- 相关推荐
两位数乘两位数不进位教学反思
身为一名到岗不久的人民教师,我们要在课堂教学中快速成长,对学到的教学新方法,我们可以记录在教学反思中,教学反思我们应该怎么写呢?下面是小编收集整理的两位数乘两位数不进位教学反思,欢迎大家分享。
两位数乘两位数不进位教学反思1
本节课的学习内容是在学习了笔算两、三位数位数乘一位数和含整十数的两位数乘法的基础上进行教学的,本单元的笔算乘法分两个层次编排。先出现不进位的,突出乘的顺序及部分积的书写位置,帮助学生理解笔算的算理;然后进位和连续进位。两位数乘两位数的笔算是本单元的`教学重点。第二部分积的对位问题,是本节课的一个难点。学生掌握了两位数乘两位数的计算方法,不仅可以解决与之有关的实际问题,还为学习多位数四则混合运算打下基础。而且,为学生解决生活中遇到的因数是更多位数的乘法问题,奠定了基础。因此在计算体系中具有相当重要的地位。
本节课在新知的探索过程中,我先让学生尝试计算24×12,在学生出现口算方法与竖式计算两种方法后,我先让学生交流口算方法与算理,为进一步理解竖式计算的算理奠定基础。为了突破重点和难点,在交流竖式计算方法时,我出示了个问题:①48是怎样算出来的?②24是怎样算出来的?为什么不与48的数为对齐?③这里的24表示多少?④24既然表示240,为什么个位的0不写?⑤240个位的0省略不写是时,4的位置能变动吗?为什么?⑥288又是怎样得到的?通过讨论交流这5个问题,学生真正的理解了两位数乘两位数的算理。为了加深理解,我又对口算方法与竖式计算进行了沟通,找到他们的联系:方法一样,只是书写形式不同罢了!
在当堂课的测试中,学生的对位问题没有一人出现错误。错误大多是学生计算错误,个别学生乘的顺序不对,需要进一步强化!
两位数乘两位数不进位教学反思2
疫情无情,人间有爱。停课不停教、线上教学已经持续有一月时间,为了减轻疫情对学校教学的影响,确保在家学习质量不打折,我们三数组制定了详细的线上教学计划,学生上午观看同桌100视频课,下午根据作业完成情况录制小视频进行答疑。
根据课程安排,这周我们学习了《两位数乘两位数(不进位)》的内容,它是在学生学习了多位数乘一位数、口算乘法的基础上进行教学的。为了提高学生的计算正确率,就得让学生真正理解算理,算理是算法的基础。
我认为本节课内容,如果还将算理的呈现停留在实物表征的呈现上,是对学生思维方式的倒退式引导。两位数乘两位数的关键在于让学生理解用一个因数的'个位、十位分别去乘另一个因数的过程。在学习这节课前,我对班里的学习情况进行了一个预测,计算对学生来说不难,难就难在算理的理解上,还有一些细节问题,比如:抄错数字、横式忘写得数等等。通过学习同桌100视频课及家长的辅导,大部分学生已经会算两位数乘两位数不进位乘法,但对于为什么这样写,先怎么计算再怎么计算,还比较迷茫。本节课的重点就是理解算理,如何很好的突破这一难点呢?在下午批改作业反馈中,我是这样处理的,录制小视频重点讲解14乘12的算理,让学生给家长说一说计算过程,并录制了小视频。为了达到举一反三的效果,晚饭后又让家长根据自己孩子的计算情况,自愿完成6道关于两位数乘两位数不进位乘法的竖式计算。
我在批改作业中体会到,对于计算类的教学,千万不能仅看学生计算的正确与否,而更应该注重学生对于计算算理的理解。
两位数乘两位数不进位教学反思3
本节课教学的是两位教乘两位数(不进位)的笔算,主要从以下两个方面入手:
1.渗透估算。学生根据情境图列出算式24×12后,我追问:谁能估算一下大约一共有多少个?你是怎样估算的'?通过这一追问让学生知道估算可以24和12看成接近它们的整十数。学生的估算方法多样,思维灵活,在具体的题目中渗透估算教学,培养了学生的估算意识,同时又能为检验笔算结果是否合理服务。
2.理解算理。列出算式24×12,重点还是让学生掌握两位数乘两位数的算法,本节课主要解决笔算过程中从哪一位乘起和竖式书写格式问题。在教学时,先让学生尝试选择合理的方法解决问题,数形结合,引出笔算的方法,过程自然、流畅。同时在理解算理时,让学生理解每一步表示的意义,感受知识之间的内在联系。但由于学生是初学两位数乘两位教的笔算,因此经常会在书写格式上出错,出现数位不对齐等问题。所以在教学时,还要多巡视学生的书写,及时发现问题,及时纠正。
两位数乘两位数不进位教学反思4
本节课是小学人教版三年级下册第四单元的学习内容,是在学习了笔算两、三位数位数乘一位数和含整十数的两位数乘法的基础上进行教学的。本节课在新知的探索过程中,我先让学生尝试计算24×12,在学生出现口算方法与竖式计算两种方法后,我先让学生交流口算方法与算理,为进一步理解竖式计算的算理奠定基础。为了突破重点和难点,在交流竖式计算方法时,我出示了个问题:
①48是怎样算出来的?
