植树问题教学反思

时间:2024-05-18 13:06:56 教学反思 我要投稿

植树问题教学反思

  身为一名优秀的人民教师,我们要有一流的课堂教学能力,在写教学反思的时候可以反思自己的教学失误,那么你有了解过教学反思吗?下面是小编整理的植树问题教学反思,欢迎阅读与收藏。

植树问题教学反思

植树问题教学反思1

  “植树问题”是四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。我所执教的内容是两端都不栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的'魅力。这节课我依据学生的认知规律,设计了四个环节。

  一、我通过让学生举手的方法这一实例让学生感知点与间隔数。

  二、以学生的手指为树两指之间为间隔数,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。四、多角度的应用练习,巩固和拓展学生对植树问题的认识。

  我让学生实际观察体验点与间隔数之间的关系,由浅入深把复杂的东西简单化:让学生能够找到简单植树问题的规律“间隔数-1=棵数”(两端都不种)的规律,称热打铁让学生做练习巩固加深对两端多不栽的习题。一节课让学生自己发现问题自己去解决,学生的学习积极性高涨老师也省劲,在反思中,我找到了教学中捷径的办法。

植树问题教学反思2

  植树问题是人教版四年级下册数学广角的内容,教材将植树问题分为几个层次:两端都栽、两端不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

  我所执教的是教材第117页的内容,主要教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节。

  一、通过课前活动,以大家都熟悉的手为素材,从让学生初步认识间隔,感知间隔数与手指数的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  反思整个教学过程,我认为这节课有以下几点做得比较好:

  一、创设浅显易懂的生活原型,让数学走近生活。

  创设与学生的生活环境和知识背景密切相关的、学生感兴趣的学习情境有利于学生积极主动地投入到数学活动中。课前活动时,我选择学生的小手为素材,引入植树问题的学习。学生在手指并拢、张开的活动中,清晰地看出手指的个数与空格数之间是相差1的。然后做快速问答的游戏,使学生直观认识并总结出了间隔和点数的关系,为下面的学习作了铺垫,同时也激起了学生的学习兴趣。

  在处理教材时我把例题改为条件开放的植树问题,不规定间距,同时改小数据,将路的长度变成20米。如此修改的意图是,让学生在开放的情境中,突现学生的知识起点,从而用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。 在这里数据小了,便于学生利用线段图操作,建立数形结合,有利于学生的思考,降低了学习的难度。

  二、注重学生的自主探索,体验探究之乐。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。教学中我先激励学生自己做设计师,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:你能找出什么规律?启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面的植树问题:100米长的小路,按5米可以平均分成20段,也就是共有20个间隔,而栽树的'棵数比间隔数多1,因此一共要准备21棵树苗。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

  三、利用学生资源,加强生生合作

  学生的认知起点与知识结构逻辑起点存在差异。生生之间的差异是学习的资源,这种资源应在小组交流的平台上得到充分的展示与合理的利用。在设计植树方案这一环节上,学生将间距定为1米、2米、4米、5米、10米,体现了思维的多样性。

  四、关注植树问题模型的拓展和应用

  植树问题的模型是现实世界中一类相近事件的放大,它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,本课练习有以下两个层次:

  (1) 直接应用模型解决简单的实际问题。课堂上,安排学生自主完成已知总长和间距求棵数、已知棵数和间距求总长的练习,让学生从正反两个方面出发,直接应用模型解决简单的实际问题。训练学生双向可逆思维的能力。

  (2)推广到与植树问题相近的一些问题中,让学生进一步体会,现实生活中的许多不同事件,如教室里的座位的事件,公共汽车站台的事件,都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。以图片的形式让孩子们了解生活中与植树问题相似的现象,最后还把刘翔2004年雅典奥运会上精彩夺冠的场景再次重现,并出示110米栏的图,从中找到间隔,同时,渗透爱国主义教育。

  这节课充分利用了多媒体设备,所以课堂容量较大,但是也造成个别学生吃不透的现象。在以后的教学中要注意把握好度,适当进行取舍,照顾好中差生。

植树问题教学反思3

  本节课的内容主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。但对这些数学方法的挖掘和处理可谓“仁者见仁,智者见智”。我觉得这一课的数学思想方法主要是“化繁为简”或者说是从简单入手寻找规律,而这种方法在北师大版教材中体现得淋漓尽致,而在人教版教材的编排上可谓“若隐若现”,因此我觉得我们使用人教版教材的课堂,应该充分挖掘教材教给学生这种解决问题的策略。

  课堂教学中我安排了三个层次的探究活动,从实物操作到画线段图到类比推理,有效地突出了解决问题策略的重要性和多样性。学生在课堂上也领略到数学智慧的夺目光彩,增强了学生学习数学的兴趣和信心。通过本课的设计和实践,我更迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此对数学思想和方法在课堂中落实的`研究迫在眉睫。这也是当前数学课堂中存在的重要缺失,身为学校教研员更为向广大教师传播数学思想和方法的重要性,并提出渗透数学思想,教给学生数学方法的有效措施。

  本课中为了突显解决问题策略的多样化和完整性,我把教材中原本安排两课时完成的内容缩成一课时。而且在这一课时我把教学重点放在学生解决问题策略的学习、理解上,因此对于本课的知识点的处理上略显不足。

