,若先还原原图,再展示验证过程与结果效果更佳。

  探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。第一层练习是已知三角形两个内角度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层是解决多种类型三角形的内角问题,有等边三角形、等腰三角形、直角三角形,根据自身特点来解决问题。

  本节课我采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。

三角形的内角和教学反思9

  三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,因为学生有以前认识角、三角形分类的基础,学生也有提前预习的习惯,几乎孩子们都能回答出三角形的内角和是180度,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。

  本节课主要是学生在小组中合作探索,可以量一量、剪一剪、折一折。选择一种或者几种方法来验证三角形的内角和是180度,并运用所得的结论解决实际生活中的一些问题!让学生进行实验、动手操作、自主探索,使学生主动积极的参加到数学活动中来!

  创设情境,营造研究氛围。怎样提供一个良好的学习平台,使学生有兴趣去研究三角形内角的和呢?为此我以生活中与三角形相关的例子引入课题,之后学生由课题引出疑问 “三角形的'内角指的是什么?”“三角形的内角和是多少?”然后让学生根据图形自己解答疑问。然后通过计算三角板上三角形的内角和,引发学生的猜想:其他三角形的内角和也是180°吗?带着这个疑问,让学生小组合作探索,验证。小组合作的时候,学生找到了三种方法,分别是量一量,剪一剪,折一折的方法。通过这三种方法验证了 “三角形的内角和是180°”的结论。然后将利用这一规律解决了刚开始的疑问。然后我给出三角形。再一次明确:不论三角形的大小如何变化,它的内角和是不变的。

  在课堂上,我们要学会放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!

三角形的内角和教学反思10

  今天讲解的《三角形内角和》一课,是在四年级上学期《角》的单元教学基础上进行教学的,在《角》的单元教学中就已经涉及到了三角形内角和,学生对其有了初步的了解,这学期在原有的基础上进一步继续学习有关知识。

  首先,在教学中我对三角形的分类进行了复习,通过让学生们对原有认知的回忆,为新课的学习做好铺垫。进而讲解内角和内角和的定义,再复习平角的概念,在此基础上,先出示长方形和正方形,让学生算它们的内角和,接着出示一个长方形,用剪刀沿一条对角线剪开,把平行四边形分成两个三角形,再让学生们讨论三角形的内角和又是多少?根据刚才的计算,学生很快反应过来说,是180度,因为360o÷2=180o。通过这一设计,使学生对三角形的内角和有了初步的认识,随后我就跟着提出问题:是不是所有的三角形的三个内角和一定是180呢?从而给学生指出了本节课探究学习的目标。

  然后让学生先测量计算自己手中三角板的内角和,再一次初步得出三角形的内角和是180度这一结论。这时引导学生思考,这一结论是否具有普遍性,有的学生会提出结论不具有普遍性,因为三角板很特殊,不能代表所有的三角形,结论还不能成立,这样就让课堂教学到达了最关键的阶段。我给每个小组任意分发了一个锐角三角形、直角三角形和钝角三角形,让学生们自己动手测量计算,然后再总结结论。虽然这一教学环节中有个别学生对量角器的使用方法有遗忘或测量有差错,对教学的时间和效率有一定的影响,但多数同学的测量计算结果是正确的,同时通过教师的纠正点拨使全体同学都掌握了正确的测量方法,培养了学生的实际动手操作能力,激发了学生的学习兴趣。

  在测量时,同学们气氛活跃都争先恐后的进行测量计算,所有学生都特别积极,他们有的为了测量的误差而争论的面红耳赤,有的.同学也为自己精确测量而兴高采烈,在测量过程中,学生们不仅复习了用量角器量角的方法,更是验证总结出了三角形的内角和等于180度。在愉悦的教学过程中,使教学一气呵成,分散了教学难点,突出了教学重点,加深了学生对本节课知识的掌握和理解,取得了较好的教学效果。