②24是怎样算出来的?为什么不与48的数为对齐?
③这里的24表示多少?
④24既然表示240,为什么个位的.0不写?
⑤240个位的0省略不写是时,4的位置能变动吗?为什么?
⑥288又是怎样得到的?
通过讨论交流这5个问题,学生真正的理解了两位数乘两位数的算理。为了加深理解,我又对口算方法与竖式计算进行了沟通,找到他们的联系:方法一样,只是书写形式不同罢了!
在当堂课的测试中,有部分基础较差的学生对位问题出现错误。还有大多是学生计算时错误,个别学生乘的顺序不对,需要进一步强化!
两位数乘两位数不进位教学反思5
本节课是在学生学习了笔算多位数乘一位数的基础上进行教学的。教学不进位的笔算乘法,重点是教学乘的顺序及各部分积的书写位置,重点帮助学生理解笔算的算理,突出各部分积的实际含义。在本节课教学中,我主要从以下几方面做起;
一、让学生经历探索计算方法的过程,培养几何直观。
让学生经历知识的形成过程,是新课程倡导的`重要改革理念之一。我在教学两位数乘两位数不进位的笔算中,首先让学生尝试用已有的知识解决新问题,并要求学生用点子图把自己的方法表示出来,让学生经历用图示表征解释算法的过程;然后在去全班交流展示多种解决问题的方法,并通过学生的汇报使学生明确如何划分点子图、算式表征了哪种计算方法,沟通图形表征、算式表征与计算方法之间的联系;最后,在理解竖式计算的算理时,让学生再次利用点子图,表示出竖式计算中每一步的结果,进而更好地理解其含义,掌握好算法。
借助点子图,在加深学生对计算方法理解的同时,使学生逐步学会借助几何直观去解决问题,去表达和交流,有效促进学生的全面发展。
二、处理好算法多样化与优化的关系。
在学生探索14×12=?时,学生出现了多种算法:(1)14×10=14014×2=28140+28=168(2)14×2×6=168(3)14×4×3=168(4)12×7×2=168(5)12×10=12012×4=48120+48=168
(6)14×9=12614×3=42126+42=168……在学生交流多种多种算法时,让学生在感受算法多样化的同时,应充分让学生通过对不同计算方法和点子图的比较、归纳和分类,体验方法的异同,掌握解题策略。教师发挥引导作用“这多种方法,都体现了相同的解题思路“先分后合”。师追问:先分后合的解题思路有什么优点呢?学生体会后说“这些方法都是先分后合,分开以后,数变小了,就会算了。分了以后就把新知识转化为旧知识来解答了。”这样在比较中,培养学生的分析能力和优化意识。
三、注意培养良好的学习习惯。
学生在计算时,容易产生一些错误。例如:只把相同数位上的数相乘,漏乘某一位;积的位置对错位;出现相加的错误等等。如果不及时纠正,就会产生不良的学习习惯。所以在学生计算中一定严格要求,书写工整,计算细心,认真审题的良好学习习惯。
【两位数乘两位数不进位教学反思】相关文章:
《两位数乘两位数》的教学反思05-24
《两位数乘两位数》教学反思06-30
《两位数乘两位数》教学反思15篇【优秀】06-30
两位数乘两位数笔算乘法教学反思06-13
两位数乘两位数教学设计10-08
两位数乘两位数教案06-16
两位数乘两位数的笔算说课稿08-23
两位数加两位数教学反思11-17
《两位数加两位数》教学反思06-21