分数乘法教学反思15篇
身为一位到岗不久的教师,我们的任务之一就是教学,借助教学反思我们可以学习到很多讲课技巧,那么应当如何写教学反思呢?以下是小编精心整理的分数乘法教学反思,仅供参考,大家一起来看看吧。
分数乘法教学反思1
一、注重旧知的铺垫,为新课导航。
本节课,开启课时,我注重从孩子的身边挖掘素材,引出整
数乘法运算定律,加以复习巩固,紧接着引导学生回忆这些运算定律曾经运用到什么知识中,引导到小数乘法的简算中,为后面的新知学习打下良好的基础。真正达到了“以旧导新,以旧带新”的效果。
二、鼓励学生大胆的质疑与猜想,激发学生内在的求知动力。
我设计的两个环节,引起了学生强烈的求知欲望。第一,在
复习完后我鼓励学生根据已有的知识,去大胆的猜想:整数乘法运算定律是否可以推广到分数乘法?于是孩子们的`思维活跃极了,甚至大大超出了我事先的预料;第二,在探究确认上述问题
后,我又让学生大胆的质疑,定律推广到分数乘法中会起到什么作用呢?真的能简便吗?孩子的好奇心又一次被激起,他们又乐此不疲的投入到了简算的探究中去。整堂课下来,孩子们始终处在“质疑——猜想——验证”的学习过程中,真正变成了学习的主人。
三、需要改进之处:
1、对学生的多样思维应加大评价力度。
孩子们在猜想整数乘法运算定律是否可以推广到分数乘法时,有一个孩子说到她是想到了整数加法的运算定律可以推广到分数加法,所以断定也能推广到乘法。这里,我给予了肯定,但力度不够。以上可以看出,评价一个孩子,要适时,适当,决不能敷衍,更不能抹杀,否则可能会压制孩子的思维积极性。这一点,在今后的教学中,我还有待加强。
2、课前对学生的估计过高,所以使一些事先设计好的练习,没来得及做完。这也提醒我,备课,不仅要备教材,备教案,更重要的还是要备好学生,这是上好一堂课的关键。
3、学生的学习兴趣和学习自信心有待激发。
分数乘法教学反思2
由“搅乱”引起的反思。
今天象往常一样,在学生理解了一个数乘分数的意义之后,我想继续引导学生,通过画图去探究发现一个数乘分数计算法则的时候。一些同学嚷嚷开了“老师我会!”“老师我知道!”,“是用分子相乘的积作分子,用分母相乘的积作分母”“理由是……”……
在教学中,我们经常会发生这样的现象:老师刚刚开了一个头,一些学生就会把后面的知识讲出来,结果一下子把老师事先设计的思路被学生给“搅乱”了。曾经我有过这样的烦恼和无奈:心理总是责备学生的“插嘴”,觉得这样以来使大多数学生缺少了自主探究克服困难的成功体验,也使我的教学没了层次,讲课缺乏激情。
对此,我也冷静的思考过,分析其原因:一方面,自己已经习惯做好充分的准备去面对毫无准备的学生,居高临下地将学生的思维牵进预设的圈内,而一旦放手让学生自主探究开了,教师就很难面对自己无法预测的学生众多的想法,缺乏教学的机智。更重要的方面,是教学理念上的差距。其实当他们把自己所掌握的知识告诉其他同学与老师的时候,他们是在享受学习给自己带来的骄傲。并且都是以极大的热情,把自己掌握知识的.来龙去脉尽其所能告诉老师与同学。这既是对自身学习进行再思考的过程,也是给其他同学以激励的过程。那么我们教师还有什么理由责备学生、压抑学生呢?
