《最大公因数》教学反思15篇
作为一位优秀的老师,我们要有一流的课堂教学能力,对学到的教学技巧,我们可以记录在教学反思中,如何把教学反思做到重点突出呢?以下是小编整理的《最大公因数》教学反思,仅供参考,大家一起来看看吧。
《最大公因数》教学反思1
教学 例3时先用边长6厘米和4厘米的正方形纸片,分别铺长18厘米、宽12厘米的长方形,教师选择正方形纸片铺长方形的活动教学公因数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同两张正方形纸片分别铺一个不同的长方形,面对出现的两种结果,会发现“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着长方形的边铺正方形纸片,就会想到正好铺满与不能正好铺满的原因可能和边长有关,于是产生进一步研究长方形边长和正方形边长关系的愿望。分析长方形的长、宽和正方形边长之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系铺的过程与结果,从长方形的长、宽除以正方形的边长没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据边长6厘米的正方形正好铺满长18厘米、宽12厘米的长方形、而边长4厘米的正方形不能正好铺满长18厘米、宽12厘米的长方形的经验,联想边长几厘米的正方形还能正好铺满长18厘米、宽12厘米的长方形。先找到这些正方形,把它们边长从小到大排列,知道这样的正方形的个数是有限的。再用“既是12的'因数,又是18的因数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。
反思:突出概念的内涵、外延,让学生准确理解概念。
我用“既是……又是……”的描述,让学生理解“公有”的意思。例3先联系用边长1、2、3、6厘米的正方形正好能铺满长18厘米、宽12厘米的长方形纸片的现象,从长方形的长、宽分别除以正方形边长都没有余数,得出正方形的边长“既是12的因数,又是18的因数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后进一步概括 “1、2、3、6既是12的因数,又是18的因数,它们是12和18的公因数”,形成公因数的概念。
由于知识的迁移,学生很容易想到用集合图直观形象地显示公因数的含义。第27页把8的因数和12的因数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是8的因数,也是12的因数,是8和12的公因数。先观察这个集合图,再填写第28页的集合图,学生能进一步体会公因数的含义。概念的外延是指这个概念包括的一切对象。
运用数学概念,让学生探索找两个数的最大公因数的方法。
例4教学求两个数的最大公因数,出现了两种解决问题的方法。学生有的先分别写出8和12的因数,再找出它们的公因数和最大公因数。有的在8的因数里找12的因数,这样操作比较方便,但容易遗漏。我有意引导学生选择第一种。练习五的第3题就是这种方法的应用。
充分利用教育资源,自制课件,协助教学。
限于操作的局部性,我认真制作了实用的课件,让直观、清晰的页面直接辅助我教学,学生表现积极,课堂气氛比较活跃,提问、释疑、解惑,练习的热情很高。
本课设计目的是使学生学习公因数、最大公因数的意义,并学会找两个数的最大公因数的方法,从整节课学生表现情况和课后作业反馈来看,学生对本部分知识知识掌握较好,学习积极并具有热情,就实效性讲很令人满意。
《最大公因数》教学反思2
公因数与最大公因数这一课教材设计了一个用边长6厘米和4厘米正方形铺长18厘米,宽12厘米长方形的问题,让学生在解决实际问题中探索公因数的认识。因此,在教学中要重视通过尝试解决问题让学生联系已有的知识来引入公因数的认识。使学生初步体会学习公因数在解决实际问题中有着重要作用。