植树问题教学反思4

  《植树问题》是人教版义务教育课程标准实验教科书四年级下册中数学广角的资料。数学广角作为人教版新增的资料之一侧重点是让学生在掌握知识的同时向学生渗透一些常用的数学思想和方法。如何把抽象的数学思想方法很好地渗透在环节在教学中使学生在“润物细无声”中深刻体验到数学思想方法的价值这是我在教学设计时着重思考和要解决的问题。一节课实施下来有成功之处也有不足之处。现做一个简单的小结与反思。

  成功之处:

  一、教学设计有深度、有厚度。

  教学设计分两条线走:一条线以构建学生知识结构为线索,使学生对植树问题的认识经历了“生活问题——猜想验证——建立模型”不断数学化的过程,较好地实现了由生活中的具体问题过渡到相应的“数学模式”,为上升到更抽象的数学高度奠定了基础。然后又让学生运用模型解决问题,把数学化的东西又回归于生活,也让学生再一次体会数学与生活的密切联系。另一条线以渗透数学思想方法为线索。

  对于植树问题的探究,不仅仅让学生透过画线段图、摆学具的方式自主探究、寻找,而且结合线段图、摆学具,让学生理解了为什么两端都种时,棵数会比间隔数多1,多的1指的是哪一棵树。让学生不仅仅要知其然,还要知其所以然。

  由反复的修改,让我深刻地体会到了对教材研究的重要性,明白了“教师对教材看得有多深,才能使你的课堂有多厚”的道理。也让我明白了自己今后就应努力的方向。

  二、敢于放手让学生去探究,体现学生的主体地位。

  整堂课,我都比较注重学生的主体地位。因为我明白,只有学生自己想学、愿学,才能主动地学,并把学到的东西内化为自己的知识。因此对于重点部分的引入,即探究两端都种时,棵数与间隔数之间究竟有什么关系,我先让学生透过自己的猜测得到答案。当几种答案产生冲突时,再引导学生探究,这样更容易激发学生的探究欲望,激活学生的主体意识。而后的探究部分我就放手让学生去做,教师给予适当的指导,让学生在自主探索中掌握用线段图探究植树问题规律的方法。由此把方法内化为自己的东西,为下节课自主寻找另外两种植树问题的规律时,学生就比较简单愉快了。

  三、注重教学思想的.渗透和学习方法的传授。

  在整个教学的过程中,我都很注重数学思想方法的渗透。比如:当学生用一个线段图证明规律时,适时点拨。用一个线段图就能证明它是普遍存在的规律吗再画几个试试(以小组为单位,分组研究)。交流时,让不同的学生说出用不同间隔的线段图得到同一个规律,实际就是向学生渗透不完全归纳法。在展示交流部分,透过比较10个间隔与2个间隔的线段图的难易,比较画一棵树和用

  一个点表示一棵树的难易,让学生体会简化的思想。透过找生活中的植树问题,并解决生活中的植树问题,让学生体会化归的思想。对于学习方法的传授,整节课都个性重视线段图的运用。

  当然,这节课也有许多的不足之处,列举几条:

  一、教学时间安排欠妥。有的教学资料没有来得及出示,有的资料讲解比较仓促。练习巩固时间不充分,没有检测时间,使教师没有及时掌握每个学生的学习状况,心中没底。

  二、本节课,我本想借助一一对应的思想去突破本节课的难点(两端都栽的状况下,所栽的棵数比间隔数多1),但是没有深入去理解植树问题中所蕴含的一一对应思想。所以,感觉得出的规律有些牵强、抽象,没有到达水到渠成的效果,没有把一一对应的思想与植树规律结合在一齐,没有很好地突破难点。

  三、对学生评价这块显得潜力不足。对于学生的评价如何做到即准确又有深度,还要具有启发性,这是我还得努力学习的方向。

  四、数学课关键在于“说”,以说促思,以说引思,这样能够了解学生的思维过程是否正确,以便教师及时调控课堂,改变教学策略,但是,为了能够完成教学任务,明明白就应让学生多说,但是由于时间问题,就把学生说的权利剥夺了,而去进行下面的教学资料,这是我一贯的通病,我争取改正,把更多的时间和空间留给学生,让学生真正成为课堂的主人。

  总之,一堂课下来,发现自己真的还有那么多的不足之处。反思自己,今后还应加强学习,学习理论知识、学习优秀课例,

植树问题教学反思5

  植树问题是新人教版五年级上册第七单元的内容。本节课我教学了课本117页例1内容,主要教学两端都栽的植树问题。反思本课教学过程,我觉得以下方面做得比较成功:

  一、在教学中,我不忘让学生感受到了数学来源于生活,也应用于生活的道理。比如:最开始以谜语激趣,让学生猜到“手”。以每个人都具备的“手”开始,让学生感知棵数与间隔之间的关系。再用任意一组座位上的人与他们之间间隔的关系,引出课题“植树问题”。这样既有趣味性又贴近学生的生活。接着,例题又是校园植树问题,以及后面让学生思考植树问题的应用领域等等,都是来源于生活的例子。

  二、在教学过程中,我注重了对数形结合意识的渗透。给出了例题,学生猜想之后,引导学生画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的.思想。其后,改变路长,让学生通过画图的方法再次验证,并完成表格,从而发现规律。

  三、在教学过程中,我重视数学模型的建立。建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。所以,建立数学模型是十分关键的一步。因此,我在教学中设计了“理解信息—形成猜想—化繁为简—交流汇报—发现规律—应用规律”的教学流程,意在让学生经历“猜想—验证—建立数学模型—应用”这一过程,从而建立“植树问题”数学模型。