  想不到我设计的一个小小的动手操作教学,竟然调动了学生的学习积极性,激发了学生的学习兴趣,对本节课的教学产生了不可估计的效果,不仅点燃了他们求知的欲望,更激发了他们特有的童趣,让整个数学课堂散发着一种催人奋进的热情,使数学课活了起来,知识动了起来,学生们的脑筋更是转了起来,课堂效率也升了起来。通过这节课的教学,不仅让我感受了教学中创造的“意外”精彩,同时也引起了我深深地思考,作为四年级的学生,他们活泼好动,天真可爱,求知欲强,如果在课堂教学中让他们多多的参与一些动手操作,既培养了学生的实际动手操作能力,又调动了学生的学习积极性,让学生在活跃的课堂氛围中学习知识,利于加深学生的记忆,更好的掌握和理解所学知识。

  通过这节课的教学,让我有了新的发现,相同的知识,不同的教法,效果也不相同。同时也使我认识到在学生的身上隐藏着许多“宝藏”,只要我们善于寻找和发现,这些“宝藏”将会给我们带来无限的财富。

三角形的内角和教学反思11

  一、教材分析

  三角形的内角和这堂课的内容中心的知识点是一句话:三角形的内角和是180度。学生很容易掌握。但是,三角形的内角和为什么是180度,教材采用了观察三角板,引导学生提出疑问:是不是所有的三角形内角和都是180度,进而用三种不同类型的三角形折一折,验证出这个结论。可以说,教材本身的编排就是让学生在动手操作中自主得出结论,而不是死记硬背。

  一、操作盲点

  在教学中,我按照教材的意图,引导学生动手操作推导出三角形的内角和。让我感到遗憾的是,许多学生不知道如何去折三角形,以巡视的过程中,发现了许多错误的折法。我想,这一环节采用小组合作的形式也许会更好。但是小组合作有时候也会流于形式,不利于一些中下等学生自主思考。在小组合作这一形式的运用上,想达到效果真的是很难以把握的事情。

  三、语言表达

  不过,让我感到高兴的事,这一段时间一直在做的事情终于有了一点头绪,这一学期来,我一直在注重让学生用语言表达出自己的思想,昨天在课上,我发现有一些学生很愿意去说,而且说出来话的还是蛮有一点数学语言的味道的。譬如想想做做第1题,求一个直角三角形中一个锐角的度数时,大部分学生是用90度去减的,我问了一个为什么?有学生当即就说:是因为直角三角形另外两个锐角的和加起来是90度,所以只要用90度去减就可以了。很简单的一句话,让我很有成功感,因为出自学生的口中,我班上是这样一种情况,大多数学生会做但是却不愿意用语言去表达,而我一向认为,语言是思维的外壳,不说如何能表达自己的思想,大胆自信地表达自己的语言,对自己的性格也是一种很好的训练。所以强调一定要去说。经过一段时间的强调,终于初见希望。真是心情很好。

  今天讲了三角形的内角和,因为有些学生已经知道了三角形的内角和是180度,而且为了使课上生动我故意没有让他们课前预习。当我揭示课题后,学生中有几位按捺不住激动,小声嘀咕是180度。我于是顺势提问,同意他们的意见的举手,一半以上的学生不约而同举起了手。我说到底是不是呢?你们有什么办法可以去验证。我让他们拿出课前准备的三角形,小组讨论后动手验证。经过巡视发现所有的小组都想到了通过量出各个三角形的内角再计算出内角和来验证的。我让他们再想想有没有别的方法可以验证出三角形的内角和是180度的。可惜只有两个小组通过动手折一折来验证的,在他们的演示后我在黑板上的三角形上板书出各个角的度数及三只角的度数和的算式。同时我让他们对直角三角形的内角和等式进行观察,他们发现了其中的两个锐角和总是90度。我提问通过折我们把三角形的三只内角拼在一起组成一个平角,还有没有其他办法也可以把三只角拼一拼的',可惜没有一个同学想到把三只角撕下来拼的。以前教的时候好像学生想到的方法比现在的学生多,这让我很难过和想不通。是不是我平时的教学没有最大程度地调动起学生的学习激情?是不是我平时的教学有过于急而没有给学生足够的时间思考?是不是我平时总有越俎代庖的现象?……可是我觉得平时我还是就最大程度注意到这些的,看来教学的确是值得我们永久去实践、探索的。