现在的学生头脑灵活,有思想,现有的知识起点也是比较高的,这样对教师自身的素质提出了更高要求。因此,我们老教师应该适应新时代的发展,真正把自己主导下的课堂学习建设成为可供学生交流学习心得,整合学习资源,形成学习能力的促进平台。
分数乘法教学反思3
在这一个月里的教学内容是分数乘法,重点是巩固和进化理解分数乘法的意义,探索分数乘法的计算法则。在这一个月的教学工作中,感触很深。
一、充分利用学生已有的知识水平与生活经验,实现新知识的迁移。
在教学分数和整数相乘时,根据学生的已有的知识基础,设计了复习整理整数乘法的意义和同分母分数的加法的计算法则。在教学分数和整数相乘的计算法则时,我指导学生通过联系旧知识去探究学习,例如:教学2/9×3,首先要让学生明确,要求3个2/9相加的和,也就是求2/9+2/9+2/9是多少,并联系同分母分数加法的计算得出2+2+2/9,然后让学生分析分子部分3个2 连加就是2×3,并算出结果,在此基础上,引导学生观察计算过程,特别是2/9×3与3×2/9之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练3×2/9,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的'先约分。
二、把直观操作与抽象推理相结合,理解分数乘法的计算法则的推导过程。
由于分数乘法的计算法则比较抽象,学生理解起来有一定的困难。教学时我尽量加强直观,变抽象为形象,多给学生创造对手操作的机会,激发学生学习的兴趣,使他们主动地参与到教学过程中来。在直观操作的基础上在推导出分数乘分数的计算方法,进而概括出分数乘法的法则。
培养学生良好的计算习惯和认真的学习态度。学生掌握这部分内容并不困难,但要通过这部分内容的学习和练习,培养其认真审题、注意运算顺序、观察数字特点,选择简便方法等良好的计算习惯和严谨认真的学习态度,为他们以后的学习打好基础。
三、还要重视学法指导,培养学生的内推力。
在这一个月来,课堂上的内容都比较顺利的完成了,但从学生的反馈信息收获不是很成功,小部分的学困生对所学的还是没完全的消化好。
总之,在今后上数学课时应充分调动学生的各种感官,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
分数乘法教学反思4
本单元的例3是通过求一个数的几分之几是多少的实际问题,让学生进一步完善对分数乘法意义的认识,巩固对分数与整数相乘的计算方法的理解。教学时我力求做到以下几点:
(1)难点分散。
本节课学生对例3分数句的理解是一个难点,教学时我用多媒体创设情境吸引学生的注意力,借助直观图的形象帮助学生理解分数句,分散了难点。在完成例3教学的过程中,发现学生在我的有效引导下对数量关系的叙述还是正确、清晰的,但在完成第14题填空时,特别是第2题还是出现了错误。于是我又结合线段图让学生来理解数量间的关系。
(2)注重学生的参与。
整堂课的教学,我都让学生观察、分析、比较,鼓励学生互相讨论,大胆的.说关系式,大胆的尝试练习,发现每一位学生都积极认真的参与学习。
尽管如此,也有不尽人意的地方。我发现这一段的学习,都是分数乘法,学生更多的时候不认真审题,分析数量关系,往往想也不想看到分数就与整数相乘,就知道列乘法算式,好像在套模式。看来学生对分数乘法的认识还是雾里看花。我想,这儿还没有分数除法应用题,变式的形式太有限了,只有与除法进行对比练习,学生才会感到困难。看来得考虑补充些对比练习。
分数乘法教学反思5
本节课呈现了世界文化遗产北京颐和园图片。图中包含的主要信息是:北京颐和园由昆明湖和万寿山组成,其中昆明湖占地219公顷,万寿山占地面积仅是颐和园的1/4。借助问题“颐和园的占地面积是多少公顷”引入对列方程解决稍复杂的分数问的学习。这节课主要解决整体与部分的关系。教学时,从游览世界文化遗产的话题引入文字信息,激发学生学习的兴趣,然后引导学生根据数据信息提出与本节学习有关问题,展开学习活动。