  四、关注植树问题模型的拓展和应用。

  植树问题的模型是现实世界中的事件,它源于生活,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解,我做了两方面的工作:一是加强归类,出示生活实例,告诉学生“这些现象的事物间都存在着间隔,把这类问题统称为植树问题”;二是进行变式练习。我设计了4道练习题,引导学生进一步体会,从而使学生感悟数学建模的重要意义。

  这节课虽然不乏成功之处,但也有许多遗憾。

  一、是操作的实际性。在学生画图探究不同路长情况下间隔数和棵数的规律时,还是有个别同学不知道如何画。可能是操作方法交待不够清楚,以致部分学生无从下手,影响操作效果。

  二、是在黑板上板书的同学,虽然在屏幕上给出了标准答案,但缺乏在黑板上板书同学的评价。

  三、没有对规律进行变式。比如:得出规律时,可以说说“间隔数=棵数-1,全长=间隔数×间隔长”等等。

  今后教学改进措施:

  一、课前一定要备学生,充分了解学情。

  二、深钻教材,讲重点知识时,多预设几个答案。

  三、寻求学生最能理解的教学方法去教学。

植树问题教学反思6

  “数学广角”的教学目标的主要是让学生体验知识的形成过程和感悟数学思想方法,义务教育教科书第七单元数学广角——植树问题,主要是渗透有关植树问题的一些思想方法,通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现规律,抽取出其中的数学模型,然后再用发现规律来解决生活中的简单实际问题。具体到本单元时,教师应从实际问题入手,引导学生在解决问题的分析、思考过程中逐步发现隐含于不同的情形的规律,经历抽取出数学模型的过程,体验数学思想方法在解决实际问题中的应用。

  在植树问题中“植树”的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的植树问题,也可以有不同的情形。如两端都要栽,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为在一条线段上的植树问题中的“一端栽另一端不栽”的情况。在本节课的教学中,我针对数学广角的特殊要求,把重点放在在了两端都栽的问题上,让学生通过经历两端都栽的问题掌握研究的方法,指导发现问题的结论,从而为植树问题的后续研究做好铺垫。

  本课我在教学设计上突出了少就是多,慢就是快的原则。导入时让学生通过观察自己的手发现其中的秘密,认识间隔和棵数之间简单的关系,通过课件介绍生活中与间隔有关的问题就是植树问题。然后借助图表、线段等方法,渗透把复杂问题简单化的原则,进行小数据研究发现其中的规律。在学生借助图表、线段及自己的思考过程进行全班交流,使两端都栽的植树问题规律特别明显,充分理解了两端都栽的问题明确棵数=间隔数+1。而后经过各种各样的梯度训练,让学生经历敲钟、电线杆、车站等各种与两端都栽的植树问题有关的其他问题,然后提升到间隔数、总长、间距等之间的复杂关系解决上,建立完整的解决问题的体系。

  本节课中不足的问题有:设计中的.重点部分是让学生在亲历知识形成的过程中,独立思考交流,总结方法。我在让学生交流的时间上给的不够,学生没有达到充分的内化知识,不能很好的展示其中的关系,在梯度训练中的变式练习就明显感到有的孩子吃力了。在学生的学习过程中如何把握好时间,把话语权交给学生,适时智慧引导,才能够让学生乐于参与有方法,不断拓宽长知识。

  本节课我重视了课堂中的设计想把简单做扎实,我觉得只有基础扎实了,才会有更高更远的风景。

植树问题教学反思7

  在本节课的教学中,我根据教学内容的特点和学生的实际情况,在探究两端都植的规律时安排了动手操作,想通过引导学生积极参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的:出示一道开放性的题目:一条公路长()米,每隔5米植一棵(两端都要植),需要多少棵?

  让学生自己确定这条路的长度,从而探究出两端都要植时的间隔数和棵数之间的关系,要求是这样的:设计:全长()米,每隔5米,有()个间隔,种()棵树让学生独立思考,画线段图,填表,汇报。本以为自己设计的教案考虑到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应该是能够掌握的。可是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律”时一个个都像被打败公鸡,毫无斗志与反应。

  勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的积极性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有一定的问题,对于学生来说太抽象,太难了,自己确定长度时,要考虑到平均分还要分完,只给学生一条线段,他们不知道从何下手。

  我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。同时能灵活构建知识系统,注重教学内容的整体处理。能活用教材,对教材进行了整合和重构,让资源启迪探究。

  激发学生探究的欲望。设计的例题是一个开放性的题目,提供给学生的是现实的,是有意义的,挑战性的。开放性的`设计,使课堂成为充满活力的自己空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动。让学生比较系统地建立植树问题的三种情况,即两端都植;两端都不植;封闭情况下的植树问题(一头植和一头不植)。

  本节课的特点:

  一、通过自主探索的活动,让学生获得学习成功的体验,增进学好数学的信心。

  本课设计正是从这的角度出发,设计了给学生这条路固定的总长是30米和树的模型让学生动手“植树”的环节,这样可以充分调动学生手、脑、口等多种感官参与到数学学习活动中来,更大程度地提高学生参与学习的效度。学生在分组合作模拟植树活动中寻找规律的时候表现的很轻松。这样的活动方式,不仅是充分展示学生个性思维和了解学生原有生活经验的难得平台,而且学生在活动中建立了植树问题的模型,为学生在下面的学习做好直观的铺垫。

  二、渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。

  “授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导通过“以小见大”来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。

  教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生通过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。

  三、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。

  植树问题的模型它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的意义,加强了模型应用功能的练习,在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的情况呢?