这节课的上课情况感觉较好,课堂比较流畅,重难点也都注意到了,但是通过学生作业反馈情况来看,部分学生在寻找公因数和最大公因数时,容易出现漏掉因数的情况,如9的因数容易漏掉因数3等。在写公因数的示意图时,部分学生出现中间写了公因数后,两边还是将所有因数都写了进去,这一情况在预设时我虽然想到了学生会错,也在课堂上进行了说明,但是少数学生还是出现了错误。
用例举的策略找出所有公因数的教学中,教材上有种层次不同学生可以掌握的方法参考,在这里的教学中我只是参照教材注重了这两种方法的讲解,这里教材的.应是要求学生有序地列举就行了,不同水平的学生采用的方法可以不一样,因此,在这部分内容的教学时,有些学生运用了一些比较独特的方法寻找公因数,教师应该给予肯定,说明只要有序地列举出因数来寻找公因数就可以了。但是,对于学生出现的各种方法可以让学生进行对比,体会哪种方法更好,更适合自己,进而对自己的算法进行优化。
《最大公因数》教学反思3
本节课教学的内容是认识公因数、最大因数以及求两个数的最大公因数的方法,这些知识是在学生掌握了因数、倍数、找因数的基础上教学的。结合本节课的特点,联系本班学生的实际情况,教师在教学过程中做了如下的尝试
一、适时地渗透集合思想。在教学例1时,解题过程不仅呈现了用列举法解决问题。还引导学生用集合图来表示答案,从而渗透了集合思想,为后续的学习奠定感性认识。
二、关注学生探究活动的空间,将自主探究活动贯彻始终。在教学中,教师为学生创设了三次自主探究的机会。即一在情境中通过动手操作认识公因数,二用集合图表示因数之间的关系,三用自己的'方法求出两个数的最大公因数。在这几次的探究活动中,教师始终积极地调动学生的情感,启发他们主动参与,引导学生感知、理解,从而在脑中形成系统的知识体系。
本节课是教学运用最大公因数的有关知识来解决生活中的实际问题。通过创设生活情境,让学生借助学具摆一摆,算一算或在纸上用彩笔画一画的方法把出现的几种情况记录下来,既提高学生的学习积极性,也让学生体会到新知与生活的密切联系。同时,通过引导学生自主探索、组织交流并验证结论,让学生体会获得成功的喜悦,更加积极地探索新知,掌握所学知识。
本节课的不足之处在于练习部分时间过于仓促,没有足够的时间让学生交流与理解,部分学困生掌握不够到位。这需要教师在今后教堂中合理安排时间,避免时间过于紧迫。
《最大公因数》教学反思4
1、创设情境引入新知。
我在教学时,改变教材中从单调的计算引出概念的做法,而是创设情景,通过生动有趣的画面,吸引学生积极思维,其特有的感染力和表现力,能直观生动地对学生心理起到催化作用,有效地激发了学生探究新知识的兴趣,使教与学始终处于活化状态。
2、合理利用教材。
“循环小数”是学生较难准确地掌握和表述的一个概念,特别是表述其意义的“从某一位起”、“依次”、“不断”、“重复出现”等抽象说法,学生难以理解。这节课的内容也较多,我打破教材编排顺序,将教学内容重新整合,灵活处理教材,先以王鹏喜欢跑步引入计算400÷75让学生计算发现商中重复出现一个相同的数字,再以王鹏喜欢游泳引出计算25÷22让学生计算发现商中有两个不断重复出现的数字。从而引导学生发现发现商的特点,引出“循环小数”。这样可以将难点分散,各个击破。
3、引导学生探索,让学生成为真正的参与者。
《数学课程标准》指出:“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的'数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”数学学习不应是简单个体接受知识的过程,而是一个主体对自己感兴趣的且是现实的生活性主题的探究与发展的过程。在新课中,我首先从生活中的现象入手,再引导学生主动探究数学中的问题,通过让学生选择自己感兴趣的信息试算、观察、分析、比较、讨论等学习方式充分调动学生多种感官的参与,给学生提供自主合作探究的空间,让学生全面参与新知的发生、发展和形成过程,使学生真正体验到探究的乐趣和做数学的价值。