本节课是在简单分数应用题的基础上进行教学,学生已有了一定基础,因此首先设计三道找单位“1”的复习题,为学生学习新知识做好辅垫。因为学生有了学习简单分数应用题的经验,因此在理解题意之后我放手让学生画线段图分析、解答试做,做完后让学生在小组内交流自己的解题思路讨论,讨论完成请学生上台展示方法。在学习过程中学生充分参与了课堂学习,成为学习的主人,同时培养了学生的口头表达、分析和与人合作的能力。
学生展示时是突出重点突破难点的一个重要环节,我围绕重点难点精心设计提问,并充分利用线段图引导学生理清题中数的.关系,抓住解题关键,明确解题思路,掌握解题方法。并通过对两种不同的解法对比及课后小结,进一步突出本节课的重点、难点。
虽然在教学设计中我作了充分的考虑,也重视引导学生主动探究与积极思考,但在教学中还是显露出了一些问题:反馈形式比较单调,缺乏激励性的语言和形式,学生明白但表述不清楚,个别学生表述单位“1”加几分之几,表示什么意思时,发现还很有点模糊。因此,我觉得今后在常态教学中更应注重学生个体表达,并且不必一定按照教师给的固定模式,应该允许学生用自己的方式、用自己的语言来述说解题思路帮助分析问题。
分数乘法教学反思6
“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的意义。在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。在教学中,我强调以下几点:
⑴让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
⑵强化分率与数量的.一一对应关系。并根据关键句说出数量关系。
⑶帮助学生理解"一个数的几分之几"与"一个数占另一个数"的几分之几的不同。
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也显露出一些问题。主要存在于:
1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。
2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。
3对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系。
分数乘法教学反思7
这节课我首先是用口算练习出示10道分数乘法的习题。和一步的分数乘法列式计算,为新课做铺垫。用谈话的方式导入新课。
在出示例题,让学生找出已知条件和要解决的问题,并用图表示数量关系,在此基础上指导学生画线段图,逐步引导问题的已知条件在线段上如何分析运用。最后解答这道题。接下来是完成17页的做一做。要求找出单位“1”并画出线段图。最后做了几组小练习,学生总结本节课的收获。这节课上下来之后我发现学生已经具备了一定的观察能力,能够对生活的问题进行简单的分析。但有部分学生分不清把谁看做了单位“1”而且刚学画线段图,很多同学不适应,不会画。还有的同学前面的计算掌握的.不好,应加强练习,对于单位“1”的问题应找出大量的题来练习找单位“1”。这个必须掌握,后面全要通过单位“1”来确定是乘法还是除法。
所以必须砸实!线段图可以经过一段时间的适应应该可以解决。
分数乘法教学反思8
把握好教材是基础,处理好生成与预设是关键,这是我上完了这节课后最大的收获。
有意义的数学学习必须建立在学生的主观愿望和知识经验的基础之上,小学数学练习课是以巩固数学基础知识,形成解题技能、技巧和培养学生运用所学知识解决实际问题为主要任务的课。而练习课常见的形式单调、内容直白、活动平淡、学生积极性不高,需要用好多时间来算啊写啊,为了提高学生的学习兴趣,激发他们的求知欲,培养探究思索能力。在教学中,我对教材进行了有效的处理,选择了充满生活原味、趣味性强、形式多样的练习,从谈话激趣引入,口算突显计算方法,涂一涂明算理,到各种变式计算,综合应用,让学生在算一算、说一说、想一想中理解分数乘法的意义,明白分数乘法的算理,知道分数乘法从生活中来,从而进一步认识到了数学在生活中有着广泛的应用,激发了学生学好数学的信心和积极情感,无疑使学生变得爱练想练。
