直线的方程教学反思

时间:2024-06-10 10:35:45 教学反思 我要投稿

直线的方程教学反思实用【15篇】

  作为一位优秀的老师,课堂教学是我们的工作之一,教学反思能很好的记录下我们的课堂经验,那么优秀的教学反思是什么样的呢?以下是小编帮大家整理的直线的方程教学反思,欢迎阅读与收藏。

直线的方程教学反思1

  一.教学对象方面:

  本节课面对的学生是文科班位于中等层次的班级。文科班的学生对于数学普遍存在畏难情绪,所以在教学设计之初就立足于从简到难的思想,所以在教学过程中有了从特殊化到一般化的,再从一般化到特殊化这样两个环节并且设计的数据都比较简单易算,希望能够引起学生学习兴趣,并从中体会到数学学习中解决问题的思维过程。从课堂效果来看这个目的基本达到,学生课堂反映较好,参与积极,气氛热烈。

  二.教学内容方面:

  本节课主要解决的问题是掌握直线的点斜式方程,斜截式方程。直线是解析几何部分最基础的图形,其方程形式有点斜式,斜截式,两点式,截距式,一般式这五种形式。在这五种形式中出现最频繁,最基本的就是点斜式和斜截式。所以对这两种形式要做到能够熟练的根据条件选择合适的直线方程形式。在课堂中可以发现学生已经基本能够达到这一点。但是也存在几个方面的问题,如果直接提供一点一斜率,学生马上能够把直线方程的形式脱口而出。但是如果提供的是倾斜角,对倾斜角加以适当变化的话,部分学生还是存在一定的困难,有些是对斜率公式的不熟悉,有些是对三角函数公式的不熟悉造成的。说明部分学生对于三角函数部分的内容基础不扎实遗忘率较高,对于斜率和倾斜角的关系的理解还是存在疏漏之处,思维严密性需要提高。

  三.教学改进:

  第一需要继续强化基本概念的教学,深化学生对基本概念的理解。可以通过一些小练习,如填空,选择等加强学生逻辑思维能力的训练。如课堂练习中的变式还是较好的.一种方式。以变式这种方式更易于学生发现问题的相同与不同之处,如果能够让学生自己加以适当的总结,老师再加点评,那效果会更好。不过这对课堂时间的控制要求较高,所以采用何种方式展开需要更多的思考。

  第二需要设置梯度,逐步提高难度。由于本节课面对的对象,而且这是直线方程的第一节课,所以设置的内容还是简单易懂的,但是以后的课程中难度要求还是需要逐步提高综合应用能力,这需要在以后的课程中逐步贯彻。

直线的方程教学反思2

  在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质。 用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。

  教学过程中学生对函数图像及其解析式和曲线及方程之间的联系与区别,概念上还是比较模糊的。初中讲直线,是将其视为一次函数,它的解析式是y = kx + b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y = kx + b只是直线方程的一种形式。作为函数解析式的y = kx + b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的'。而作为直线方程的y = kx + b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的。函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式。

  对直线的方程的教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。

  直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的。

  借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。

直线的方程教学反思3

  关于直线方程的教学反思

  关于“直线的倾斜角和斜率“的教学设计花了我很长的时间,设计了多个方案,想在”倾斜角“和”斜率“的概念形成方面给予同学更多的空间,也用几何画板做了几个课件,但觉得不是非常理想,以至于到了上课的时间仍旧没有满意的结果。但由于备课的时间还是非常的充分的,上课还是比较游刃有余的。但上是上了,感觉还是有点不爽。 其一,对”倾斜角“概念的.形成过程的教学过程中,发现所教2个班在表达能力上的区别还是比较明显的,当问到”经过一个定点的直线有什么联系和区别时?”在10班所花的时间明显要比重点班多,但这也表明自己的问题设计还缺乏针对性。如果按照“平面上任意一点--->做直线(3条以上)---->说明区别和联系--->加上直角坐标系---->说明区别和联系”的顺序来设计问题,回答起来可能难度更低一点,同时也更加突出直角坐标系的作用。

  其二,对通过的直线的斜率的求解教学,通过给出实际问题,引出疑问引起大家的思考的方式会更加自然一些。比如,一开始便推出“比较过点A(1,1),B(3,4)的直线和通过点A(1,1),C(3,4.1)的直线”的斜率的大小”,然后得到直观的感受:直线的斜率和直线上任意两个点的坐标有关系。再推导本问题中的两条直线的斜率公式,最后得到一般的公式。

  其三,”不是所有的直线都有斜率”以及斜率公式具备特定前提条件,在学习之处,要指出,但不要过分强调,更符合学生的认知规律,使学生的知识结构能够逐步完善,知识能力螺旋上升。

直线的方程教学反思4

  依据教学过程、指导教师及学生的反馈信息,本人对本节课有如下几点反思:

  一、成功之处

  根据实际教学过程反映,学生对本节课教授知识点能充分吸收、掌握,课堂学习气氛活跃。

  第一、重点突出学生活动。在教学过程中,我设计了五个活动环节:(1) 回顾数轴三要素,理解数轴上点的坐标的几何意义;(2)通过类比进行直线参数方程的探究活动;(3)直线参数方程的形成;(4) 直线参数方程的简单应用;(5)学生课后的拓展学习。

  第二、结合本节课的具体内容,采用学生分组交流,师生互动式教学法。创造机会让不同程度的学生发表自己的观点,调动学生学习积极性,使学生自然而然地渴望进一步了解相关的知识,提高知识的可接受度,进而完成知识的转化,即变书本的知识、老师的知识为学生自己的知识。

  第三、在例题设置中注重联系学生实际,通过情境创设,让学生体会数学的应用价值,在教学过程中时刻注意观察学生是否置身于数学学习活动中,是否精神饱满、兴趣浓厚、探究积极,并愿意与老师、同学交流。

  二、不足之处

  第一、在设置问题情境上可以做得更好:比如在课程引入时,根据本节课的内容,如果能适当联系一些生活当中的实例,那么学生思维可能会更活跃些,课堂可能会更丰满些;做练习时,也可以补充一些联系实际的问题。

  第二、在学生的自主探究方面可以再放开些:如何引导学生,让学生的数学思维更加的活跃,探索新知的欲望更强烈些。因此,课堂上可以更放开些,大胆的让学生去思、去想、去做,同时要注意把握课堂学习秩序。比如在推导直线的'参数方程时,如果让学生合作性的去讨论,并形成正确的认知,那么学生的探究意识在这节课就能体现的更好。

  第三、信息技术应用能力有待进一步提高:通过这节课的教与学,我发现自己在实现函数图象过程的动态演示方面还不够得心应手,有的方面还可以向同事学习。

  总之,数学科的教学活动,无论是动手实验、合作探究还是交流互动等,都应当为理解数学内容服务;也不是所有数学内容的引入、发现都需要实验操作,特别是在高中阶段,应当更多地引导学生从数学内在的逻辑发展要求去探索数学概念的引入、数学原理的发现等。让学生朝着乐观、积极、自信的方向更好的发展,感受数学课中的快乐与幸福!这也正是积极心理学视野下的数学课堂教学。

直线的方程教学反思5

  这是我在兴宁跟岗学习中,有教学实录的一节课。也是自己感觉上的比较成功的一节课。本节的知识内容是在学生学习了直线的点斜式方程的基础上引进的,通过点斜式方程的学习,学生已具备独立推导的能力。通过自主探究,体验方程的生成过程,通过“设点——找等量关系——列方程——整理并检验”的探究过程,让学生充分体验到了成功的喜悦,也为以后“曲线与方程”的教学做了铺垫。从而提高了学生分析问题、解决问题的能力,增强了学生的自信心。学生独立思考并在学案上完成,教师点评并表扬学生。