当然,在这节课中也有很多不足之处。如我在教学中过多地注意预设,使教学放不开手脚,环节安排趋于饱和,这样压缩了学生思维空间,在今后的教学中,特别是环节预设应在于精、在于厚实。
《最大公因数》教学反思5
教材共提供了三种不同的方式求两个数的最大公因数,方法一:分别写出两个数的因数,再找最大公因数;方法二:先找出一个数的所有因数,再看哪些因数是另一个数的因数,最后从中找出最大的;方法三:用分解质因数的方法找两个数的最大公因数。我还给学生补充了用短除法求最大公因数。这么多方法,教师应该向学生重点推荐哪种呢?教材中补充拓展的分解质因数方法学生是否都应掌握呢?短除法是否都应掌握呢?方法一与方法二相比,由于第一种方法便于观察比较,十分直观。因此,在课堂教学中许多学生暗暗地就选择了它。方法二与方法三相比,在数据偏大且因数较多时,如果用分解质因数的方法来求最大公因数不仅正确率高,而且速度也会大幅提高。但是用分解质因数的方法来求最大公因数对一些学生来说又有相当的难度,至于为什么要把两个数全部公有的质因数相乘,一些学生还不太明白。
在教学中,我认为教师不能仅仅只是介绍,还有必要让学生们掌握这种方法技能。用短除法求最大公因数我感觉比较简单,学生好接受,好理解。但是短除法求最大公因数一直要除到所得的商是互质数时为止。如果用此法,学生必须首先认识“互质数”,并能正确判断。虽然有关“互质数”的内容教材83页“你知道吗”中有所涉及,相应知识的考查在练习十五第6题中也有所体现。至于学生选用哪种策略找两个数的`最大公因数,我并不强求。从作业反馈情况来看,多数学生更喜欢方法一,但是我们要提醒学生养成先观察数据特点,然后再动笔的习惯。如两个数正好成倍数关系或互质数关系时,许多学生仍旧按部就班地采用一般策略来解决,全班只有少数的学生能够根据“当两个数成倍数关系时,较小数就是它们的最大公因数”的规律快速找到最大公因数。在这一方面,教师在教学中要率先垂范,做好榜样。在巩固练习过程中,也应加强训练,每次动笔练习之前补充一个环节——观察与思考。使学生除了掌握基本策略方法外,还能灵活快捷地求出一些特例来。
这节课本来想把教材练习十五的习题讲解完,但是时间不够用了,只好下节课再讲。
《最大公因数》教学反思6
学生的学习过程是一种特殊的认知过程,必须在积极主动的情况下在自己的逐步思考和探究中达到解决的目的。
1、小组讨论合作学习研究多了,独立思考就有所忽视。从数学学习的本质来说,独立思考是主流,合作交流应在独立思考的基础上进行。只有在独立思考的前提下,才有交流的可能。因此,在本课设计时,求两数的最大公约数。先让学生课前独立探究方法,在学生有充分独立思考的基础上再交流评价。才真正实现每个学生潜质的开发和学生之间真正的差异互补。
2、独特的见解总是在主体迷恋执着,充分自由的状态中萌芽出来的,在教学中应放下架子,蹲下身子来倾听学生,相信每个学生都会有精彩的表现。正如陶行知所说的:“学生能做许多你不能做的事,也能做许多你认为他不能做的事。”不要小看了孩子,要对每位孩子充满信心,从而使课堂频频发出精彩的光芒。如本课时在开放题的解答过程中,学生能在一些简单的尝试开始,从中逐步发现其中的规律,以至于应用获得的规律来实现问题解决的最优化,不得不惊奇孩子能力的巨大。
3、当数学问题情境作用于思考者时就有可能展开数学思维活动,可以说,问题的设计和问题的情境的创设是促进数学思考的.客观性因素。让学生在问题情境中层层推出数学思考“还有没有其他的方法”“他的方法你认为怎样”“你是怎么想的”鼓励表扬敢于思索的同学,错误的回答也是对正确知识的一种辨析过程,新知识对每个每一次学习的学生都是一个发现、创造的大空间。
两个数的最大公约数的教学反思有探究就有发现,有发现就是