教学是一项复杂的活动,它需要教师课前做出周密的策划,这就是对教学的预设。准确把握教材,全面了解学生,有效开发资源,是进行教学预设的重点,也是走向动态生成的逻辑起点。学生的差异和教学的开放,使课堂呈现出多变性和复杂性。教学活动的发展有时和教学预设相吻合,而更多时候则与预设有差异,甚至截然不同。当教学不再按照预设展开,教师将面临严峻的考验和艰难的.抉择。教师要根据实际情况灵活选择、整合乃至放弃教学预设,机智生成新的教学方案,使教学富有灵性,彰显智慧。预设和生成是讲好课的两个因素,二者缺一不可。传统的教学中,教师过分依赖于课前的预设,课堂教学往往显得过于严谨而周密,具有很强的计划性,这一点是预设的优点,同时也是预设的不足之处。虽然预设是进行教学的必要条件,但决不是上好课的决定条件,更不是上好一节课的唯一条件。教师预设过程中不能充分想象课堂当中所发生的一切,必须随时的发现,甚至是挖掘课堂中学生的内因动态的生成,并创造条件促使内因向提高数学素养的方向转化。
本课也存在着许多不足之处:
1、由于我对新课程教材的理解不够深刻,在学生涂一涂理解分数乘法算理时,出现了三种不同的图示方法,而我只认同自己头脑中预设的那种,这样显然是不够的,数学学习的方法是多样性的,学习结果的呈现也是多样性的,开放性的。
2、教学中,过分依赖于课前的预设,丢失课堂中及时生成的教学资源,错过了挖掘课堂中学生的内因动态的生成,没有创造条件促使内因向提高数学素养的方向转化。
在今后的教学中,应多学习教育理论知识,强化学科知识,深刻领会教材,用好教材,处理好教材,把握好生成与预设的关系,提高自己的课堂应变能力,不断提高自己的业务水平。这样才会使学生学会数学、热爱数学。
分数乘法教学反思9
分数乘法是在前面学生掌握了整数乘法、分数加减法、分数的意义和性质等知识的基础上进行教学的。
成功之处:
1.明晰分数乘法的意义。分数乘法包含两种情况:一种是分数乘整数,另一种是分数乘分数。在教学分数乘整数的意义中又分为两种情况:一是分数乘整数;二是整数乘分数。虽然它们的计算方法相同,但是表示的`意义却不相同。学生非常容易在此处出现意义上的模糊。例如:2/3×4表示4个2/3是多少,而4×2/3表示4的2/3是多少。教学分数乘分数的意义时,学生出错较少,能够清晰的表示出分数乘分数的意义。
2.明确分数乘法的计算方法。在教学中,对于分数乘整数的计算方法要让学生明确分数的分子与整数相乘的积作分子,分母不变;而对于分数乘分数的计算方法要让学生明确分子相乘的积作分子,分母相乘的积作分母。在计算中先约分,再计算,会使计算变得简便。
不足之处:
1.学生在计算分数乘整数时,还是有个别同学把整数和分子约分计算,还有的出现先计算,再约分,容易出现约分后的分数不是最简分数。
2.在计算小数乘分数时,学生容易出现小数与分母约分后得整数的现象。
3.在简便方法计算时,学生容易出现应用乘法分配律进行计算的错误。特别是形如2/9-2/9×7/16这样的题目,学生往往不知道是应该应用乘法分配律来进行计算。
再教设计:
1.强调分数乘整数的计算方法,特别是整数必须要与分母约分。
2.强化练习形如2/9-2/9×7/16这样的题目,避免学生在此题目上出错。
分数乘法教学反思10
分数乘除法应用题是较复杂的分数应用题的基础,教者在本节课中的目的主要是为了让学生弄清分数乘法和除法应用题的区别和联系,能够应用“单位“1”的量×分率=比较量“这个数量关系,根据已知量和未知量来判断是分数乘法还是除法应用题。教材为此也安排了例2这个例题:
例2:长江流域约有120种矿产资源,可供开发的占。长江流域的矿产资源种数约占全国的30。3756
(1)长江流域可供开发的矿产资源有多少种?
(2)全国的矿产资源有多少种?