三角形的内角和教学反思12

  我在讲“认识三角形”时,“三角形内角和等于180度”这一结论学生早知晓,为什么三角形内角和会一样?

  这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪、之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的.乐趣。

  有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……其中有一组同学竟然用稚嫩的声音说:可以用数学方法来证明。于是他们阐述自己借助与三角形底边平行的线与三角形所形成的内错角进行证明的方法。

  至此学生完成了感性认识到理性认识的转化过程,充分展示了数学地思维方式和思想方法。

三角形的内角和教学反思13

  在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:

  1、学生小组合作学习的能力还有待于进一步培养

  在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的'验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。

  2、我本身驾驭课堂的能力还有待于提高

  由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。

三角形的内角和教学反思14

  本节课我通过生动活泼的多媒体课件和学生们一起探讨三角形的内角和是180°这一规律并运用这一规律解决实际问题。课件中不仅有动画而且插入音频,激发学生的学习兴趣,开阔学生的眼界,调动他们学习的激情。

  首先课件演示三种不同的三角形在争吵,(学生录音,把每个三角形说的话录下放入课件中)让学生判断他们在争吵什么,引入本节课内容。这样可以使学生的眼睛一亮,耳朵受到刺激,吸引珠学生们的注意力,很巧妙就把学生带到课堂上,激发他们的学习兴趣。

  再次让学生观察每把三角尺的内角和内角和,以及用两个一样的三角尺拼成一大三角形,它的内角和内角和是多少,利用身边的学具材料猜想是不是所有的三角形内角和都是180°呢?提出问题,提出质疑,学生带着问题和质疑进行小组合作探究。合作探究时同桌两人一组测量三角形的'内角以及计算三角形的内角和,并抽查小组上台把合作探究结果输入电脑表格一便统计和观察。但是由于需要帮助学生输入电脑,不能对每组学生的测量进行指导及询问,很多学生是运用180度这个结论来量的,不过还是有一组学生测量后得出结论是189°,有了误差。下面我就引导学生哪个角是180°,以致学生提出把三角形的三个内角撕下来看看能否拼成一平角,,师生共同撕拼一个任意的三角形,撕拼过程中学生不知如何下手 我对学生进行辅导。但是有时间的有限,不能让所学生都亲自感受一下这一撕拼的过程。但是课件上我运用动画演示,学生可以亲眼看到这一过程。

  课堂练习我是通过一个游戏“挑战不可能”巩固三角形的内角和是180°这一规律,运用课件展示了练习题的多样化,层次化,有易到难,并运用一些可爱的图片吸引学生的注意力。会后有主角“三角形”(音频)出题带到“荣誉殿堂”。游戏是孩子都喜欢,在课堂上设计一些游戏环节可以激起孩子的活力,调动他们高涨的情趣。但是我觉得这节课我设计的这个游戏只激起部分孩子的兴趣,如果把这个游戏设计成小组比赛或者男女比赛,看谁最终进入“荣誉殿堂”更激发学生的激情。

  总之,本节课我和学生完成的教学目标,学生也能感受到课件不仅能播放图片,而且可以播放音频、动画。通过这节课我深刻体会到运用多媒体教学的优势,可以开阔学生眼界,刺激学生的各种感官,激发他们的学习兴趣,同时也使教学重点难点可以清晰的展示给学生,可以增大课堂的容量。在今后的教学中,我会是自己不断提升自己的教学水平,多学习和运用信息技术手段改善自己的教学方式,以致提高学生课堂上的学习效率!