  另外教学过程中,我留给学生充分的思考与交流的时间,让学生开阔思路,培养学生的逻辑能力,突显强调每种形式方程的特征,并让学生领悟记忆。

  引导学生小结

  1.斜截式和点斜式方程的适用范围;

  2.斜截式和点斜式方程的特征,并板书方程。

  本节课的思想方法:

  1.分类讨论思想;

  2.数形结合思想;

  研究问题的思维方式:

  1.逆向思维;

  2.特殊到一般、一般到特殊的化归思想。并在教学过程中设置在补充的例题练习中有几道易错题,学生在练习中的“错误体验”将会有助于加深记忆,所以可将应用公式的前提条件等学生容易忽略的环节,以便达到强化训练的`目的。这样教学设计,不仅关注学生的思考过程,还要关注学生的思考习惯,为了激发学生探究问题的兴趣,通过例题2让学生观察、动手实践,、积极主动的探究,理解斜截式和点斜式方程之间是否可以互化,答案是否。使学生落实基础知识,增强分析和解决问题的能力,同时通过师生共同探究和交流,每一位学生获得了知识和情感的体验。本节的推理逻辑性较强,让学生动手、动脑、动笔去推导方程,让学生参与一个“开放性例题”的设置,让学生体会到数学的严谨性,并获得数学活动的经验,提高自己的逻辑思维能力。

  作为老师,我有必要在一些细节上更加完善地做好细节工作,比如每个环节衔接的打磨等。同时还必须注意对学生综合能力的培养,包括独立发现问题、解决问题,回过头来再寻求更好解决途径的过程。

直线的方程教学反思6

  作为平面解析几何的起始章,以直线作为研究对象,通过引进坐标系,借助"数形结合"思想,从方程的角度来研究直线,包括位置关系及度量关系。此时,数形结合是本模块重要的数学思想,这不仅是因为解析几何本身就是数形结合的典范,而且在研究几何图形的性质时,也充分体现"形"的直观性和"数"的严谨性。

  本章中,"解析法"思想始终贯穿在全章的每个知识点,同时"转化、讨论"思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。从学生角度而言,大多数学生普遍反映:相对立体几何而言,平面解析几何的学习是轻松的'、容易的。同时,这章公式特别多,加之后面内容较抽象,难度有所增加,进而给学习带来了挑战及困惑。直面公式,不少学生仍然

  采用的是传统的学习方式:死记硬背,机械模仿,导致在解题中往往碰壁而影响了学习兴趣及积极性。另外,尽管用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是"运算量大,解题过程繁琐,结果容易出错"等等,无疑也影响了解题的质量及效率。

  新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。

  我设想,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由"形"问题转化为"数"问题研究,同时数形结合的思想,还应包含构造"形"来体会问题本质,开拓思路,进而解决"数"的问题。

  从我多年教学经验中,最易走入的误区是:

  公式的推导过程中对学生而言,无论是参与的广度还是深度均严重不足,教学仍然停留于教师的主体。缺少了公式形成的亲身体验,无疑对公式理解欠缺深刻。

  另外,公式的应用,忙于从一般到特殊,不仅可以巩固公式,更重要的是加深对公式内涵的理解,同时思维及能力也相应得到发展及提高。由于课本上大多数例题比较简单,加之课时紧张,导致自己的例题教学环节无

  法到位,也影响了公式教学的效果。同时还会由于时间原因,在后面距离教学中,加快了课堂进度,导致不少学生出现学习的障碍。

  这些问题,在具体操作中常犯,所以仍需努力,改变这种状况。做好本章的教学工作。

直线的方程教学反思7

  直线方程的教学是在学习了直线的倾斜角和斜率公式之后推导引入直线的点斜式方程,进一步延伸出其他形式的直线方程和相互转化,为下面直线方程的应用如中点公式、距离公式、直线和圆的位置关系等打下良好的基础。

  以下是在课堂教学中的几点体会和建议:

  (一)初步培养了学生平面解析几何的思想和一般方法。

  在初中,学生熟知一次函数y=kx+b(也可以看成是二次方程)的图象是一条直线,但反过来任意画一条,要同学们写出方程表达式,学生刚开始会无从下手,从而激发学生学习的兴趣。随着教学的展开,让学生逐步形成平面解析几何的方法,如建立坐标啊,设点啊,建立关系式啊,得出方程啊等等,初步培养学生的平面解析几何思维,为后面学习圆、椭圆和相关圆锥曲线打下良好的基础。

  (二)在教学中贯彻“精讲多练”的教学改革探索。

  我们都知道,对于职中的学生,基础差,底子薄,理解能力差,动手能力差,要想让学生学有所得,最好的办法就是精讲多练,提高学生的动手能力。因此在教学中,我们通常是由练习引入,简单讲讲,一例一练,配以一定的巩固提高题,最后还有配套作业,做到每个内容经过三轮的.练习,让学生能够很容易的掌握。

  (三)注意数形结合的教学。

  解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在教学中要注意这种数学思想的教学。每一种直线方程的讲解都进行画图演示,让学生对每一种直线方程所需的条件根深蒂固,如点斜式一定要点和斜率;斜截式一定要斜率和在y轴上的截距;截距式一定要两个坐标轴上的截距等等。并在直线方程的相互转化过程中也配以图形(请参考一般方程的课件)

  (四)注重直线方程的承前启后的作用。

  教材承接了初中函数的图像之后,并作为研究曲线(圆、圆锥曲线)之前,以之来介绍平面解析几何的思想和一般方法,可见本节内容所处的重要地位,学好直线对以后的学习尤为重要。事实上,教材在研究了直线的方程和讨论了直线的几何性质后,紧接着就以直线方程为基础,进一步讨论曲线与方程的一般概念。

直线的方程教学反思8

  学习解析几何知识,"解析法"思想始终贯穿在全章的每个知识点,同时"转化、讨论"思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。在学习直线与方程时,重点是学习直线方程的五种形式,以直线作为研究对象,通过引进坐标系,借助"数形结合"思想,从方程的角度来研究直线,包括位置关系及度量关系。大多数学生普遍反映:相对立体几何而言,平面解析几何的学习是轻松的、容易的,但是,也存在"运算量大,解题过程繁琐,结果容易出错"等致命的弱点等,无疑也影响了解题的质量及效率。

  在进行直线与方程的教学中,要重视过程教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的'数学思想、方法,从中学会学习,乐于学习。应该说,自己在教学过程

  中也是遵循上述思路开展教学的,而且也取得了一定的效果。下面谈一下对直线与方程的教学反思:

  (1)教学目标与要求的反思:

  基本上达到了预定教学的目标,由于个别学生基础较差,没有达到教学目标与要求,课后要对他们进行个别辅导。

  (2)教学过程的反思:

  通过问题引入,从简单到复杂,由特殊到一般思维方法,让学生参与到教学中去,学生的积极性很高,但师生互动与沟通缺少一点默契,尤其基础较差的学生,有待以后不断改进。

  (3)教学结果的反思:

  基本上达到了预定教学的效果,通过数形结合思想方法,培养学生能提出问题和解决问题的思维方式,学会反思,从而提高学生综合解题的能力。

直线的方程教学反思9

  解析几何的本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质.用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。

  教学过程中学生对函数图像及其解析式和曲线及方程之间的联系与区别,概念上还是比较模糊的.初中讲直线,是将其视为一次函数,它的解析式是y=kx+b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y=kx+b只是直线方程的'一种形式.作为函数解析式的y=kx+b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的.而作为直线方程的y=kx+b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式.