学习的成功。成功所带来的喜悦总是进一步学习的最大动力,自主探究的课堂,为个性不同的学生的发展留下了必要的空间,让他们都有机会表达自己的思想,以自己独特的方式去学习数学,发展知识,各自体验到学习数学的成功感。
《最大公因数》教学反思7
本节课,我从学生已有的知识和经验出发,精心设计一个童话情境,激发了学生的学习欲望。先让学生动手操作、自学讨论,帮助王叔叔选择地板砖。再思考探索正方形地板砖的边长与长方形地面的长、宽之间的关系。然后用问题的形式,通过复习16和12的因数,让学生再找两个数的因数、找两个数的公有的`因数、找两个数公有的因数中最大的因数的过程中,发现用边长1厘米、2厘米、4厘米的正方形都正好铺满长16厘米,宽12厘米的长方形。在此基础上,引导学生思考1、2、4这些数和16、12有什么关系,同时揭示公因数和最大公因数的概念。
总之,我在教学的过程中,不但复习巩固旧知,让学生在不知不觉中学会了新知。而且还让学生带着自己的数学现实参与数学课堂,不断地利用原有的经验背景对新的问题做出解释。此过程中我还注意了鼓励每一个学生参与探索,重视引发学生思考,注重学生间的交流,让学生用自己的语言表述自己的发现,对于有困难的学生,我从方法上作进一步指导,小组长帮助,生生互帮等。以“学生是学习的主人,教师是数学学习的组织者、引导者与合作者为主。培养了学生动手操作的能力,使他们在愉快的学习氛围中学会了本节课的内容。
《最大公因数》教学反思8
“因数和倍数”的知识,向来是小学数学教学的难点。“最大公因数”这节课是在学生掌握了因数、倍数、找因数的基础上进行的,通过这节课的学习,学生会说出两个数的公因数和最大公因数,会求两个数的最大公因数,并为后面学习分数的约分打好基础。反思这节课我认为有以下几点:
一、精心设计数学活动,让学生大胆探究。
1、通过找8和12的因数,引出公因数的`概念。
教师引导学生先写出8和12的因数,再观察发现8和12有公有的因数,自然引出了公因数的概念。然后通过集合圈的形式,直观呈现什么是公因数,什么又是最大公因数。促进学生建立”公因数和最大公因数”的概念。
2、通过找18和27的最大公因数,掌握找最大公因数的方法。
掌握了公因数的概念之后,教师放手给予学生足够的时间,让学生自主探究找最大公因数的方法。交流反馈时,考虑到中下水平的学生,教师只汇报了书本中的三种基本方法,并没有提到短除法。
二、思路清晰,环环相扣。
本节课,教师从认识公因数——理解最大公因数——探究找最大公因数的方法——相应的练习巩固这几个环节入手,每个环节都是层层递进,环环相扣,促进了学生对概念的理解。
《数学课程标准》指出:“学生是学习的主人,教师是数学学习的组织者、引导者与合作者。”在本节课中,我努力将找最大公因数的概念教学课,设计成为学生探索问题,解决问题的过程,各个环节的学习流程,体现了教师是组织者——提供数学学习的材料;引导者——引导学生利用各种途径找到公因数,最大公因数;合作者——与学生共同探讨规律。在整个教学的过程中,学生真正成了课堂学习的主人,寻找最大公因数的方法是通过学生积极主动地探索以及不断地中验证得到的,所以整节课学生个性得到发挥。
《最大公因数》教学反思9
日本著名数学教育家米山国藏指出:“作为知识的数学出校门不到两年可能就忘了,唯有深深铭记在头脑中的是数学的精神,数学的思想、研究的方法和着眼点等,这些随时随地发生作用,使他们终身受益。”从这个教学的设计中我们可以看到,教学中不只是让学生接受一个概念知识或一种求最大公约数的方法;不只是注重数学形式层面的教学,而是更重视数学发现层面的教学,即让学生在经历“数学家”解决问题的过程中去理解、去感受一种数学的思想和观念──数学化思想。学生先是感知地板砖中隐含的数学,会用约数、倍数知识解释简单的生活现象,进而思考并尝试解决画廊内装饰画的设计,学生自然会联想到地板砖中数学知识。但是,从解释到应用设计,在没有学习公约数的情况下会存在较大的难度。于是,创设了做数学的空间。让他们在设计正方形的过程中,逐渐感知公约数的存在,建立了解决这种问题的数学模型。再反思与总结,引导学生自己创造了“公约数”与“最大公约数”的`概念。