三角形的内角和教学反思15

  三角形的内角和一课,知识与技能目标并不难,但我认为本节课更重要的,是通过自主探究与合作交流,使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上里面,本节课,我也准备引导学生采用自主探究、动手实践、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。

  由于是借班上课,学生对于三角形了解的内容还不够多,所以我才用了直接导入的形式来进入新课,让学生自己探讨什么是三角形的内角,三角形有几个内角,三角形的内角和又是多少呢?来揭示内角和内角和的概念,学生明确了内角与内角和的概念,然后让学生大胆的猜测,三角形的内角和是多少,有的同学猜测是100度、90度、200度,但猜测不等于结论,在这里我追问大家猜测的依据是什么?同学们并没有说出来,于是我引导大家怎样才能知道他们的内角和是多少呢,同学们想到了测量每个内角是多少,然后再求和。我又追问:怎样才能知道每个内角是多少呢?于是同学们想到了量一量,这时让同学们动手进行测量记录数据,但由于学生动手操作前教师没有对操作步骤进行要求,导致同学们在测量时分不清测量的是哪一个角,我及时引导大家把每个内角都标上序号,在进行测量,分别把他们测量的数据填写的报告单当中,因为这样导致了同学们测量的速度较慢,最终由于时间关系钝角三角形的内角和学生操作完成,在展示成果时没有进行展示,同学们只得到了钝锐角、直角三角形的内角和是接近180度的。如果我能再给学生一点点时间,学生就可以完成了,以后教学中还是应该多多放手,给学生留有先足的动手空间和时间。

  我认为数学课不仅是解决数学问题,更重要的是思维方式的点拔,使数学思想的种子播种在学生的头脑中。由于在量一量、算一算的环节中,学生初验证了三角形的内角和接近180度的,于是引导学生由180度想到平角,让学生探讨交流:怎样才能把一个三角形的三个内角转化平角。撕拼这一环节过程主要向学生展示渗透转化的数学思想的教学目标。四年级学生在以往的数学学习过程中都积累了不少转化的体验,但在这种体验基本上处于无意识状态,只有合理呈现学习素材,才能使学生对转换策略形成清晰的认识。操作之初,一部分学生没有明确操作目的,把三个不同的三角形的角拼在了一起,我在巡视的过程中发现了这一现象后,让学生再次谈操作要求,明确操作目标,之后引导学生如何把三个角从三角形分离出来,从而部分学生想到了撕拼法,一部分学生想到了折拼法,于是我请撕拼法的`你同学上台展示后,再让用折拼法的同学展示他们的方法,并给予肯定和评价,至此教学目标基本完成,学生明确知道了:三角形的内角和为180度。为了让学生更深刻的理解这一结论,我设计了一变二,和二变一的图形展示,使学生明确了所有三角形的内角和都是180度,与形状大小无关,如果时间充裕的话我想让学生探一下,增加和减少的度数源于哪里。

  数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,已达到练习的有效性。对此,我设计了有层次的练习,但由于时间只有了30分钟,这一部分没有来得急提供给学生,可以说是这节课的遗憾之一。

  总之,本节课力图学生通过自主探究、合作交流,让学生充分经历知识的形成过程,让学生学会数学、会学数学、爱学数学。在教学过程中,随时会生成一些新的教育资源,课堂的生成大于课前的预设,如何有效的利用生成、有效的进行评价,是我该思考的问题,也是我今后课堂的努力方向。

【三角形的内角和教学反思】相关文章:

《三角形的内角和》教学反思06-23

《三角形的内角和》的教学反思04-27

《三角形的内角和》教学反思(合集)06-23

《三角形的内角和》教学反思汇总(15篇)06-23

《三角形内角和》的教学设计范文04-23

《三角形的内角和》教案03-01

三角形内角和教案02-20

《三角形的内角和》教案05-17

人教版数学四年级《三角形的内角和》教学反思07-25