  通过学生的举例,让他们进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。

  我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,使学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。

  四、渗透数形结合的思想,培养学生借助图形解决问题的意识。

  数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;本着这个思想我在达成本课的教学目标之一:初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。在出示完例题后,安排了这样的一个实践活动:以小组为单位在一条线段让用小树的模型模拟植树,在增加学生学习兴趣的同时,由于使用了数形结合的方法,植树中棵树和间隔数之间的关系便迎刃而解,且容易理解。

  本节课的不足:

  但这节课也有我颇感不足的地方:

  1、那就是我把学生估计过高,我以为只要学生弄懂了棵数和间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎我的预料,因为有一部分学生知道了全长和间距不会求间隔数,我以为这是学生早已经学过的而且经常用到的,所以没特别的复习,导致了基础较差的学生无法下手。

  2、在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。

  3、在教学过程中,因担心上不完,当遇到学生“答非所问”的时候就表现的很急躁不能静下心来仔细地听完学生的发言;

  教学是一门遗憾的艺术,虽然这节课给人留下了很多遗憾之处,但它毕竟是我自己的产物,是我对新的教法的一种大胆的尝试,而且在准备这节课的过程中,我学习了很多,也收获了很多。为了让每节课的遗憾能少一些,我会继续为之努力。但愿自己在这条路上能走的更远。

植树问题教学反思8

  《植树问题》是北京市义务教育课程改革实验教材第八册第三单元实际问题中的资料。这一资料主要涉及到的知识点有:敞开状况下的两头植、两头都不植、封闭状况下的植树问题(一头植和一头不植)这三种状况。这些资料是奥数中出现的资料,对于四年级的学生来说理解起来有必须的困难,怎样才能让学生即能学会,还要学的简单呢,我反复研读教材,分析学生。《课标》中提出:“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“探求给定事物中隐含的规律或变化趋势。”“植树问题”通常是指沿着必须的路线,这条路线的总长度被树平均分成若干间隔,由于路线不同、植树要求不同,路线被分成的间隔数和植树棵数之间的关系就不同。现时生活中类似的问题还有很多,如安装路灯、花坛摆花、站队中的方阵、锯木头、走楼梯,等等。

  基于以上思考,我把目标制定为:知识与技能:利用线段图理解两段要植和两端不植两种状况下棵树、间隔数和总长之间的关系。过程与方法:1、透过合作探究、动手实践发现这两种状况植树问题的规律。2、让学生经历探索、猜测、试验、交流、归纳运用的过程获得解决问题的策略。情感态度价值观:让学生感受数学知识在日常生活中的广泛应用,尝试用数学的方法解决实际生活中的简单问题;培养学生的应用意识和解决实际问题的潜力。

  教后反思:

  在本节课的教学中,我根据教学资料的特点和学生的实际状况,在探究两端都植的规律时安排了动手操作,想透过引导学生用心参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的':出示一道开放性的题目:一条公路长()米,每隔5米植一棵(两端都要植),需要多少棵?让学生自己确定这条路的长度,从而探究出两端都要植时的间隔数和棵数之间的关系,要求是这样的:设计:全长()米,每隔5米,有()个间隔,种()棵树让学生独立思考,画线段图,填表,汇报。本以为自己设计的教案思考到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们就应是能够掌握的。但是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律”时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的用心性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有必须的问题,对于学生来说太抽象,太难了,自

  己确定长度时,要思考到平均分还要分完,只给学生一条线段,他们不明白从何下手。我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后透过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。同时能灵活构建知识系统,注重教学资料的整体处理。能活用教材,对教材进行了整合和重构,让资源启迪探究。激发学生探究的欲望。设计的例题是一个开放性的题目,带给给学生的是现实的,是有好处的,挑战性的。开放性的设计,使课堂成为充满活力的自己空间,从而激发学生的思维,让他们用心地去探究,使学生完整的体验“植树”这一实践活动。让学生比较系统地建立植树问题的三种状况,即两端都植;两端都不植;封闭状况下的植树问题(一头植和一头不植)。

  本节课的特点:

  一、透过自主探索的活动,让学生获得学习成功的体验,增进学好数学的信心。

  本课设计正是从这的角度出发,设计了给学生这条路固定的总长是30米和树的模型让学生动手“植树”的环节,这样能够充分调动学生手、脑、口等多种感官参与到数学学习活动中来,更大程度地提高学生参与学习的效度。学生在分组合作模拟植树活动中寻找规律的时候表现的很简单。这样的活动方式,不仅仅是充分展示学生个性思维和了解学生原有生活经验的难得平台,而且学生在活动中建立了植树问题的模型,为学生在下面的学习做好直观的铺垫。

  二、渗透“以小见大”的数学思想方法,培养学生数学思维潜力和解决问题的潜力。

  “授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导透过“以小见大”来找规律加以验证,让学生透过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。

  教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生透过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生用心性。