数学化思想观念是指用数学眼光去认识和处理周围事物或数学问题,可以培养学生良好的“用数学”意识,使数学关系成为学生的一种思维模式。而我们的课堂中,大多还是围绕知识就事论事,没有从形成学生思维模式的角度去展开知识形成和问题解决的思维过程,去注重现代的数学思想,去隐含重要的数学方法,这样,学生学到的只是知识的堆砌,没有自主的发展和对数学本质的领悟。
《最大公因数》教学反思10
对于本节课,我觉得有以下需要解决和认识。
1.复习寻找因数的方法。
2.联系实际体会学习寻找公因数的必要性。
3.探索寻找2个数的公因数和最大公因数的方法。
4.结合集合方法直观显示公因数和最大公因数。
5.理解学习公因数和最大公因数的意义以及应用。
6.结合短除法寻找最大公因数的方法。(这个在人教版中作为了解,在本课中,我向孩子们了解介绍,但未做要求)
在课上,我以为长16dm宽12dm的客厅铺上正方形方砖,刚好铺满,能选用集中方砖,这在无形中蕴含这寻找16和12的因数,这样能够孩子们体会寻找公因数的必要性,引起探究欲望。
孩子们有不同的方法和方式去表示公因数的.方式,在最后介绍集合方式,在交集中更直观现实公因数,这样更直观的显示,初步渗透集合思想。
学习短除法也为后面教学约分做好先知铺垫,也为孩子们介绍一种寻找最大公因数的简便方法,满足不同水平学生学习的需要。
《最大公因数》教学反思11
本课是在学生已经理解和掌握倍数、因数的含义,初步学会找一个数的倍数和因数,知道一个数的倍数和因数的特点的基础上进行教学的。这部分内容既是“数与代数”领域基础知识的重要组成部分,又是进一步学习约分和通分以及分数四则计算的基础。
第一节课,根据教材是以铺地砖的生活实际作为切入点,要铺整分米数的地砖而且要求要整数块,引入了求两个数的公因数的必要性。教材主要的教学方法是先分别求出两个数的因数,并按照从大到小的顺序排列出来,从而找出两个数的公有因数,称为这两个数的公因数,其中最大的数就是这两个数的最大公因数。通过例1的教学后,我引导学生总结出求两数的`公因数以及最大公因数的方法。练习时发现部分学生还是容易在找一个数的因数的有疏漏,导致求出来的公因数和最大公因数出错。
第二节课,我引入了求最大公因数的另一种方法,分解质因数法,介绍用短除法求两个数的最大公因数。这种方法学生掌握起来比较容易,但也发现部分学生没有除尽,最后的商不是互质数,导致找错最大公因数。
不过相对于第一钟方法,第二种方法在书写上更简便,学生解题时还是比较容易理解,写起来也比较简洁,大部分学生在求几个数的最大公因数时还会选择第二种方法。当然,我还是鼓励学生选择自己喜欢的方法,关键是能理解,懂应用。
《最大公因数》教学反思12
《公因数和最大公因数》这部分内容是在学生理解因数与倍数的相互关系,会找1~100的自然数的因数,并且在学习面积概念时积累了“密铺”的活动经验开展教学的。对于《公因数和最大公因数》这样一节概念课的教学,其教学重、难点我认为就是对“公”字意义的理解,也就是如何体验这个数既是一个数的因数,又是另一个数的因数,才是两个数“公有”的因数。为了突出本节课的教学重点、突破教学难点,结合我们本学期的教研主题“如何设计有效的教学活动,达成教学目标”,我主要从以下几方面入手来尝试教学:
一、重视活动体验,让学生经历数学概念的形成过程。
第一次猜想:一个长方形,长4厘米,宽2厘米。如果用同样大的边长是整厘米数的正方形来摆,刚好摆满没有剩余,可以选边长是几厘米的正方形?让学生带着自己的思考去操作验证,在操作中体会“同样大小的正方形”、“摆满没有剩余”,初步感知正方形既要把长方形的长摆满没有剩余,又要把长方形的宽摆满没有剩余。
第二次猜想:现在把长方形变大,长6厘米,宽4厘米,同样的要求,这次正方形的边长可以是几厘米?学生可以熟练地操作验证,在活动体验和交流中进一步感知选择正方形时既要保证长方形的长摆满没有剩余,又要保证长方形的宽摆满没有剩余。