其中第(1)题是一道分数乘法应用题,第(2)题是一道分数除法应用题。教材的编排意图是通过两题的比较,去找到二者的区别和联系。为此,我在教学中的流程也很简明:先学生自己两道题,然后再讨论两道题的联系和区别,最后教师总结。整个过程充分体现了学生的主动性,充分给予时间和空间,让学生参与了知识的形成过程,体验成功的快乐。
然而,我教学中却发现:学生要发现两道题的区别和联系并不容易,课后从学生的作业情况看效果也不是很理想。是什么阻碍了学生知识的形成呢?我在课后经过分析,认为是教材编排的这个例题对于本课的知识目标形成的针对性不强,或者说是例题中包含的其他东西太多干扰了学生对两题的对比。
首先,两道题中包含了3个量即长江流域的矿产资源、长江流域可供开发的矿产资源和全国的矿产资源。这三个量中有两个量都是单位“1”,虽然这并没有超出学生的现有的认知水平,但是却使问题复杂化了,对于本课的教学目的起到了一个干扰作用。
其次,本例中的`第(1)题中的单位“1”的量是长江流域的矿产资源,是已知量。而第(2)题中的单位“1”的量是全国的矿产资源,是未知量。两道题的数量关系分别是:长江流域的矿产资源×=长江流域可供开发的资源和全国的矿产资源×30=长江流域的矿产资3756源。两道题的数量关系和单位“1”的量都不一样,也不利于学生比较。这也造成本节课目标达成的难度增加。
最后,例题中文字较多,特别是几个量的文字叙述较多,这也给部分学生,特别是理解能力较差的学生增添了麻烦,他们也许要为弄清题意费上一阵时间。
综上所述,我认为教材在编写这个例题也许太过注重联系生活实际等方面的原因,造成对本课的目标达成难度增大。这个例题是不合适的。为此我设计了这样一个区别比较的例题:
例2:(1)果园里有60果桃树,李树是桃树的,李树有多少棵?
(2)果园里有60果李树,李树是桃树的,李树有多少棵?
这样的设计我认为有这样几个好处:
1、单位“1”不变,都是桃树。
2、数量关系都是一样:桃树×=李树。既然单位“1”不变,数量关系都一样,为什么却一个是乘法,一个是除法呢?学生再通过565656比较,很容易就发现第1题的单位“1”是已知量,求比较量,当然用乘法。第2题的单位“1”是未知量,求单位“1”,当然是用比较量除以分率,是用除法。
通过这样的例题设计,我认为简明扼要,利于学生认清分数乘除法应用题的区别和联系,更好掌握分数乘除法应用题,为后面的较复杂的分数应用题打下基矗
分数乘法教学反思11
这节课主要是让学生通过具体的情境初步理解“求一个数的几分之几可以用乘法计算”。在以前没学分数乘法的时候,我们是先求出1份的量,再乘法相应的份数解答求一个数的几分之几是多少的问题,今天的学习既是对分数乘整数意义的拓展,可以看作是一次方法上的优化和提升。从课堂反馈看刚开始的时候有一小半的学生还是不习惯用分数乘法计算,还是运用分数意义的认识去解决问题,但经过一系列的训练后大多数的学生列式已经很自然的把单位“1”的量与它的`几分之几相乘。
本课教学的导入部分,我选择了复习导入的方式,我把课后的“练一练”提前,改变题目要求,让学生运用分数的认知相关知识解决问题,学生非常熟练,在这个部分。我的教学意图非常明确:复习分数的相关知识、强化单位“1”。为解决例2问题、学习新的方法做好铺垫。
在教学例2时,我首先带领学生理解题意,重点带领学生理解1/2、2/5的意义,从而确定单位“1”。在解决问题的环节,我首先出示问题(1)红花有多少朵?学生独立解决,学生根据以前所学知识,当然列式10÷2=5(朵)这时候我再揭示:像这样求10的1/2是多少还可以用乘法计算。这时出示:10×1/2让学生独立计算得到与第一种计算方法一样的结果。然后,我引导学生进行比较这两个算式有什么联系?问题一提出来,学生的反应不是很强烈,很多学生不知道应该怎样去回答这个问题,这时,我就直接告诉了学生,实际上如果我将问题设计的更有坡度一些,能再等一等让学生多思考了一会儿,我想信学生一定会明白了原来两个算式都是求一个数的二分之一是多少。这样就很好的把旧的方法与新的方法进行很融洽的衔接。实现了方法上的跨越。