  对直线的方程的教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。

  直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的。

  借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。

直线的方程教学反思10

  《直线方程》是解析几何的首节内容,它在教材中起着“承上启下”的作用。同时这一节在人们的生活、生产、科技中有着广泛的实际应用,如神十的发射、建筑的设计等都与直线方程有关。因此,在这一章节的教学中我结合学生实际,贯彻“理解、掌握、运用”这个思想,圆满完成了教学任务。现对本章教学从以下方面进行反思。

  一、教学中的得:

  1、巧妙处理教材,化解难点知识。

  在上这一章节内容的第一课我就遇到了难题:在讲完直线的斜倾角时,我让两位同学一个同学任意画出一条直线,另一个同学找出其倾斜角;再互换角色。并请两位同学上黑板演示。但其中一个同学有时能找出直线相应的倾斜角,有时不能找出其相应的倾斜角。看来他是不能真正理解直线倾斜角定义中的三点:①直线向上的方向;②与轴的正方向;③最小的正角。我分析了一下为什么有的直线的倾斜角他能找出,有的不能的原因。于是我叫同学只画出轴和直线,去掉轴(也就是不画出轴),这样一处理,无论同学怎样画直线,她都能找出其倾斜角。这样让她真正明白后再添上轴。

  2、教学过程设计合理。

  在这一章节我一共安排了四节内容:直线的倾斜角和斜率;直线的点斜式方程;直线的斜截式方程;直线的一般式方程。并且每一节之间的过渡非常自然:教科书首先建立直线倾斜角的概念,进而建立直线斜率的概念,实现了由直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性转化。进而由直线的斜率推导出直线的点斜式方程;再由直线的点斜式方程推导出直线的斜截式方程;最后由两种方程推导出直线的一般式方程。每一节的新课引入都非常自然,都是由旧知不知不觉过渡到新知。这样学生就比较容易掌握新知。

  3、精减教学内容,但同样能达到教学目标。

  直线方程只讲点斜式方程和斜截式方式以及一般式方程,不仅减少了不少内容,更是去掉了较多不必要的公式。免去了很多学生在记忆公式时混淆不清,也不知什么时候用哪一个公式。对于职高的学生来说求直线的方程就用这三种形式也够用了。因为两点式,其实可以先求出直线的斜率,再利用点斜式公式便可得;截距式方程也可先求出直线的斜率,既可以用点斜式方程,又可以利用斜截式方程进行解题。这不仅在解题时简化了思路,对职高的学生来说更能让他们在学习上体验到成功感,还能极大地调动他们学习数学的积极性。

  4、教学方法多样。

  在这一章节的教学中,我尝试了多种教学方法:数形结合法、讲练结合法、小组合作法、分析法等。对重点理解的内容,采用任务驱动教学法,给学生任务,驱使学生积极思考。对教学中的内容,强调先理解后学生归纳,加深理解;讲练结合,加强学生能力的培养。同时还综合运用提问、讲授、启发、激励等多种教学方法完成教学过程。

  二、教学中得失:

  1、个别学生学习不够积极,以后要多鼓励他们,树立起学习数学的信心。

  2、数学教学过程是师生间互动的过程,而不是学生被动接受知识。但我在教学中,在这方面还做得不够,教师讲得太多,少部分学生能参与到课堂教学活动中来,还有众多同学被动学习数学。在我们职高数学课堂很难能真正做到每节课师生间都能很好地互动起来。

  3、一节数学课关键不在于你讲了多少知识,而在于你的学生爱上数学这门课程。但在上这一章节内容时我发现真正喜欢学数学的同学不多。不能与大多数学生一起分享学习数学的快乐。

  4、在上第一节《直线的倾斜角和斜率》时,我想让学生走出教室,去测量学校各处的楼梯的倾斜角,并看能得出什么规律?再引申出楼梯的设计,由层高怎么决定梯数,这样学生会更感兴趣。同时让学生明白倾斜角与坡度的异同点。但最终我没这样做。

  三、教学建议:

  (1)求直线方程采取先特殊(点斜式、斜截式)后一般的思路,特殊形式的直线方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬。求特殊直线方程,最好采用数形结合法求解。

  (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证。教学中应重点分析思路,还应抓住这一有利时机使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点。

  (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的`几何特征,参数的意义等,并加深对各种形式的理解。

  (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件。两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率。

  (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数。

  (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力。

  (7)直线方程的理论在其他学科和生产生活实际中有大量的应用,教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力。

直线的方程教学反思11

  这是我在兴宁跟岗学习中,有教学实录的一节课。也是自己感觉上的比较成功的一节课。本节的知识内容是在学生学习了直线的点斜式方程的基础上引进的,通过点斜式方程的学习,学生已具备独立推导的能力。通过自主探究,体验方程的生成过程,通过“设点——找等量关系——列方程——整理并检验”的探究过程,让学生充分体验到了成功的喜悦,也为以后“曲线与方程”的教学做了铺垫。从而 提高了学生分析问题、解决问题的能力,增强了学生的自信心。学生独立思考并在学案上完成,教师点评并表扬学生。另外教学过程中,我留给学生充分的思考与交流的时间,让学生开阔思路,培养学生的逻辑能力,突显强调每种形式方程的特征,并让学生领悟记忆。引导学生小结2斜截式和点斜式方程的适用范围;3斜截式和点斜式方程的特征,并板书方程。

  本节课的思想方法:1. 分类讨论思想;2. 数形结合思想;研究问题的思维方式:1.逆向思维; 2.特殊到一般、一般到特殊的化归思想。并在教学过程中设置在补充的例题练习中有几道易错题,学生在练习中的“错误体验”将会有助于加深记忆,所以可将应用公式的前提条件等学生容易忽略的环节,以便达到强化训练的目的。这样教学设计,不仅关注学生的思考过程,还要关注学生的思考习惯,为了激发学生探究问题的兴趣,通过例题2让学生观察、动手实践,、积极主动的探究,理解斜截式和点斜式方程之间是否可以互化,答案是否唯一。 使学生落实基础知识,增强分析和解决问题的能力,同时通过师生共同探究和交流,每一位学生获得了知识和情感的'体验。本节的推理逻辑性较强,让学生动手、动脑、动笔去推导方程,让学生参与一个 “开放性例题”的设置,让学生体会到数学的严谨性,并获得数学活动的经验,提高自己的逻辑思维能力。

  作为老师,我有必要在一些细节上更加完善地做好细节工作,比如每个环节衔接的打磨等。同时还必须注意对学生综合能力的培养,包括独立发现问题、解决问题,回过头来再寻求更好解决途径的过程。

直线的方程教学反思12

  在进行《直线的方程》一章教学时,笔者遇到了这样一个问题:就是我们反复在讲直线方程的5种形式,包括点斜式、斜截式、两点式、截距式和一般式,但是到了学生那里,只要求到直线方程,则十有八九是利用斜截式,即设直线的方程为y=kx+b,然后根据题目的已知条件求出相应的k和b.学生这样做固然也能把直线的方程求出来,但对于有些问题而言显然不是最好的方法.虽然在课上也强调对于不同的条件,要合理选择相应类型的直线方程,以简化计算,但是还有相当部分学生老是抱着斜截式不放.我在想,是什么原因导致学生始终也摆脱不了这种“k、b情结”呢?原来,学生在初中阶段已经学过一次函数,当初一次函数的解析式的形式就是y=kx+b.我并没有贬低初中老师的意思,相反,我真的太佩服我们的初中老师了,在他们的辛勤耕耘下,我们的学生都成了一个个“训练有素”的解题高手,只要求到直线的方程,想也不要想,设为y=kx+b.殊不知,如今行情已经变了,需要“与时俱进”一下了.由此,我们就得出了这样一个结论,教学中间的很多东西需要强调,但有时候强调得过了头,反而会适得其反,还是那句老话:过犹不及!就像一次函数的解析式,初中老师强调得过了头,我们高中老师在教《直线的方程》这一部分时就看出后遗症了.这么一强调,学生的中考成绩是有保证了,但是思维严重僵化,不懂变通,不愿接受新知识,当然更不用谈什么创新了.大概中国基础教育缺乏对学生创新能力的培养,由此也可窥见一斑吧.另外,要解决上面的问题,我认为在教学时还要补充讲一个东西,那就是函数图像及其解析式和曲线及其方程之间的联系与区别.初中讲直线,是将其视为一次函数,它的解析式是y=kx+b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的.轨迹),它的方程是二元一次方程,而y=kx+b只是直线方程的一种形式.作为函数解析式的y=kx+b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的.而作为直线方程的y=kx+b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式.