第三次猜想:继续变大,长18厘米,宽12厘米长方形,还是同样的要求,用同样大的小正方形来摆,刚好摆满没有剩余,这次可以选边长是几厘米的正方形呢?学生继续操作验证。这时学生已经有了前两次的.操作感知,积累了充分的活动经验,这些活动经验可以支撑他们去推理、想象,找到能“摆满没有剩余”的本质,从而从整体感知正方形边长的规律。
然后,发挥教师的主导作用:“我们前后共摆了三个长方形,得到了黑板上的这些数据。仔细想一想,这些正方形的边长和什么有关?有怎样的关系呢?”引导学生观察数据,发现规律,引出公因数和最大公因数的概念。
通过创设以上教学活动,让学生在活动中实实在在地经历了公因数产生的过程,积累丰富的活动经验,充分体验公因数的意义。
二、借助几何直观,增进学生对概念意义的理解。
通过上面的操作体验和思考认知,学生认识了公因数和最大公因数,又经历了找公因数和最大公因数的过程,学生能感知“因数”、“公因数”、“最大公因数”这三个概念之间存在着一些联系。为了帮助学生深入地理解概念,提出问题:“对比这三个概念,现在你能说说它们之间的联系与区别吗?可以选其中两个说一说。”引导学生进一步地思考。这时学生交流:“‘因数’是一个数的,而‘公因数’是两个或两个以上的数公有的”、“‘最大公因数’首先它也是‘公因数’中的一个,而且是‘公因数’中最大的一个。”根据学生的交流,我通过课件,借助韦恩图形象直观地演示了“因数”与“公因数”、“公因数”与“最大公因数”之间的关系,增进了学生对概念意义的理解。
三、通过实际问题,沟通数学概念与现实世界的联系。
在学生充分理解区分了“因数”、“公因数”、“最大公因数”三个概念之后,提出问题:“一根彩带长16分米,如果要截成小段来装饰包装盒,要求每段一样长且剪完没有剩余,每段可以是几分米?(选整分米数)”学生想到:这是个用因数的知识解决的问题,求每段可以是几分米,也就是求16的因数。这时,引导学生改编成一个用公因数来解决的问题,学生首先想到了
少需要两个数据,于是有的学生想到可以改编成:“两条彩带,一条16分米,一条12分米。把它们截成同样长的小段且没有剩余,每段可以是几分米?(选整分米数)”这样的问题。在学生思考的过程,既是在进一步理解概念的意义,又找到了“公因数”、“最大公因数”概念的现实意义,培养了学生的数学抽象能力。
一节课下来,我发现学生是最棒的!在不断地实践探索中,他们的认识不断提升,我仿佛听得到他们思维拔节的声音。
当然,仔细琢磨,这节课还有很多可圈可点之处,如:
1、在三次操作之后,找正方形边长与长方形的长和宽有什么关系环节,有的孩子不能用数学的眼光去观察、去思考,还停留在操作上,这就说明作为老师,在这两个环节之间没有为孩子搭建起合适的桥梁,没有帮孩子找到一个好的思维支点。
2、因为操作感知时间较长,在本节课的第二个知识目标——找公因数和最大公因数的方法环节就没有充分的时间将孩子的各种方法展开交流,也是个小小的遗憾。
带着原有的思考我们做了如上尝试,然而一节课的时间是有限的,个人业务素养也有待提高,所以没有做到面面俱到。好在一节课的结束并不意味着思考的终止,我又带着实践中的新问题上路了。期待着思考的路上,能得到更多领导、同行们的指点与批评!
《最大公因数》教学反思13
“公因数和最大公因数”是第三单元第三课时的内容,在此之前,已经学过了公倍数和最小公倍数,掌握了公倍数和最小公倍数的概念和求法,这节课的教学过程与公倍数的教学非常相似,吸取了公倍数教学时的教训,本节课教学公因数概念的时候,我先让学生读题,说清题意,再进行操作,这样以来学生是带着问题去操作的,不像公倍数时部分学生题目都理解不了就开始动手操作,不能完全达到本题操作的目的。在教学求公因数方法的时候,我也让学生与公倍数求法进行了比较,通过比较学生发现了公倍数是无限的,没有给定范围时要写省略号,而公因数是有限个的,要写好句号,表示书写完成;还发现找公倍数时是找最小公倍数,而找公因数是最大公因数;还发现求公因数的方法中是先找小数的因数再从其中找大数的因数,而求公倍数却是利用大数翻倍法,找出来的是大数的倍数,再从其中找出小数的倍数。不仅两个例题的教学过程相似,连练习的设计也是相似的,所以学生在完成练习的时候,已经对练习的形式较为熟悉,练习完成的较好。正因为两节课太相似,所以小部分学生已经有些混淆了,分不清怎么求公倍数,怎么求公因数,这个是在以后教学中要避免的。