基于问题(1)的教学,问题(2)抛出以后,我直接让学生独立完成,在学生汇报环节,果然与我预期的一样,学生列出了两种不同的算式10÷5×2、10×2/5。在这个部分的教学,我主要把教学重点放在两种计算方法的意义与联系上,我采取小组讨论的方法,让学生去分析这两种算法的本质联系。但在汇报环节,我有些操之过急,没有给学生更多表达的机会,自己就把答案分析给学生听了。
在整个教学环节中,我一直加强的“单位1”概念的强化和训练,我始终抓住一句话,“是谁的几分之几?把谁看作单位1”,另外还教学生在条件中找单位“1”的一些方法,为后面的学生作一个铺垫。因为,本节课的所有习题都是用同一个数乘以几分之几,这样学生在列式时就会不考虑单位“1”而直接就用整数与分数相乘,加深学生对单位“1”的理解。这样就可以避免学生形成思维定势:因为学乘法而用乘法。
巩固练习环节,我把“练一练”再次出示,不过这次改变题目要求:用乘法列式计算。让学生再次练习,使学生体会到今天所学方法的实际作用。巩固练习部分我还安排了练习拔的第6题:一瓶饮料一共900毫升,这道练习需要学生解决的问题一共有4道,其中问题(1)是3瓶饮料多少毫升?其它三道问题都是用不同的表达方式求900毫升的几分之几是多少。因此在共同解决四道问题以后,我让学生找出其中一道与其他几道表示意义不同的。并且分析原因,目地就是强化分数乘整数的不同意义。
本次课的教学,有以下几个问题值得深思:
一、备课设计时要多了解学生情况。由于刚接班不久,学生的基础、能力等方面的情况掌握不多,在教学时,不敢放手,导致学生的思维、表达缺乏深度。
二、要在教会学生学习方法上多下功夫。本次课的教学在这方面进行了一些探索,但不够。今后要加强这一环节的引导。提高课堂教学的实效性。
分数乘法教学反思12
年级分数除法(三)的内容是用方程解决简单有关分数的实际问题,初步体会方程是解决实际问题的重要模型。教学时,由于我认为很简单,对学生分析不够,过于相信学生,用方程解答完成后,就让学生用别的方法解,同时要求画出线段图。学生虽能列出正确的算术式计算,但不能熟练画图。
发现这个问题后,我就及时的对学生进行画图能力的训练,经过一节课的'练习,大部分学生基本掌握画图的技巧。通过这节课的教学,使我深深的体会到,要想让知识真正地在师生互动中,学生得到理解、接受并掌握起来,教师就要认真地备学生,只有从学生的实际出发,因材施教,才能达到教育的最优化。
分数乘法教学反思13
本单元的教学,分数乘法解决问题是一个重点内容。既“求一个数的几分之几是多少”的应用题。这样的应用题实际上是一个数乘分数的意义的应用。它是分数应用题中最基本的。不仅分数除法一步应用题以它为基础,很多复合的分数应用题都是在它的基础上扩展的。因此,使学生掌握这种应用题的解答方法具有重要的`意义。在帮助学生分析题意时,学生如果会画线段图,对于理解题意会有很大的帮助。但可能是由于在五年级时,比较少要求学生画出线段图,根据线段图理解题意。因此当六年级明确要求要根据题意画出线段图时,学生刚开始时很不习惯,画出的线段图也不能很好的反应题意,对于这一方面,教学时需要再进行加强,因为这对于提高学生分析问题,解决问题的能力将会有很大提高。而下一单元的教学如果学生能根据题意画出合适的线段图,对正确解答问题将会有很大的帮助。
此外,在教学中注重对单位“1”的理解,重点放在在应用题中找单位“1”的量以及怎样找的上面——先找出问题中的分率句再从分率句中找出单位“1”,为以后应用题教学作好辅垫。
具体做法:在教学中我抓住关键句,找到两个相比较的量,弄清哪个量是单位“1”,要求的量是单位“1”的几分之几后,再根据分数的意义解答。