直线的方程教学反思13

  我所教班级是文科班,学生的总体数学水平处于我校的中等水平,学生们对于数学这个学科本身的兴趣有限,对前面学过的有关直线和圆中的基本知识点掌握的一般。针对以上实际情况,我采用如下方案对参数方程进行了讲解。

  一、讲解情况

  第一,讲解学习本章的重要意义。通过本章节的教学使学生明白现实世界的问题是多维度的、多种多样的,仅仅用一种坐标系,一种方程来研究是很难解决现实世界中的复杂的'问题的。在这一点上,参数方程有其自身的优越性,学习参数方程有其必要性。

  第二,讲解参数方程的基本原理和基本知识。通过学习参数方程的基本概念、基本原理、基本方法,以及方程之间、坐标之间的互化,使学生明白坐标系及各种方程的表示方法是可以视实际需要,主观能动地加以选择的。

  第三,讲解典型例题和解题方法。通过例题的讲解让学生们进一步巩固基础知识,同时还能熟练解题方法,为进一步学习数学和其他自然科学知识打好基础。

  第四,布置课后练习。既可以巩固学过的知识,又可以达到温故而知新的效果。

  二、成功之处

  第一,突出教学内容的本质,注重学以致用。课堂不应该是 “一言堂”,

  学生也不再是教师注入知识的“容器瓶”,课堂上,老师应为学生讲清楚相关理论、原理及思维方法,做到授之以渔,而非仅是授之以鱼。 第二,保证活跃的课堂气氛,进一步激发了学生的学习潜能。实践证明,刻板的课堂气氛往往禁锢学生的思维,致使学习积极参与度下降,学习兴趣下降,最终影响学习成绩和创造性思维的发展。

  第三,结合本节课的具体内容,确立互动式教学法进行教学。积极创造机会让不同程度的学生发表自己的观点,调动学生学习积极性,拉近师生距离,提高知识的可接受度,进而完成知识的转化,即变书本的知识、老师的知识为自己的知识。

  第四,有效地提高教学实效。通过老师的讲解和学生的练习,让学生不断地巩固基础知识的同时,让学生们既要能做这道题,还要能做类似的题目,做到既知其然,又知其所以然,举一反三,触类旁通,把知识灵活运用。

  三、不足之处

  第一,本节课的知识量比较大,而且是建立在向量定义基础之上。这些知识学生都已经学过了,在课堂上只做了一个简单的复习。但是在接下来的课堂上发现一部分学生由于基础知识不扎实,导致课堂上简单的计算出错,从而影响到学生在做练习时反映出的思维比较的缓慢及无法进行有效的思考的问题。从课堂的效果来看学生对运算的熟练程度还不够,一定程度上存在很大的惰性,不愿动笔的问题存在,有待于在以后的教学中督促学生加强动笔的频率,减少惰性。

  以上就是我的教学反思。

直线的方程教学反思14

  在进行《直线的方程》一章教学时,笔者遇到了这样一个问题:就是我们反复在讲直线方程的5种形式,包括点斜式、斜截式、两点式、截距式和一般式,但是到了学生那里,只要求到直线方程,则十有八九是利用斜截式,即设直线的方程为y = kx + b,然后根据题目的已知条件求出相应的k和b.学生这样做固然也能把直线的方程求出来,但对于有些问题而言显然不是最好的方法.虽然在课上也强调对于不同的条件,要合理选择相应类型的直线方程,以简化计算,但是还有相当部分学生老是抱着斜截式不放.

  我在想,是什么原因导致学生始终也摆脱不了这种“k、b情结”呢?原来,学生在初中阶段已经学过一次函数,当初一次函数的解析式的形式就是y = kx + b.我并没有贬低初中老师的意思,相反,我真的太佩服我们的初中老师了,在他们的辛勤耕耘下,我们的学生都成了一个个“训练有素”的解题高手,只要求到直线的方程,想也不要想,设为y = kx + b.殊不知,如今行情已经变了,需要“与时俱进”一下了.

  由此,我们就得出了这样一个结论,教学中间的很多东西需要强调,但有时候强调得过了头,反而会适得其反,还是那句老话:过犹不及!就像一次函数的解析式,初中老师强调得过了头,我们高中老师在教《直线的方程》这一部分时就看出后遗症了.这么一强调,学生的中考成绩是有保证了,但是思维严重僵化,不懂变通,不愿接受新知识,当然更不用谈什么创新了.大概中国基础教育缺乏对学生创新能力的培养,由此也可窥见一斑吧. 另外,要解决上面的问题,我认为在教学时还要补充讲一个东西,那就是函数图像及其解析式和曲线及其方程之间的联系与区别.初中讲直线,是将其视为一次函数,它的解析式是y = kx + b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y = kx + b只是直线方程的一种形式.作为函数解析式的y = kx + b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的..而作为直线方程的y = kx + b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式.

直线的方程教学反思15

  直线与方程是解析几何的起点,是与初中一次函数直线紧密联系,也就是数形结合思想突出的重要一章,所以学好这一章非常有必要。

  直线与方程这一章体现了数形结合思想,直线方程的五种形式需要学生的灵活应用。但许多学生在做题中用斜截式较多,可能是学生在初中已经学习了一次函数。所以我们在学习直线的方程时,要不断强化学生对其他直线方程的应用。学生在做题中通常会忽略K的存在性,这需要不断加强,还有就是各个方程运用的限定条件。数形结合是本模块重要的数学思想,这不仅是因为解析几何本身就是数形结合的典范,而且在研究几何图形的性质时,也充分体现“形”的直观性和“数”的严谨性。教学过程应“接头续尾,注重过程”。教材中求直线方程采取先特殊后一般的逻辑方式,几种特殊形式的方程:斜截式、点斜式、两点式、截距式的几何特征明显,但各有其局限性。而一般形式的方程虽无任何限制,但几何特征却不明显。通过引导,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由“形”问题转化为“数”问题研究,同时数形结合的'思想,还应包含构造“形”来体会问题本质,开拓思路,进而解决“数”的问题。

  总之,在直线与方程这一节中,我们以后的教学更应该注重学生能力的培养,让学生自己推导公式,在推导的过程中认识公式,使学生理解公式,从而认识解析法的数学魅力,正确运用解析法,而不是把公式当做是记忆的东西,一味的死记硬背,而忘掉条件限制。

《直线的方程教学反思实用【15篇】.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

资深编辑 • 1对1服务

文章代写服务

品质保证、原创高效、量身定制满足您的需求

点击体验

【直线的方程教学反思】相关文章:

直线的方程教学反思06-10

《解方程》的教学反思09-17

方程的意义教学反思10-02

列方程教学反思12-29

《方程的意义》教学反思12-23

方程的意义的教学反思12-22

简易方程教学反思04-07

《方程的意义》教学反思05-27

《直线与圆的位置关系》教学反思03-08

文章代写服务

网站编辑 · 帮您写文章

品质保证、原创高效、量身定制满足您的需求

点击体验
ai帮你写文章
一键生成 高质量 不重复
微信扫码,即可体验

直线的方程教学反思实用【15篇】

  作为一位优秀的老师,课堂教学是我们的工作之一,教学反思能很好的记录下我们的课堂经验,那么优秀的教学反思是什么样的呢?以下是小编帮大家整理的直线的方程教学反思,欢迎阅读与收藏。

直线的方程教学反思1

  一.教学对象方面:

  本节课面对的学生是文科班位于中等层次的班级。文科班的学生对于数学普遍存在畏难情绪,所以在教学设计之初就立足于从简到难的思想,所以在教学过程中有了从特殊化到一般化的,再从一般化到特殊化这样两个环节并且设计的数据都比较简单易算,希望能够引起学生学习兴趣,并从中体会到数学学习中解决问题的思维过程。从课堂效果来看这个目的基本达到,学生课堂反映较好,参与积极,气氛热烈。

  二.教学内容方面:

  本节课主要解决的问题是掌握直线的点斜式方程,斜截式方程。直线是解析几何部分最基础的图形,其方程形式有点斜式,斜截式,两点式,截距式,一般式这五种形式。在这五种形式中出现最频繁,最基本的就是点斜式和斜截式。所以对这两种形式要做到能够熟练的根据条件选择合适的直线方程形式。在课堂中可以发现学生已经基本能够达到这一点。但是也存在几个方面的问题,如果直接提供一点一斜率,学生马上能够把直线方程的形式脱口而出。但是如果提供的是倾斜角,对倾斜角加以适当变化的话,部分学生还是存在一定的困难,有些是对斜率公式的不熟悉,有些是对三角函数公式的不熟悉造成的。说明部分学生对于三角函数部分的内容基础不扎实遗忘率较高,对于斜率和倾斜角的关系的理解还是存在疏漏之处,思维严密性需要提高。

  三.教学改进:

  第一需要继续强化基本概念的教学,深化学生对基本概念的理解。可以通过一些小练习,如填空,选择等加强学生逻辑思维能力的训练。如课堂练习中的变式还是较好的.一种方式。以变式这种方式更易于学生发现问题的相同与不同之处,如果能够让学生自己加以适当的总结,老师再加点评,那效果会更好。不过这对课堂时间的控制要求较高,所以采用何种方式展开需要更多的思考。

  第二需要设置梯度,逐步提高难度。由于本节课面对的对象,而且这是直线方程的第一节课,所以设置的内容还是简单易懂的,但是以后的课程中难度要求还是需要逐步提高综合应用能力,这需要在以后的课程中逐步贯彻。

直线的方程教学反思2

  在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质。 用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。

  教学过程中学生对函数图像及其解析式和曲线及方程之间的联系与区别,概念上还是比较模糊的。初中讲直线,是将其视为一次函数,它的解析式是y = kx + b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y = kx + b只是直线方程的一种形式。作为函数解析式的y = kx + b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的'。而作为直线方程的y = kx + b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的。函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式。

  对直线的方程的教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。

  直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的。

  借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。

直线的方程教学反思3

  关于直线方程的教学反思

  关于“直线的倾斜角和斜率“的教学设计花了我很长的时间,设计了多个方案,想在”倾斜角“和”斜率“的概念形成方面给予同学更多的空间,也用几何画板做了几个课件,但觉得不是非常理想,以至于到了上课的时间仍旧没有满意的结果。但由于备课的时间还是非常的充分的,上课还是比较游刃有余的。但上是上了,感觉还是有点不爽。 其一,对”倾斜角“概念的.形成过程的教学过程中,发现所教2个班在表达能力上的区别还是比较明显的,当问到”经过一个定点的直线有什么联系和区别时?”在10班所花的时间明显要比重点班多,但这也表明自己的问题设计还缺乏针对性。如果按照“平面上任意一点--->做直线(3条以上)---->说明区别和联系--->加上直角坐标系---->说明区别和联系”的顺序来设计问题,回答起来可能难度更低一点,同时也更加突出直角坐标系的作用。

  其二,对通过的直线的斜率的求解教学,通过给出实际问题,引出疑问引起大家的思考的方式会更加自然一些。比如,一开始便推出“比较过点A(1,1),B(3,4)的直线和通过点A(1,1),C(3,4.1)的直线”的斜率的大小”,然后得到直观的感受:直线的斜率和直线上任意两个点的坐标有关系。再推导本问题中的两条直线的斜率公式,最后得到一般的公式。

  其三,”不是所有的直线都有斜率”以及斜率公式具备特定前提条件,在学习之处,要指出,但不要过分强调,更符合学生的认知规律,使学生的知识结构能够逐步完善,知识能力螺旋上升。

直线的方程教学反思4

  依据教学过程、指导教师及学生的反馈信息,本人对本节课有如下几点反思:

  一、成功之处

  根据实际教学过程反映,学生对本节课教授知识点能充分吸收、掌握,课堂学习气氛活跃。

  第一、重点突出学生活动。在教学过程中,我设计了五个活动环节:(1) 回顾数轴三要素,理解数轴上点的坐标的几何意义;(2)通过类比进行直线参数方程的探究活动;(3)直线参数方程的形成;(4) 直线参数方程的简单应用;(5)学生课后的拓展学习。

  第二、结合本节课的具体内容,采用学生分组交流,师生互动式教学法。创造机会让不同程度的学生发表自己的观点,调动学生学习积极性,使学生自然而然地渴望进一步了解相关的知识,提高知识的可接受度,进而完成知识的转化,即变书本的知识、老师的知识为学生自己的知识。

  第三、在例题设置中注重联系学生实际,通过情境创设,让学生体会数学的应用价值,在教学过程中时刻注意观察学生是否置身于数学学习活动中,是否精神饱满、兴趣浓厚、探究积极,并愿意与老师、同学交流。

  二、不足之处

  第一、在设置问题情境上可以做得更好:比如在课程引入时,根据本节课的内容,如果能适当联系一些生活当中的实例,那么学生思维可能会更活跃些,课堂可能会更丰满些;做练习时,也可以补充一些联系实际的问题。

  第二、在学生的自主探究方面可以再放开些:如何引导学生,让学生的数学思维更加的活跃,探索新知的欲望更强烈些。因此,课堂上可以更放开些,大胆的让学生去思、去想、去做,同时要注意把握课堂学习秩序。比如在推导直线的'参数方程时,如果让学生合作性的去讨论,并形成正确的认知,那么学生的探究意识在这节课就能体现的更好。

  第三、信息技术应用能力有待进一步提高:通过这节课的教与学,我发现自己在实现函数图象过程的动态演示方面还不够得心应手,有的方面还可以向同事学习。

  总之,数学科的教学活动,无论是动手实验、合作探究还是交流互动等,都应当为理解数学内容服务;也不是所有数学内容的引入、发现都需要实验操作,特别是在高中阶段,应当更多地引导学生从数学内在的逻辑发展要求去探索数学概念的引入、数学原理的发现等。让学生朝着乐观、积极、自信的方向更好的发展,感受数学课中的快乐与幸福!这也正是积极心理学视野下的数学课堂教学。

直线的方程教学反思5

  这是我在兴宁跟岗学习中,有教学实录的一节课。也是自己感觉上的比较成功的一节课。本节的知识内容是在学生学习了直线的点斜式方程的基础上引进的,通过点斜式方程的学习,学生已具备独立推导的能力。通过自主探究,体验方程的生成过程,通过“设点——找等量关系——列方程——整理并检验”的探究过程,让学生充分体验到了成功的喜悦,也为以后“曲线与方程”的教学做了铺垫。从而提高了学生分析问题、解决问题的能力,增强了学生的自信心。学生独立思考并在学案上完成,教师点评并表扬学生。