这节课的.作业也能反映一些本节课上的问题,在教学公倍数的时候,我没有强调集合中元素的互异性,作业中不少学生在公倍数一栏填写的数字,同时出现在左右部分的集合中,在这节课练习时,我特意强调了这一点,希望学生们能记住,在完成练习五的时候还发现,部分学生对于2、3、的倍数的特征记得不清楚了,所以在判断是不是它们的倍数的时候还有一些人用大数去除以2、3、5的方法来判断,耽误了很多的时间,这是我上课之前没有想到的,要是在做这一题之前先让学生回忆2、3、5的倍数的特征,想必他们会节省更多的时间。
《最大公因数》教学反思14
教学内容:第26~28页的例3、例4、“练一练”、“练习五”的第1~5题。
目标预设:
1、理解公因数的含义,掌握求两个公因数和最大公因数的方法。
2、经历“猜测——验证”的数学学习过程,感受科学探究的一般方法,培养抽象思维能力,积累数学活动经验。
3、感受数学的奇妙,培养对数学的积极情感。
教学重点和难点:理解公因数的含义,掌握求两个数最大公因数的方法。
课程实施:
一、自主构建公因数意义
1、出示边长6厘米、边长4厘米的小正方形个若干以及一个长18厘米、宽12厘米的长方形。
猜一猜:你觉得哪一种正方形可以将这个正方形铺满。
2、组织学生同桌合作,摆放小正方形,
教师要帮助学有困难的小组完成活动任务。
3、交流:边长6厘米的正方形纸可以正好铺满这个长方形。
为什么边长6厘米的正方形正好铺满这个长方形?
结合刚才的操作活动体验,学生明白:因为12÷6=2(竖排放2行),18÷6=3(横排放3列),也就是6既是12的因数,也是18的因数,所以可以正好摆满。
4、讨论:还有哪些边长是整厘米的正方形纸片也能正好铺满这个长方形?简单地解释自己推测的理由。
5、只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满这个长方形吗?
6、提问:4是12和18的公因数吗?
7、通过刚才的学习,你有什么话想说吗?
二、独立探索找公因数的方法。
1、8和12的公因数有哪些?最大公因数是几?
放手让学生自己探索解决问题的方法。
2、交流:学生出现的方法:
(1)、分别写出8和12的因数,再找一找他们的公因数;
(2)、先找8的因数,再从8的因数中找12的因数;
……
交流时结合自己的方法说说这样找的理由,
3、“集合圈”
我们同样也可以用集合圈表示8和12的公因数。
出示集合圈,先让学生自己填写,再说说每一部分表示的含义。
4、观察比较,感受公因数的有限性,
公因数的集合圈与公倍数有什么不同的地方?为什么公因数集合圈中不需要省略号?引导学生从“因数的有限性”推想出“两个数的公因数的个数是有限的”。
5、练一练
先让学生根据要求完成。通过交流,进一步理解找两个数公因数和最大公因数的方法,感受两者的联系与区别,
三.促进知识向技能的转化
1、“练习五”第1题
让学生独立完成,进一步理解集合圈的表示方法,深化对求两个数最大公因数的方法的认识。
2、“练习五”第4题
⑴先让学生自主判断第一组数,然后交流各自的方法,比较得出“利用2.3.5倍数的特征”进行判断,可以提高正确率。
⑵出示其他几组让学生选择合理的方法进行判断,同时提醒两个数的公因数可以有2.3.5中的多个,为后面学习月份积累策略。
3、“练习五”第5题
要启发学生用不同的方法找出每组数的最大公因数,提倡灵活运用各种策略快速解题,
四、通过本节课的学习,你有哪些收获?