在教学中,我强调以下几点:
(1)让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
(2)强化分率与数量的一一对应关系。并根据关键句说出数量关系。
(3)帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。
对稍复杂的分数应用题,通过分析关键句与线段图,为后面的新授作铺垫,并提高学生分析题意、理解数量关系的能力。通过沟通练习题与例题,利用学生解决稍复杂的应用题,并从中理解新旧应用题的不同结构。
教学中也显露出一些问题。主要存在于:
1、练习题与例题、在同一题的不同解法的多重比较中,比较得到的结论还需站在更高的角度去归纳,还应更深更全面的概括。
2、在学生表达解题思路时,不宜集体讲,更应注重学生个体表达,并且不必一定按照课本的固定模式,应该允许学生用自己的方式、用自己的语言来分析问题。这样才能及时发现问题,及时查漏补差。
3、对于学困生要加强怎样找单位“1”的训练,并加强根据关键句说出对应关系和数量关系的训练。
分数乘法教学反思14
分数乘法这一单元内容包括:分数乘法的意义和计算方法以及分数乘法的应用。内容不仅多并且较抽象,学生理解较难。
分数乘法的意义在整数乘法的基础上有了进一步的拓展和延伸。特别是对一个数乘分数的理解上是这一单元的重点和难点。利用图形使抽象的问题直观化,在本单元教学中就显得重要了。
回顾分数乘法这一单元教学的备课时一直被如何处理分数乘法意义所困惑。后来一想,如果从数学应用的角度来看,学生只要能从具体的实际问题中判断两个数据之间存在相乘的关系就可以了,而这个相乘的关系在本单元有了新的拓展,即“求几个相同加数的和”、“求一个数的几倍是多少”和“求一个数的几分之几是多少”。
在教学分数和整数相乘时,根据学生的已有的知识基础,引导学生回忆复习整理整数乘法的意义和同分母分数的加法的计算法则。另外科学的学习方法,能提高学习效率,能使学生的智慧得到充分发挥。
在教学分数和整数相乘的计算法则时,我指导学生从读一读,说一说,练一练,想一想,议一议五个方面入手,例如:教学3/10×5,首先要让学生明确,要求5个3/10相加的和,也就是求3/10+3/103/10+3/10+3/10是多少,并联系同分母分数加法的计算得出3+3+3+3+3/10,然后让学生分析分子部分5个3连加就是3×5,并算出结果,在此基础上,引导学生观察计算过程,特别是3/10×5与5×3/10之间的联系,从而理解为什么“同分子和整数相乘的积作分子,分母不变”。接着让学生自己尝试练一练6×3/10,然后进行集体交流,看一看能不能在相乘之前的哪一步先约分,比一比在什么时候约分计算可以简便一些,从而明白为了简便,能约分的先约分。
在数量关系的理解时,紧紧依托于图像的直观性,这就是我们通常理解的图形与数量的结合。变抽象为直观,用直观的图示帮助学生理解抽象的文字表述,再逐步使学生脱离直观上升到抽象语句的规律性理解和掌握。例如在教学一个数乘分数的意义时,就要引导学生用图示的方式方法理解把一个数平均分成了几份,表示这样的几份,就是求这个数的几分之几是多少,反之求一个数的几分之几是多少,直接用乘法来列式即可。同时引导学生直观的感知到了积小于被乘数的道理。下一步教学计算时更是要借助图示来帮助理解等于几的道理。用图形表征让学生充分观察理解分数乘分数的这一比较复杂的计算过程。引导归纳得到一个规律性的结论:分子相乘做积的分子,分母相乘做积的'分母,能约分的要先约分才比较简便。
在分数乘法的应用时,主要是用画线段图的方式来帮助学生建立数量与分数之间的对应关系。进一步使学生理解和明确分数乘法的应用就是对分数乘法意义的拓展和深化。
数学的理解是离不开图形的辅助的。图形和数量是数学学习的一对相互依附的对象。要学好数学就要教师帮助学生建立用一定的符号、图形来翻译抽象的数学内涵,变深邃为简约,更有利于学生的深刻理解和掌握,为进一步的学习数学知识积累数学活动的经验吧。