  另外教学过程中,我留给学生充分的思考与交流的时间,让学生开阔思路,培养学生的逻辑能力,突显强调每种形式方程的特征,并让学生领悟记忆。

  引导学生小结

  1.斜截式和点斜式方程的适用范围;

  2.斜截式和点斜式方程的特征,并板书方程。

  本节课的思想方法:

  1.分类讨论思想;

  2.数形结合思想;

  研究问题的思维方式:

  1.逆向思维;

  2.特殊到一般、一般到特殊的化归思想。并在教学过程中设置在补充的例题练习中有几道易错题,学生在练习中的“错误体验”将会有助于加深记忆,所以可将应用公式的前提条件等学生容易忽略的环节,以便达到强化训练的`目的。这样教学设计,不仅关注学生的思考过程,还要关注学生的思考习惯,为了激发学生探究问题的兴趣,通过例题2让学生观察、动手实践,、积极主动的探究,理解斜截式和点斜式方程之间是否可以互化,答案是否。使学生落实基础知识,增强分析和解决问题的能力,同时通过师生共同探究和交流,每一位学生获得了知识和情感的体验。本节的推理逻辑性较强,让学生动手、动脑、动笔去推导方程,让学生参与一个“开放性例题”的设置,让学生体会到数学的严谨性,并获得数学活动的经验,提高自己的逻辑思维能力。

  作为老师,我有必要在一些细节上更加完善地做好细节工作,比如每个环节衔接的打磨等。同时还必须注意对学生综合能力的培养,包括独立发现问题、解决问题,回过头来再寻求更好解决途径的过程。

直线的方程教学反思6

  作为平面解析几何的起始章,以直线作为研究对象,通过引进坐标系,借助"数形结合"思想,从方程的角度来研究直线,包括位置关系及度量关系。此时,数形结合是本模块重要的数学思想,这不仅是因为解析几何本身就是数形结合的典范,而且在研究几何图形的性质时,也充分体现"形"的直观性和"数"的严谨性。

  本章中,"解析法"思想始终贯穿在全章的每个知识点,同时"转化、讨论"思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。从学生角度而言,大多数学生普遍反映:相对立体几何而言,平面解析几何的学习是轻松的'、容易的。同时,这章公式特别多,加之后面内容较抽象,难度有所增加,进而给学习带来了挑战及困惑。直面公式,不少学生仍然

  采用的是传统的学习方式:死记硬背,机械模仿,导致在解题中往往碰壁而影响了学习兴趣及积极性。另外,尽管用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是"运算量大,解题过程繁琐,结果容易出错"等等,无疑也影响了解题的质量及效率。

  新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。

  我设想,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由"形"问题转化为"数"问题研究,同时数形结合的思想,还应包含构造"形"来体会问题本质,开拓思路,进而解决"数"的问题。

  从我多年教学经验中,最易走入的误区是:

  公式的推导过程中对学生而言,无论是参与的广度还是深度均严重不足,教学仍然停留于教师的主体。缺少了公式形成的亲身体验,无疑对公式理解欠缺深刻。

  另外,公式的应用,忙于从一般到特殊,不仅可以巩固公式,更重要的是加深对公式内涵的理解,同时思维及能力也相应得到发展及提高。由于课本上大多数例题比较简单,加之课时紧张,导致自己的例题教学环节无

  法到位,也影响了公式教学的效果。同时还会由于时间原因,在后面距离教学中,加快了课堂进度,导致不少学生出现学习的障碍。

  这些问题,在具体操作中常犯,所以仍需努力,改变这种状况。做好本章的教学工作。

直线的方程教学反思7

  直线方程的教学是在学习了直线的倾斜角和斜率公式之后推导引入直线的点斜式方程,进一步延伸出其他形式的直线方程和相互转化,为下面直线方程的应用如中点公式、距离公式、直线和圆的位置关系等打下良好的基础。

  以下是在课堂教学中的几点体会和建议:

  (一)初步培养了学生平面解析几何的思想和一般方法。

  在初中,学生熟知一次函数y=kx+b(也可以看成是二次方程)的图象是一条直线,但反过来任意画一条,要同学们写出方程表达式,学生刚开始会无从下手,从而激发学生学习的兴趣。随着教学的展开,让学生逐步形成平面解析几何的方法,如建立坐标啊,设点啊,建立关系式啊,得出方程啊等等,初步培养学生的平面解析几何思维,为后面学习圆、椭圆和相关圆锥曲线打下良好的基础。

  (二)在教学中贯彻“精讲多练”的教学改革探索。

  我们都知道,对于职中的学生,基础差,底子薄,理解能力差,动手能力差,要想让学生学有所得,最好的办法就是精讲多练,提高学生的动手能力。因此在教学中,我们通常是由练习引入,简单讲讲,一例一练,配以一定的巩固提高题,最后还有配套作业,做到每个内容经过三轮的.练习,让学生能够很容易的掌握。

  (三)注意数形结合的教学。

  解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在教学中要注意这种数学思想的教学。每一种直线方程的讲解都进行画图演示,让学生对每一种直线方程所需的条件根深蒂固,如点斜式一定要点和斜率;斜截式一定要斜率和在y轴上的截距;截距式一定要两个坐标轴上的截距等等。并在直线方程的相互转化过程中也配以图形(请参考一般方程的课件)

  (四)注重直线方程的承前启后的作用。

  教材承接了初中函数的图像之后,并作为研究曲线(圆、圆锥曲线)之前,以之来介绍平面解析几何的思想和一般方法,可见本节内容所处的重要地位,学好直线对以后的学习尤为重要。事实上,教材在研究了直线的方程和讨论了直线的几何性质后,紧接着就以直线方程为基础,进一步讨论曲线与方程的一般概念。

直线的方程教学反思8

  学习解析几何知识,"解析法"思想始终贯穿在全章的每个知识点,同时"转化、讨论"思想也相映其中,无形中增添了数学的魅力以及优化了知识结构。在学习直线与方程时,重点是学习直线方程的五种形式,以直线作为研究对象,通过引进坐标系,借助"数形结合"思想,从方程的角度来研究直线,包括位置关系及度量关系。大多数学生普遍反映:相对立体几何而言,平面解析几何的学习是轻松的、容易的,但是,也存在"运算量大,解题过程繁琐,结果容易出错"等致命的弱点等,无疑也影响了解题的质量及效率。

  在进行直线与方程的教学中,要重视过程教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的'数学思想、方法,从中学会学习,乐于学习。应该说,自己在教学过程

  中也是遵循上述思路开展教学的,而且也取得了一定的效果。下面谈一下对直线与方程的教学反思:

  (1)教学目标与要求的反思:

  基本上达到了预定教学的目标,由于个别学生基础较差,没有达到教学目标与要求,课后要对他们进行个别辅导。

  (2)教学过程的反思:

  通过问题引入,从简单到复杂,由特殊到一般思维方法,让学生参与到教学中去,学生的积极性很高,但师生互动与沟通缺少一点默契,尤其基础较差的学生,有待以后不断改进。

  (3)教学结果的反思:

  基本上达到了预定教学的效果,通过数形结合思想方法,培养学生能提出问题和解决问题的思维方式,学会反思,从而提高学生综合解题的能力。

直线的方程教学反思9

  解析几何的本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质.用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。

  教学过程中学生对函数图像及其解析式和曲线及方程之间的联系与区别,概念上还是比较模糊的.初中讲直线,是将其视为一次函数,它的解析式是y=kx+b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y=kx+b只是直线方程的'一种形式.作为函数解析式的y=kx+b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的.而作为直线方程的y=kx+b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式.