五.作业布置
“练习五”第2.3题
课后反思:
这部分内容的结构与“公倍数和最小公倍数”基本相同,结合具体的情境,引导学生通过观察、操作、分析、比较、抽象和概括等活动,探索并理解公因数、最大公因数的含义,掌握求两个数的最大公因数的方法。
1、我让学生依托动手操作,加强对比观察,沟通新旧知识的联系,优化概念引进的过程。在教学例3时,我分四步组织学生
的活动。第一步,让学生“分别用边长6厘米和4厘米的正方形纸片铺长18厘米、宽12厘米的长方形”,铺前先思考:边长是多少的正方形可以铺满这个长方形?通过操作,学生都知道边长6厘米的正方形可以铺满长18厘米、宽12厘米的长方形。引导学生具体感知公因数的含义。第二步,组织讨论“还有哪些边长是整厘米数的正方形纸片也能正好铺满这个长方形”,通过思考,学生明白:“只要边长的厘米数既是12的因数,又是18的因数,就能正好铺满”这个长方形。第三步,可以先让学生说一说1、2、3和6的共同特征,再告诉学生1、2、3和6的共同特征,再告诉学生“1、2、3和6既是12的`因数,又是18的因数,它们是12和18的公因数。第四步,让学生说一说4为什么不是12和18的公因数,使学生加深对公因数含义的理解,知道4是12的因数,但不是18的因数,所以4就不是12和18的公因数。通过正、反两方面的比较,优化概念的形成。
2、着眼于问题的解决,鼓励学生自主探索,逐步形成概念结构。教学例4是,我让学生先独立思考,用自己的方法找出8和12的公因数和最大的公因数。再通过交流,使学生在相互启发的过程中进一步打开思路,明确方法。由于学生已经积累了较为丰富的求两个数的最小公倍数的方法,因而这里的重点是让学生在自主探索的基础上合乎逻辑地表达自己的思考过程,并体会不同方法的内在一致性。这时,我适时引导学生建立概念结构:因数——公因数——最大公因数,并且辨析这些概念的联系与区别。此外,考虑到学生也已经初步认识了用集合图表示两个相交的集合圈,所以我让学生根据对有关概念的理解,独立把8和12的因数分别填在集合图中的合适部分,然后再看图说说各自的想法,说说每一个区域内的数分别表示什么,把静态的集合图转化成动态的探索对象,让学生加深对集合图的理解,也使集合思想的渗透落到实处。
3、练习的重点是让学生通过操作和填空,进一步理解求公因数和最大公因数的方法。让学生在解决问题的过程中提炼解题策略,优化概念应用的过程。
《最大公因数》教学反思15
本节课的教学内容是求两个数的公因数和两个数的最大公因数的第二课时。教学目标是进一步理解两个数的公因数和最大公因数的意义,比较熟练地求出两个数的最大公因数,包括两种特殊情况。这节课上的非常顺利,课堂气氛活跃,师生互动和谐,取得了较好的课堂教学效果。
上课的第一环节,是复习两个数的.公因数和最大公因数的意义。在复习的过程中,我不是单纯地让学生复述两个数的公因数和最大公因数的意义,而是让学生举例说明。学生说出了许多组数,找出了它们的公因数和最大公因数。在学生举例的过程中,对它们的意义有了更深的理解。我择其四组板书在黑板上:4和5,5和6,5和7,7和9。让学生观察,这四组数有什么特点。我的本意是让学生发现两个数的最大公因数的一种特殊情况,即两个数的公因数只有1,那么它们的最大公因数就是1。 “我发现两个数中只要有一个质数,它们的最大公因数就是1。”这是一个大胆的猜测,虽说是出乎意料,但更使课堂充满了生机。我让学生判断他的观点是否正确。在小组讨论的过程中,有学生提出了质疑,“这个观点不对,比如2和4,2是质数,但它俩的最大公因数不是1。”又有学生提出3和6,5和10等。我接着又让学生观察,这几组数又有什么特点。通过通论观察,完成了本节课的另一个教学任务,发现了两个数的最大公因数的另一种特殊情况,即两个数是倍数关系,那么它们的最大公因数就是较小的数,学生发现了两个数的最大公因数的几种情况,当两个数都是质数时,它们的最大公因数是1;当两个数是连续的自然数时,它们的最大公因数是1;两个数的最大公因数是1,这两个数可以是质数,也可以是合数,还可以一个是质数,一个是合数,等等。
【《最大公因数》教学反思】相关文章:
《最大公因数》教学反思07-24
《公因数和最大公因数》的教学反思05-21
(集合)《最大公因数》教学反思15篇10-19
(优)《最大公因数》教学反思15篇10-19
最大公因数教学设计04-12
《最大公因数》教学设计10-29
《最大的“书”》教学反思09-03
《最大的书》教学反思11-06
《最大的“书”》教学反思(推荐)07-06
《最大的“书”》教学反思15篇06-26