  三、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。

  植树问题的模型它源于现实,又高于生活。所以,在现实中有着广泛的应用价值。为了让学生理解这一建模的好处,加强了模型应用功能的练习,

  在学生已经自主地寻找到植树中前两种的规律后,我适时的提出在我们的生活中有没有类似植树的状况呢?透过学生的举例,让他们进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。我并没有就此罢手,而是让学生找找生活中的类似现象,如栽电线杆,排座位,安路灯,插彩旗等等,在学生从具体生活中抽象出数学现象后,又再一次让学生运用规律解决形式各异的生活问题,使数学知识运用于生活,使学生深深地体会到数学的价值与魅力。整节课,大多数学生的思维表现的很活跃。

  四、渗透数形结合的思想,培养学生借助图形解决问题的意识。

  数形结合是数学解题中常用的思想方法,数形结合的思想能够使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;本着这个思想我在达成本课的教学目标之一:初步理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的潜力。在出示完例题后,安排了这样的一个实践活动:以小组为单位在一条线段让用小树的模型模拟植树,在增加学生学习兴趣的同时,由于使用了数形结合的方法,植树中棵树和间隔数之间的关系便迎刃而解,且容易理解。

  本节课的不足:

  但这节课也有我颇感不足的地方:

  1、那就是我把学生估计过高,我以为只要学生弄懂了棵数和间隔数之间的关系之后,解决植树问题就就应没多大的问题了,但事实出乎我的预料,因为有一部分学生明白了全长和间距不会求间隔数,我以为这是学生早已经学过的而且经常用到的,所以没个性的复习,导致了基础较差的学生无法下手。

  2、在时间的分配上我前松后紧,在规律的寻找和简单应用中花费的时间有点长,以致后面的练习很仓促。

  3、在教学过程中,因担心上不完,当遇到学生“答非所问”的时候就表现的很急躁不能静下心来仔细地听完学生的发言;

  教学是一门遗憾的艺术,虽然这节课给人留下了很多遗憾之处,但它毕竟是我自己的产物,是我对新的教法的一种大胆的尝试,而且在准备这节课的过程中,我学习了很多,也收获了很多。为了让每节课的遗憾能少一些,我会继续为之努力。但愿自己在这条路上能走的更远。

植树问题教学反思9

  植树一节课包含许多数学思维方法,但这些数学方法的挖掘和处理可以用“不同的人看到不同的人,不同的人看到不同的智慧”来描述。我认为这节课的数学思维方法主要是“化繁为简”,或者从简中寻找规律。这一方法在北京师范大学教材中得到了淋漓尽致的体现,在人民教育版教材的编排上可谓“隐约可见”。因此,我认为我们利用人民教育版的课堂,应该充分挖掘教材教给学生解决问题的策略。

  在课堂教学中,我安排了三个层次的探究活动,从物理操作到绘制线段图再到类比推理,有效地突出了问题解决策略的重要性和多样性。学生们还欣赏到课堂上数学智慧的耀眼光芒,这增强了学生学习数学的兴趣和信心。通过本课程的设计和实践,我更加迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此研究数学思想和方法在课堂上的.实施迫在眉睫。这也是当前数学课堂的一个重要不足。作为一名教学研究者,更重要的是向广大教师宣传数学思想和方法的重要性,并提出渗透数学思想、教授学生数学方法的有效措施。

  在本课中,为了突出问题解决策略的多样性和完整性,我将原计划在两个学时内完成的材料缩减为一个学时。而在本课程中,我侧重于学生问题解决策略的学习和理解,因此在对本课程知识点的处理上存在一定的不足。

植树问题教学反思10

  在这节课的教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。

  教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是给出间隔和棵数,求路的长度。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。本节课的主要目标是向学生渗透复杂问题从简单入手的思想。使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。因此在设计这节课时,我主要是运用这样的教学理念:以问题情境为载体,以认知冲突为诱因,以数学活动为形式,使学生经历生活数学化,数学生活化的全过程,从中学到解决问题的思想方法。以此为基础,根据学生的认知规律,我设计了以下几个环节:

  一、通过课前活动,以春季植树为素材,从让学生初步认识间隔,感知间隔数与植树棵树的关系。

  二、以一道植树问题为载体,营造突破全课教学重点及难点的高潮。

  三、以生活中植树问题的应用为研究对象,引导学生了解植树问题的实质。

  四、多角度的应用练习巩固,拓展学生对植树问题的认识。

  反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以我在课堂中重视规律更强调方法,注重学生获取知识过程的体验。

  体验是学生从旧知识向隐含的新知识迁移的过程。教学中,我创设了情境,向学生提供多次体验的机会,为学生创设了一种民主、宽松、和谐的学习氛围,给了学生充分的时间与空间。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的`一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。因此,在教学过程中,我注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。

  但是我感觉在本节课的教学活动中,师生间的沟通交流上还有待于进一步加强,有时过高的估计学生的学习基础和理解能力,造成站位过高的局面。今后的教学中要全面、深入的了解学生,充分做好更方面的准备。

植树问题教学反思11

  植树问题”原本属于经典的奥数数学内容,新课程教材把它放在了四年级下册的“数学广角”中让所有的学生学习,说明这一教学内容本身具有很高的教学思维含量和很强的探究空间,既需要教师的有效引领,也需要学生的自主探究。从学生的思维特点看,三、四年级学生仍以形象思维为主,但抽象逻辑思维能力也有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题过程中,逐步发现隐含于不同的情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。

  反思整个教学过程,我认为这节课在以下2个方面处理得比较好:

  1、在探究过程中感受数学

  课程标准特别强调:数学活动必须向学生提供充分的从事数学活动的机会,帮助他们在自主探究和合作交流过程中获得广泛的数学活动经验。所以在本节课中,我先让学生自己动手画画需要种几棵树,然后在小组内交流总结发现规律。学生学到了解决问题的方法,并获得了更深层次的情感体验。

  2、素材来源生活

  在本节课的设计中,我注重数学与人类生活的密切联系。新授环节也是以日常所见的种树问题引入,巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都内含与植树问题相同的数量关系,它们都能够利用植树问题的模型来解决它,感悟数学建模的重要好处。

  我感觉这节课的不足之处有以下几点:

  1、针对学生能够找到简单植树问题的规律“棵数=间隔数+1”却无法运用这个规律求路长的问题,因为学生的'认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数+1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X间隔长”等等知识的扩散。

  2、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

  通过这一次磨课,我期望能透过自己一点一滴的积累和改善,提高自己的业务水平。

植树问题教学反思12

  《植树问题》是人教版新课程标准实验教材五年级上册“数学广角”的内容,曾经被演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点:任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都栽”“只栽一端”与“两端都不栽”。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结&rdq

  uo;的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。同时在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。

  通过对教材和各种相关的教学资料的深入解读,我认为“植树问题”就教学而言,可分为两个不同的教学目标:

  一、明确引出“间隔数”与“棵数”这两者的关系,突出“一一对应”的思想,并以此为基础分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,使学生真正理解棵数与间隔数的关系。

  二、总结出相关的计算公式“总长÷间距=间隔数”,并通过公式帮助学生更好地去掌握这一解题模式。

  反思整个教学过程,我认为这节课在以下几个方面还是处理得比较好:

  1、这节课主线明朗清晰,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。

  2、我注重教学内容的整体处理,对教材进行了整合和重构,设计的例题是一个开放性的题目,开放性的设计,使课堂成为充满活力的自由空间,从而激发学生的思维,让他们积极地去探究,使学生完整的体验“植树”这一实践活动,让学生比较系统地认识到在直线上植树有三种情况,即两端都栽;两端都不栽;只栽一端。

  3、植树问题的思维有一定的`复杂性,对于刚接触植树问题的四年级学生来说,则更有一定的难度了。所以,我让学生根据示意图用算式来表示出植树的棵数,学生在列式计算的过程中,通过直观的观察初步感知三种情况:两端都栽“棵树=间隔数+1”,只栽一端“棵树=间隔数”,两端都不栽“棵树=间隔数-1”。之后,再引导学生用“一一对应”的思想,举起右手比划比划,分析植树问题三种不同的情况,即“两端都栽”“只栽一端”与“两端都不栽”,从而真正理解这三种情况下,棵数与间隔数的关系。

  4、学生列式计算出三种栽法的棵数后,我引导学生思考:这三种情况,我们在列式计算棵数时,第一步都是先求什么,怎样求?通过学生的小组讨论后得出:要求棵数,得先求间隔数,并清楚地总结出相关的计算公式“总长÷间距=间隔数”,通过公式帮助学生更好地去掌握这一解题模式。

  5、注意反映数学与人类生活的密切联系。巩固练习之后,我以图片的形式让孩子们了解生活中与植树问题相似的现象,让学生进一步体会,现实生活中的许多不同事件都含有与植树问题相同的数量关系,它们都可以利用植树问题的模型来解决它,感悟数学建模的重要意义。

  我感觉这节课的不足之处有以下几点:

  1、数学的思想方法是数学的灵魂。本册安排“植树问题”的目的之一就是向学生渗透复杂问题从简单入手的思想,本节课没有让学生体验到“复杂问题简单化”的解题过程。

  2、一堂课上下来,觉得还是对学生扶的很牢,没有完全放开,以至课堂中还有很多不足之处,期待日后调整改进。

  3、对课堂的生成问题处理还不够灵活,不能进行很好的利用。

  在今后的教学中,希望能通过自己一点一滴的积累和改进,提高自己的业务水平和调控、处理课堂生成的能力,在不久的将来,能看到更棒的自己。

植树问题教学反思13

  《植树问题》是智慧广场中的内容,主要是向学生渗透有关植树问题的一些思想方法,通过现实生活中一些实际问题,让学生发现规律,然后再用发现的规律解决生活中的一些实际问题。植树问题分为两端都栽、两端都不栽、一端栽一端不栽三种情况。本节课教学的是植树问题中的第一种情况,即两端都栽的问题。反思整个教学过程,我认为有以下几点做得比较好:

  一、关注学生的学习起点

  学生是数学学习的主人,教师作为学生学习的组织者、引导者与合作者,应及时关注学生学习的起点。在教学过程中,我通过对五指的手指个数与手指缝之间关系的探究,在直观形象的手指演示中让学生初步感知棵数与间隔数的关系。本课伊始,我首先出了个谜语:“一棵树,五个叉,不长叶子不长花,能写能做还会画,就是不会开口讲讲话。”随后让学生观察自己的手指,引导学生得出:五个手指有4个间隔,4个手指有3个间隔,3个手指有2个间隔,2个手指有1个间隔。使学生清楚地看出手指的个数与间隔数之间是相差1的。接下来又通过做快速问答的游戏,使学生加深认识了植树问题中间隔数和棵数的关系,为下面的学习做了铺垫,同时学生的学习兴趣也被激发了起来。由此可见,我们在教学中一定要关注学生的学习起点,放低起点,这样才会收到事半功倍的效果。

  二 、注重学生的自主探索

  在探索新知这个环节,是这样设计的:

  快乐探究:

  在20米长的小路一边等距离植树,两端要栽,可以怎样栽树苗?