  对直线的方程的教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。

  直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的。

  借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。

直线的方程教学反思10

  《直线方程》是解析几何的首节内容,它在教材中起着“承上启下”的作用。同时这一节在人们的生活、生产、科技中有着广泛的实际应用,如神十的发射、建筑的设计等都与直线方程有关。因此,在这一章节的教学中我结合学生实际,贯彻“理解、掌握、运用”这个思想,圆满完成了教学任务。现对本章教学从以下方面进行反思。

  一、教学中的得:

  1、巧妙处理教材,化解难点知识。

  在上这一章节内容的第一课我就遇到了难题:在讲完直线的斜倾角时,我让两位同学一个同学任意画出一条直线,另一个同学找出其倾斜角;再互换角色。并请两位同学上黑板演示。但其中一个同学有时能找出直线相应的倾斜角,有时不能找出其相应的倾斜角。看来他是不能真正理解直线倾斜角定义中的三点:①直线向上的方向;②与轴的正方向;③最小的正角。我分析了一下为什么有的直线的倾斜角他能找出,有的不能的原因。于是我叫同学只画出轴和直线,去掉轴(也就是不画出轴),这样一处理,无论同学怎样画直线,她都能找出其倾斜角。这样让她真正明白后再添上轴。

  2、教学过程设计合理。

  在这一章节我一共安排了四节内容:直线的倾斜角和斜率;直线的点斜式方程;直线的斜截式方程;直线的一般式方程。并且每一节之间的过渡非常自然:教科书首先建立直线倾斜角的概念,进而建立直线斜率的概念,实现了由直线的方向或者说直线的倾斜角这一直线的几何属性向直线的斜率这一代数属性转化。进而由直线的斜率推导出直线的点斜式方程;再由直线的点斜式方程推导出直线的斜截式方程;最后由两种方程推导出直线的一般式方程。每一节的新课引入都非常自然,都是由旧知不知不觉过渡到新知。这样学生就比较容易掌握新知。

  3、精减教学内容,但同样能达到教学目标。

  直线方程只讲点斜式方程和斜截式方式以及一般式方程,不仅减少了不少内容,更是去掉了较多不必要的公式。免去了很多学生在记忆公式时混淆不清,也不知什么时候用哪一个公式。对于职高的学生来说求直线的方程就用这三种形式也够用了。因为两点式,其实可以先求出直线的斜率,再利用点斜式公式便可得;截距式方程也可先求出直线的斜率,既可以用点斜式方程,又可以利用斜截式方程进行解题。这不仅在解题时简化了思路,对职高的学生来说更能让他们在学习上体验到成功感,还能极大地调动他们学习数学的积极性。

  4、教学方法多样。

  在这一章节的教学中,我尝试了多种教学方法:数形结合法、讲练结合法、小组合作法、分析法等。对重点理解的内容,采用任务驱动教学法,给学生任务,驱使学生积极思考。对教学中的内容,强调先理解后学生归纳,加深理解;讲练结合,加强学生能力的培养。同时还综合运用提问、讲授、启发、激励等多种教学方法完成教学过程。

  二、教学中得失:

  1、个别学生学习不够积极,以后要多鼓励他们,树立起学习数学的信心。

  2、数学教学过程是师生间互动的过程,而不是学生被动接受知识。但我在教学中,在这方面还做得不够,教师讲得太多,少部分学生能参与到课堂教学活动中来,还有众多同学被动学习数学。在我们职高数学课堂很难能真正做到每节课师生间都能很好地互动起来。

  3、一节数学课关键不在于你讲了多少知识,而在于你的学生爱上数学这门课程。但在上这一章节内容时我发现真正喜欢学数学的同学不多。不能与大多数学生一起分享学习数学的快乐。

  4、在上第一节《直线的倾斜角和斜率》时,我想让学生走出教室,去测量学校各处的楼梯的倾斜角,并看能得出什么规律?再引申出楼梯的设计,由层高怎么决定梯数,这样学生会更感兴趣。同时让学生明白倾斜角与坡度的异同点。但最终我没这样做。

  三、教学建议:

  (1)求直线方程采取先特殊(点斜式、斜截式)后一般的思路,特殊形式的直线方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬。求特殊直线方程,最好采用数形结合法求解。

  (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证。教学中应重点分析思路,还应抓住这一有利时机使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点。

  (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的`几何特征,参数的意义等,并加深对各种形式的理解。

  (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件。两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率。

  (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数。

  (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力。

  (7)直线方程的理论在其他学科和生产生活实际中有大量的应用,教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力。

直线的方程教学反思11

  这是我在兴宁跟岗学习中,有教学实录的一节课。也是自己感觉上的比较成功的一节课。本节的知识内容是在学生学习了直线的点斜式方程的基础上引进的,通过点斜式方程的学习,学生已具备独立推导的能力。通过自主探究,体验方程的生成过程,通过“设点——找等量关系——列方程——整理并检验”的探究过程,让学生充分体验到了成功的喜悦,也为以后“曲线与方程”的教学做了铺垫。从而 提高了学生分析问题、解决问题的能力,增强了学生的自信心。学生独立思考并在学案上完成,教师点评并表扬学生。另外教学过程中,我留给学生充分的思考与交流的时间,让学生开阔思路,培养学生的逻辑能力,突显强调每种形式方程的特征,并让学生领悟记忆。引导学生小结2斜截式和点斜式方程的适用范围;3斜截式和点斜式方程的特征,并板书方程。

  本节课的思想方法:1. 分类讨论思想;2. 数形结合思想;研究问题的思维方式:1.逆向思维; 2.特殊到一般、一般到特殊的化归思想。并在教学过程中设置在补充的例题练习中有几道易错题,学生在练习中的“错误体验”将会有助于加深记忆,所以可将应用公式的前提条件等学生容易忽略的环节,以便达到强化训练的目的。这样教学设计,不仅关注学生的思考过程,还要关注学生的思考习惯,为了激发学生探究问题的兴趣,通过例题2让学生观察、动手实践,、积极主动的探究,理解斜截式和点斜式方程之间是否可以互化,答案是否唯一。 使学生落实基础知识,增强分析和解决问题的能力,同时通过师生共同探究和交流,每一位学生获得了知识和情感的'体验。本节的推理逻辑性较强,让学生动手、动脑、动笔去推导方程,让学生参与一个 “开放性例题”的设置,让学生体会到数学的严谨性,并获得数学活动的经验,提高自己的逻辑思维能力。

  作为老师,我有必要在一些细节上更加完善地做好细节工作,比如每个环节衔接的打磨等。同时还必须注意对学生综合能力的培养,包括独立发现问题、解决问题,回过头来再寻求更好解决途径的过程。

直线的方程教学反思12

  在进行《直线的方程》一章教学时,笔者遇到了这样一个问题:就是我们反复在讲直线方程的5种形式,包括点斜式、斜截式、两点式、截距式和一般式,但是到了学生那里,只要求到直线方程,则十有八九是利用斜截式,即设直线的方程为y=kx+b,然后根据题目的已知条件求出相应的k和b.学生这样做固然也能把直线的方程求出来,但对于有些问题而言显然不是最好的方法.虽然在课上也强调对于不同的条件,要合理选择相应类型的直线方程,以简化计算,但是还有相当部分学生老是抱着斜截式不放.我在想,是什么原因导致学生始终也摆脱不了这种“k、b情结”呢?原来,学生在初中阶段已经学过一次函数,当初一次函数的解析式的形式就是y=kx+b.我并没有贬低初中老师的意思,相反,我真的太佩服我们的初中老师了,在他们的辛勤耕耘下,我们的学生都成了一个个“训练有素”的解题高手,只要求到直线的方程,想也不要想,设为y=kx+b.殊不知,如今行情已经变了,需要“与时俱进”一下了.由此,我们就得出了这样一个结论,教学中间的很多东西需要强调,但有时候强调得过了头,反而会适得其反,还是那句老话:过犹不及!就像一次函数的解析式,初中老师强调得过了头,我们高中老师在教《直线的方程》这一部分时就看出后遗症了.这么一强调,学生的中考成绩是有保证了,但是思维严重僵化,不懂变通,不愿接受新知识,当然更不用谈什么创新了.大概中国基础教育缺乏对学生创新能力的培养,由此也可窥见一斑吧.另外,要解决上面的问题,我认为在教学时还要补充讲一个东西,那就是函数图像及其解析式和曲线及其方程之间的联系与区别.初中讲直线,是将其视为一次函数,它的解析式是y=kx+b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的.轨迹),它的方程是二元一次方程,而y=kx+b只是直线方程的一种形式.作为函数解析式的y=kx+b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的.而作为直线方程的y=kx+b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式.