在教学《分数乘法》时,我重点让学生掌握分数乘法的计算方法,坚持每天进行口算训练。对于求一个数的几分之几是多少的应用题,能联系一个数乘分数的意义进行教学,注重加强分析题目的数量关系,明确把谁看作单位"1",但也忽略了单位化聚的方法复习以及一些重点评讲。以后应从以下几点来加强日常教学。
1、在教学中多进行题组训练,突破难点,让学生充分感知提炼方法。
2、教学中要注意用线段图表示题目的条件和问题,这有利于学生弄清以谁为标准,让学生用画图的方式强化理解一个分数的几分之几用乘法计算。
3、帮助学生理解"一个数的几分之几"与"一个数占另一个数的几分之几"的不同。
4、加强单位化聚方法的复习,如时=( )分 吨=( )千克。
通过努力结合现实的问题情境,引导学生理解分数乘法的意义。练习计算是比较单调和枯燥的,为了避免单纯的机械计算,将计算学习与解决问题有机结合。创设学生喜欢的实际情境,引导学生根据实际问题的数量关系,列出算式。学生很容易结合整数乘法的意义,列出乘法算式。这样处理,既有利于学生主动地把整数乘法的意义推广到分数中来,即分数和整数相乘的意义与整数乘法的意义相同,都是求几个相同加数和的简便运算,又可以启发学生用加法算出3/10×5的结果。
总之,在上数学课时尽量地充分调动学生的各种感官,提高学生的学习兴趣,养成良好的学习习惯,使学生学会转变为会学,真正掌握数学学习的方法。
分数乘法教学反思15
今天,我教学分数乘法的第一课时,分数和整数相乘。在教学的过程当中,使我深刻地感到预设与生成的重要关系。在教学乘法的意义以后接下来首先想通过从意义上理解分数乘法的'方法,想不到的事情发生了。我指着板书:3*2/15=2/15*3=2/15+2/15+2/15,要算3*2/15或2/15*3就是算什么?(算3个2/15的和)接着完成板书:3*2/15=2/15*3=2/15+2/15+2/15=2*3/15=6/15=2/5(公顷)到这里,老师以为学生很明白,接着就按照预设走下去。
出示:1/8*2 1/8*3 1/8*4师:下面这些算式各表示什么?能像老师这样算出结果吗?生板演:1/8*2=1/4.........。 一直都用整数和分母约分。我一看就不知所措了,如果说着三个同学已经事先学会了,那并不代表所有的同学都会啊!也可以说他们能理解为什么用整数和分母约分吗?其他同学如果机械模仿那怎么能真正经历知识的形成过程?我原本的目的关键在于先通过掌握求几个相同加数的和,在此基础上追问:80000*1/8难道还要用80000个1/8来求和吗?从而来激发学生观察整数乘分数的方法,即通过写出相同加数来求和还不是个简便的办法这一教学思路。下课以后心理很不是滋味,决定到六(3)班再上一次,这次我对以上环节作出了调整。师:1/8*2表示什么?生:表示求2个1/8的和。师板书:1/8*2=1/8+1/8=1*2/8=2/8=1/4,追问:1/8*3呢?1/8*4还能这样算吗?(生说老师板书)此时板书的过程很清晰了。突然出示:80000*1/8问:还能这样写下去吗?此时学生都摇头说不能,很麻烦!师:那也就是说通过写出几个相同加数来求和的方法计算整数乘分数还是有一定局限的是吗?学生都表示肯定。接下来教师擦去以上的求和过程直接引导学生观察计算中的特征,引发学生思考,达到了引导、质疑的学习氛围。
【分数乘法教学反思】相关文章:
分数乘法教学反思10-18
分数乘法教学反思10-06
《分数乘法》教学反思范文(通用9篇)03-19
《乘法的估算》教学反思04-27
乘法的估算教学反思08-25
小数乘法教学反思06-14
乘法的认识教学反思04-28
笔算乘法教学反思12-26
《笔算乘法》教学反思01-02
《乘法公式》教学反思01-26