  设计了一个表格

  全长(米) 间隔(米) 线段图 间隔数(个) 棵数(棵)

  1、把上表补充完整。

  2、“两端要栽”的时候,我发现:棵树比间隔数

  我能用等式表示棵数与间隔数之间的数量关系:

  棵数=

  学生通过自己动手画图,很快就发现了其中蕴含的规律。展示环节,我让展示小组的学生利用展示台给大家展示,学生指着自己画的线段图边讲解边说,让其他同学清楚地看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。改变间距后,段数和棵数相应也发生了变化。

  通过自学,小组交流,小组展示,学生很容易的得出了在两端栽的情况下棵数与间隔数之间的关系是:总长÷间距=间隔数,棵数=间隔数+1。整个学习过程都是学生自主探索的结果。学生把整个分析、思考、解决问题的过程全部自己展示了出来。在这一过程中,学生积极思考,大胆尝试,主动探索,也体验到了成功的喜悦和学习的乐趣。

  三、关注植树问题模型的拓展和应用

  规律总结出来了,我并没有就此罢手,而是让学生找生活中的类似现象,使学生认识到生活中的许多事例看上去跟植树问题毫不相干,但是只要善于观察题中的数量关系,就明白它与植树问题的数量关系很相似,如计算公共汽车从起点站到终点站所行的距离及爬楼梯问题。求路边的电线杆、排座位、在路两旁安装路灯、插彩旗等等,目的是让他们利用所学植树问题的知识来解决生活中的数学问题,使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的.应用价值。

  四、渗透数形结合的思想,培养学生借助图形解决问题的意识

  数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质。本着这个思想我在让学生理解间隔数与植树棵数之间的规律时,我采用数形结合的方法——画图解决问题,从而逐步提高学生解决问题的能力。练习环节,我还设计了我们平时熟悉的钟声,让学生听钟声,在听到基础上用线段图画出钟声和他们之间的时间的间隔。学生在听、画之后初步感受了间隔数和棵数之间的关系。同时,通过画图,降低了此题的难度。再如:在解决锯木头问题时,通过成语“一刀两断”引出“一刀两段”,结合线段图,清楚地使学生理解间隔数总是比端点数少,使用数形结合的方法,在增加学生学习兴趣的同时,植树中棵树和间隔数之间的关系便迎刃而解。

  存在问题:

  把学生估计过高,以为只要学生弄懂了棵数与间隔数之间的关系之后,解决植树问题就应该没多大的问题了,但事实出乎预料,因为例题是给了全长和间距求棵树,但“做一做”却是给了间距和棵树求全长,属于逆向思维,所以,有好多同学就不知从何下手了,导致出错很多。其实就是在发现规律与运用规律间缺少了链接,应加强对规律的扩散教学,比如:得出规律时,可以总结一下“间隔数=棵数-1,路长=间隔数×间隔长”等知识的扩散。

植树问题教学反思14

  “植树问题”是新课程标准实验教材四年级下册的内容,本课安排“植树问题”的目的在于向学生渗透复杂问题从简单入手的思想。植树问题是一个较为复杂的问题解决,这一内容具有很强的数学思维和很强的探究空间,既需要老师的引领,也需要学生的探究。

  教材将植树问题分为几个层次:两端都栽、两端不栽、一端栽一端不栽,节情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法——化归思想,同时使学生感悟到应用数学模型解题所带来的便利。本课的教学,并非只是让学生会熟练解决与植树问题相类似的实际问题,而是把解决植树问题作为渗透数学思想方法的一个学习支点。借助内容的教学发展学生的思维,提高学生一定的思维能力。

  我这节课教学两端都栽的植树问题,这节课主要目标是向学生渗透复杂问题从简单入手的思想,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。反思整个教学过程,我认为这节课有以下几点做得比较好:

  1、创设生活情境,使学生感受数学的魅力。

  “数学来源于生活,而又服务于生活。”在教学开始,我利用植树节节日时间进入给学生渗透植树造林的环保意识。以校长要为学校建设为由,在校园门口植树,充分激发学生的学习兴趣,让学生感受到数学就在我们身边。

  2、关注学生的起点,引导学生画图理解。

  植树问题的思维有一定的复杂性,对于刚接触植树问题的学生来说,则更有一定的.难度了。我让学生通过直观的观察初步感知植树问题的三种情况:两端都种。王老师则适时引导学生借用画图的方法去帮助学生理解。学生在画图的过程中,不仅可以很好的理解题意,找到其数量间的关系,而且能很好的培养其学习方法和思维习惯。等学生找到规律后再解决这类问题就简单多了。

  首先,设计流畅简单易懂。

  整节课设计基于我班学生实际情况,课前创设情境使学生明确要学习的内容,紧接着引出例题探讨植树问题,不规定间距,同时改小数据,目的在于,让学生在开放的情景中,突现知识的起点,从本题数字有些大,以化繁为简理念来画图表示,教学反思《《植树问题1》教学反思》。画图之后用一一对应的思想方法让学生理解多1少1的原因,建立起深刻、整体的表象,提炼出植树问题解题的方法。在这里改小数据,有利于学生的思考,主要照顾后20℅的学生。然后以例题展开,让学生动脑、动手反复验证,最终总结出:段数1=棵数。这节课的设计依据了认知规律:通过例题感知间隔,以例题为载体突破教学重点难点,以生活中植树问题的应用为探讨对象,了解植树问题实质,多角应用拓展植树问题的认识。整节课条理清晰、层次分明、浅显易懂,始终围绕重点内容进行难点的突破。