直线的方程教学反思13

  我所教班级是文科班,学生的总体数学水平处于我校的中等水平,学生们对于数学这个学科本身的兴趣有限,对前面学过的有关直线和圆中的基本知识点掌握的一般。针对以上实际情况,我采用如下方案对参数方程进行了讲解。

  一、讲解情况

  第一,讲解学习本章的重要意义。通过本章节的教学使学生明白现实世界的问题是多维度的、多种多样的,仅仅用一种坐标系,一种方程来研究是很难解决现实世界中的复杂的'问题的。在这一点上,参数方程有其自身的优越性,学习参数方程有其必要性。

  第二,讲解参数方程的基本原理和基本知识。通过学习参数方程的基本概念、基本原理、基本方法,以及方程之间、坐标之间的互化,使学生明白坐标系及各种方程的表示方法是可以视实际需要,主观能动地加以选择的。

  第三,讲解典型例题和解题方法。通过例题的讲解让学生们进一步巩固基础知识,同时还能熟练解题方法,为进一步学习数学和其他自然科学知识打好基础。

  第四,布置课后练习。既可以巩固学过的知识,又可以达到温故而知新的效果。

  二、成功之处

  第一,突出教学内容的本质,注重学以致用。课堂不应该是 “一言堂”,

  学生也不再是教师注入知识的“容器瓶”,课堂上,老师应为学生讲清楚相关理论、原理及思维方法,做到授之以渔,而非仅是授之以鱼。 第二,保证活跃的课堂气氛,进一步激发了学生的学习潜能。实践证明,刻板的课堂气氛往往禁锢学生的思维,致使学习积极参与度下降,学习兴趣下降,最终影响学习成绩和创造性思维的发展。

  第三,结合本节课的具体内容,确立互动式教学法进行教学。积极创造机会让不同程度的学生发表自己的观点,调动学生学习积极性,拉近师生距离,提高知识的可接受度,进而完成知识的转化,即变书本的知识、老师的知识为自己的知识。

  第四,有效地提高教学实效。通过老师的讲解和学生的练习,让学生不断地巩固基础知识的同时,让学生们既要能做这道题,还要能做类似的题目,做到既知其然,又知其所以然,举一反三,触类旁通,把知识灵活运用。

  三、不足之处

  第一,本节课的知识量比较大,而且是建立在向量定义基础之上。这些知识学生都已经学过了,在课堂上只做了一个简单的复习。但是在接下来的课堂上发现一部分学生由于基础知识不扎实,导致课堂上简单的计算出错,从而影响到学生在做练习时反映出的思维比较的缓慢及无法进行有效的思考的问题。从课堂的效果来看学生对运算的熟练程度还不够,一定程度上存在很大的惰性,不愿动笔的问题存在,有待于在以后的教学中督促学生加强动笔的频率,减少惰性。

  以上就是我的教学反思。

直线的方程教学反思14

  在进行《直线的方程》一章教学时,笔者遇到了这样一个问题:就是我们反复在讲直线方程的5种形式,包括点斜式、斜截式、两点式、截距式和一般式,但是到了学生那里,只要求到直线方程,则十有八九是利用斜截式,即设直线的方程为y = kx + b,然后根据题目的已知条件求出相应的k和b.学生这样做固然也能把直线的方程求出来,但对于有些问题而言显然不是最好的方法.虽然在课上也强调对于不同的条件,要合理选择相应类型的直线方程,以简化计算,但是还有相当部分学生老是抱着斜截式不放.

  我在想,是什么原因导致学生始终也摆脱不了这种“k、b情结”呢?原来,学生在初中阶段已经学过一次函数,当初一次函数的解析式的形式就是y = kx + b.我并没有贬低初中老师的意思,相反,我真的太佩服我们的初中老师了,在他们的辛勤耕耘下,我们的学生都成了一个个“训练有素”的解题高手,只要求到直线的方程,想也不要想,设为y = kx + b.殊不知,如今行情已经变了,需要“与时俱进”一下了.

  由此,我们就得出了这样一个结论,教学中间的很多东西需要强调,但有时候强调得过了头,反而会适得其反,还是那句老话:过犹不及!就像一次函数的解析式,初中老师强调得过了头,我们高中老师在教《直线的方程》这一部分时就看出后遗症了.这么一强调,学生的中考成绩是有保证了,但是思维严重僵化,不懂变通,不愿接受新知识,当然更不用谈什么创新了.大概中国基础教育缺乏对学生创新能力的培养,由此也可窥见一斑吧. 另外,要解决上面的问题,我认为在教学时还要补充讲一个东西,那就是函数图像及其解析式和曲线及其方程之间的联系与区别.初中讲直线,是将其视为一次函数,它的解析式是y = kx + b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y = kx + b只是直线方程的一种形式.作为函数解析式的y = kx + b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的..而作为直线方程的y = kx + b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的.函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式.

直线的方程教学反思15

  直线与方程是解析几何的起点,是与初中一次函数直线紧密联系,也就是数形结合思想突出的重要一章,所以学好这一章非常有必要。

  直线与方程这一章体现了数形结合思想,直线方程的五种形式需要学生的灵活应用。但许多学生在做题中用斜截式较多,可能是学生在初中已经学习了一次函数。所以我们在学习直线的方程时,要不断强化学生对其他直线方程的应用。学生在做题中通常会忽略K的存在性,这需要不断加强,还有就是各个方程运用的限定条件。数形结合是本模块重要的数学思想,这不仅是因为解析几何本身就是数形结合的典范,而且在研究几何图形的性质时,也充分体现“形”的直观性和“数”的严谨性。教学过程应“接头续尾,注重过程”。教材中求直线方程采取先特殊后一般的逻辑方式,几种特殊形式的方程:斜截式、点斜式、两点式、截距式的几何特征明显,但各有其局限性。而一般形式的方程虽无任何限制,但几何特征却不明显。通过引导,使学生经历下列过程:首先建立坐标系,将几何问题代数化,用代数语言描述几何要素及其相互关系;进而,将几何问题转化为代数问题;处理代数问题;分析代数结论的几何含义,最终解决几何问题。通过上述活动,使学生感受到解析几何研究问题的一般程序。由“形”问题转化为“数”问题研究,同时数形结合的'思想,还应包含构造“形”来体会问题本质,开拓思路,进而解决“数”的问题。

  总之,在直线与方程这一节中,我们以后的教学更应该注重学生能力的培养,让学生自己推导公式,在推导的过程中认识公式,使学生理解公式,从而认识解析法的数学魅力,正确运用解析法,而不是把公式当做是记忆的东西,一味的死记硬背,而忘掉条件限制。