  3、利用多样化的教学方法,使学生经历做数学的过程

  植树问题是数学中一个独立的单元,其内容和生活联系非常密切。这一课我们不仅是要教给学生知识,更重要的是要学生领悟研究复杂问题可以从简单问题入手。在此,我设计了一道数字较大的问题,让学生通过画图来解决,在画图过程中学生就会发现这样没法解决。从而启发学生可以自己选择数字小的来画一画。从而让学生领悟解决复杂问题要先想简单的。从而化繁为简,步步深入。整个教学过程中,学生经历了猜一猜,画一画,算一算等多种学习形式,自主探究出规律。徐老师则通过列表让学生去算一算,然后让学生通过观察发现规律。这些活动培养了学生的动手操作能力,自主探究能力。在教师的引导下,学生很快地发现了规律,并构建起植树问题的数学模型。

  其次,注重实践体验探究。

  教学中,我创设了情境,向学生提供多次体验的机会,注重借助图形帮助学生理解建构知识。在教学过程中,我时刻对数形结合意识的渗透。教学中我先激励学生自己做设计,想办法设计植树方案,在学生自主探索的过程中很多学生采用了画线段图的方式,交流时利用多媒体再现线段图,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个点,也就是要栽5棵树。使学生发现植树时准备树苗的问题并不能简单的用除法来解决。改变间距后,段数和棵数相应也发生了变化,紧接着提出问题:“你能找出什么规律?”启发学生透过现象发现规律,也就是栽树的棵数要比段数(间隔数)多1。最后按照教材要求应用发现的规律来解决前面自己设计的植树问题:间隔2米、4米、10米,而栽树的棵数比段数(间隔数)多1。这样就把整个分析、思考、解决问题的全过程展示出来,让学生经历这个过程并从中学习一些解决问题的方法和策略。

  再次,联系生活拓展思维。

  有意义的学习是学生在具体情景中体验自主建构,体验和建构是学生学习的关键。体验是建构的基础,没有体验,建构就没有意义。体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。

  这节课虽扎扎实实,但问题也存在着。

  一、针对学生能够找到简单植树问题的规律“棵数=间隔数1”却无法运用这个规律求路长的问题,因为学生的认知起点与知识结构逻辑起点存在差异。以为学生能发现“棵数=间隔数1”就能解决问题了,实际上这只是部分学生具备了继续学习的能力,这恰恰导致了能找规律却不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数-1,路长=间隔数X

  间隔长”等等知识的扩散。

  二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。没有体验,建构就会显得很抽象。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。我可以利用线段图或者实例来帮助学生学习。让学生有可以凭借的工具,借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有了凭借,也使得数学学习的思想方法真正得以渗透。

植树问题教学反思15

  本节课研究的只是两端都栽的植树问题。主要目标是向学生渗透一种思想,一种在数学上、在研究问题上都很重要的思想——化归思想。这种思想的渗透能很好地帮助学生理解寻求解决复杂问题的一般方法,那就是从简单问题、简单事例入手,寻求规律,通过规律的得出,最终解决问题。

  教学上我采用“自主——互助”的策略,力求让学生依据自学提纲及要求,通过独立思考,把不明白的问题与他人交流合作,使学生在不断地操作和交流中,经历发现和感受的植树问题的过程。环节如下:

  一、通过课前活动,以大家都熟悉的上操站队为素材,让学生初步认识间隔,感知间隔数。

  二、以自研题为载体,实现全课教学重点及难点的突破。

  为此我设计分别在15米、20米、25米、30米的公路一边植树的问题,先让学生明确自学要求,然后根据要求独立研究与自己编号对应的一题,重点让学生通过画图栽栽看,发现一棵一棵种树关键是要找准间隔数,在经历了从简单事例入手之后,各部分名称的实际意义已经得到了强化。

  与此同时,植树问题的一般解法也已经得到了归纳。然后用找到的`规律去解例1中的在100米绿化带上植树的问题,使学生获得真实的学习体验的同时,也培养学生学习数学的兴趣。在这几个过程中,学生学到了解决问题的方法,同时也获得了更深层次的情感体验。

  三、多角度的应用练习,巩固学生对植树问题的理解,突出教学重点。

  四、通过达标检测活动,了解学生学习情况,为改进自己的教学和跟踪辅导提供有利的保障。

  五、评价总结,拓展延伸。

  通过出示不同类型的植树问题,让学生近一步体会数学源于生活,数学就在我们身边,从而使学生深刻感受到数学的应用价值,激发学生学习数学的兴趣,也为下一节数学课做好铺垫。

【植树问题教学反思】相关文章:

《植树问题》教学反思04-08

植树问题教学反思11-18

植树问题教学反思(精选)07-06

《植树问题》的教学反思05-16

植树问题教学反思优秀11-17

(精)植树问题教学反思07-09

《植树问题》教学反思(必备)07-09

植树问题教学反思【优】07-06

植树问题教学反思(15篇)06-13

植树问题教学反思15篇03-10